
Reviewed for technical accuracy February 14, 2024

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

Guidance for Multiplayer Session-Based Game Hosting on AWS
This architecture diagram shows how to build a global multiplayer game on Amazon GameLift with matchmaking and a serverless backend.

Game client measures TCP latency to AWS Regions 

by calling Amazon DynamoDB endpoints.

Game client uses the AWS Game SDK to make an 

authenticated POST request to Amazon API Gateway

with the latency data in the request body.

API Gateway validates client JSON Web Token with 

the Custom Identity Component public keys.

API Gateway calls request-matchmaking AWS 

Lambda function, which sends a StartMatchmaking

request to Amazon GameLift FlexMatch with the 

latency data.

Amazon GameLift FlexMatch matches the player with 

other players and calls the Amazon GameLift queue to 

request a placement in case of a new match. It can 

also backfill players to existing matches.

The Amazon GameLift queue finds a placement 

based on player latencies in one of the Amazon 

GameLift fleet locations.

Once the placement is done and session started, 

Amazon GameLift FlexMatch sends a 

MatchmakingSucceeded event to an Amazon Simple 

Notification Service (Amazon SNS) topic. It also 

sends all intermediate events such as 

MatchmakingSearching.

Amazon SNS invokes process-matchmaking Lambda

function, which updates all match status changes to a 

DynamoDB table.

Game client polls match status with a GET request 

containing the matchmaking ticket ID.

Get-match-status Lambda function gets the latest 

match info from DynamoDB and sends it back to the 

game client. When matchmaking is done, it also sends 

the IP, port, and player session ID to the client.

Game client connects with TCP (often UDP in real-time 

games) to the game session and sends the player 

session ID that the game server validates.

The instances send logs and metrics to Amazon 

CloudWatch using the CloudWatch agent.

1

2

3

4

5

6

7

AWS Cloud

2

3

4

9

10

8

Game code
AWS

Game SDK

Custom Identity 

Component

Amazon API Gateway

HTTP API

AWS Lambda

get-match-status

AWS Lambda

request-matchmaking

Amazon DynamoDB

MatchmakingTable

Amazon CloudWatch
Amazon GameLift

Multi-location fleet

Amazon GameLift

FlexMatch
Amazon SNS

AWS Lambda

process-matchmaking

Amazon GameLift

ueue

5

6

7

8

9

11
12

Amazon DynamoDB 

Regional endpoints

1

11

12

10

Game Client


