Guidance for Near Real-Time Fraud Detection with Graph Neural Network on AWS

A full managed GNN-based near real-time fraud detection solution

This is a blueprint architecture for near real-time fraud detection using graph databases Amazon Neptune, Amazon SageMaker and Deep Graph Library (DGL) to construct a heterogeneous graph from tabular data and train a Graph Neural Network (GNN) model to detect fraudulent transactions in the IEEE-CIS fraud detection dataset.

- Use Amazon API Gateway to host HTTP APIs for near real-time fraud detection services.
- Use AWS Lambda functions as an HTTP API backend. The functions process the new transactions as graph data then store them in a graph database such as **Amazon** Neptune.
- Query the sub-graph of the requested transactions from Amazon Neptune.
- Use an Amazon SageMaker endpoint to predict the fraudulent possibility of transactions with pre-trained GNN models.
- Send the predicated results to Amazon Simple Queue Service (Amazon SQS) to be consumed by business analysis systems.
- Use AWS Lambda functions to poll the predicated results from Amazon SQS, then store them in Amazon DocumentDB.
- Business analysts access the business dashboard, which uses Amazon CloudFront and Amazon Simple Storage Service (Amazon S3) to host a static website, and AWS AppSync and AWS Lambda as a backend.
- Use AWS Lambda functions as an AWS **AppSync** resolver to fetch the data from Amazon DocumentDB.
- Amazon CloudFront uses origin access identity (OAI) to securely access the static web files on Amazon S3.

AWS Reference Architecture

Guidance for Near Real-time Fraud Detection with Graph Neural Network on AWS

A fully-managed GNN-based near real-time fraud detection solution

This architecture is a blueprint for near real-time fraud detection using graph database services Amazon Neptune, Amazon SageMaker, and DGL to construct a heterogeneous graph. The tabular data is used to train a GNN model to detect fraudulent transactions in the IEEE-CIS Fraud detection dataset.

- System operations or a periodic system task initiates the model training workflow.
- Use **Lambda** function to ingest the raw dataset to Amazon S3.
- Use **AWS Glue** crawler to crawl the raw dataset to populate the Data Catalog.
- Use **AWS Glue** extract, transform, load (ETL) job to transform the tabular dataset to a heterogeneous graph dataset, then save it to **Amazon S3**.
- Use the **SageMaker** training job to train the Graph Neural Network (GNN)-based fraud detection model with Deep Graph Library (DGL).
- Use AWS Fargate with Amazon Elastic Container Service (Amazon ECS) to load the graph dataset from Amazon S3 into fully-managed graph database service, Neptune.
- 7 Use **Lambda** to package the GNN model and custom code as the model in **SageMaker**.
- Create an endpoint configuration of **SageMaker**.
- Create or update an endpoint using the endpoint configuration in SageMaker.