
Reviewed for technical accuracy November 21, 2024
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Reference Architecture

Choose a Region based on both business 

requirements and sustainability goals. When 

regulations and legal aspects allow, use one of the 

AWS Regions where the electricity consumed is 

attributable to 100% renewable energy or Regions 

where the grid has a published carbon intensity that 

is lower than other locations (or Regions). When 

selecting a Region, aim to minimize data movement 

across networks—store your data close to your 

producers and train your models close to your data.

Adopt a serverless architecture for your pipeline so it 

only provisions resources when work needs to be 

done. Use Amazon SageMaker Pipeline to avoid 

maintaining compute infrastructure at all times. You 

can extend a template provided by Amazon 

SageMaker Projects, such as MLOps template for 

model building, training, deployment, and 

Amazon SageMaker Model Monitor.

Reduce duplication and re-run of feature engineering 

code across teams and projects by using Amazon 

SageMaker Feature Store.

Reduce the volume of data to be stored and adopt 

sustainable storage options to limit the carbon 

impact of your workload. Use energy-efficient, 

archival-class storage for infrequently accessed 

data, such as your raw data. If you can easily re-

create an infrequently accessed dataset, like 

training, validation and test data, use the Amazon 

Simple Storage Service (Amazon S3) One Zone-

Infrequent Access class to minimize the total data 

stored. Manage the lifecycle of all your data and 

automatically enforce deletion timelines to minimize 

the total storage requirements of your workload 

using Amazon S3 Lifecycle policies. Amazon S3 

Intelligent-Tiering will automatically move your data 

to the most energy-efficient access tier when access 

patterns change. Define data retention periods that 

support your sustainability goals while meeting your 

business requirements, not exceeding them.
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Guidance for Optimizing MLOps for Sustainability on AWS
Data preparation
This architecture diagram helps you align to MLOps sustainability goals. This slide focuses on data preparation.

Data preparation
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For distributed training of large deep learning models, 

use Amazon SageMaker Model Parallelism Library

in your training code to maximize usage of graphics 

processing units (GPUs).

Use Amazon SageMaker Training Compiler to 

compile your deep learning models from their high-

level language representation to hardware-optimized 

instructions to reduce training time. This can speed up 

deep learning model training by up to 50%.

Use Bayesian optimization search rather than 

random or grid search. Bayesian search typically 

requires 10 times fewer jobs than random search to 

find the best hyperparameters.

Use Amazon SageMaker Debugger to detect under-

utilization of system resources and identify training 

problems. SageMaker Debugger built-in rules can 

monitor your training jobs and automatically stop them 

upon bug detection.

Define acceptable performance criteria: evaluate the 

accuracy of your models using Amazon SageMaker 

Processing Jobs and make trade-offs between your 

model’s accuracy and its carbon footprint. Establish 

performance criteria that support your sustainability 

goals while meeting your business requirements, not 

exceeding them.

Use AWS Trainium to train deep learning models at 

up to 52% less energy than comparable Amazon 

Elastic Compute Cloud (Amazon EC2) instances. 

Consider Managed Spot Training, which takes 

advantage of unused Amazon EC2 capacity, to 

improve your overall resource efficiency and reduce 

idle capacity of cloud resources.

Right-size your training jobs with Amazon 

CloudWatch metrics. 

Reduce the volume of CloudWatch logs you keep. By 

setting limited retention time for your notebooks and 

training logs, you’ll avoid unnecessary log storage.

Document your model’s environmental impact using 

Amazon SageMaker Model Cards.
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Guidance for Optimizing MLOps for Sustainability on AWS
Model training and tuning
This architecture diagram helps you align to MLOps sustainability goals. This slide focuses on model training and tuning.
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Guidance for Optimizing MLOps for Sustainability on AWS
Model deployment and management
This architecture diagram helps you align to MLOps sustainability goals. This slide focuses on model deployment and management.

Automate the deployment of your models. Use

Amazon SageMaker Model Registry and AWS 

CodePipeline to run your deployment code.

If your users can tolerate latency, deploy your model on 

Amazon SageMaker Asynchronous Endpoints with 

auto scaling groups to reduce idle resources between 

tasks and minimize the impact of load spikes. 

When you don’t need real-time inference, use Amazon 

SageMaker Batch Transform. Unlike persistent 

endpoints, clusters are decommissioned when batch 

transform jobs finish.

Deploy multiple models behind a single Amazon 

SageMaker endpoint with auto scaling inference 

endpoints, which is more sustainable than deploying a 

single model behind one endpoint.

If your workload has intermittent or unpredictable 

traffic, use Amazon SageMaker Serverless Inference 

Endpoints, which automatically launch compute 

resources and scale depending on traffic.

Use AWS Inferentia to deploy your deep learning 

models, which provides up to 50% better performance 

per watt over comparable EC2 instances.

For Large Model Inference (LMI), use tensor 

parallelization available in the Deep learning 

containers for LMI to reduce latency.

Improve efficiency of your models by compiling them 

into optimized forms with Amazon SageMaker Neo. 

Right-size your endpoints by using metrics from 

CloudWatch or Amazon SageMaker Inference 

Recommender, which recommends the proper 

instance type to host your model. 

Monitor your ML model in production using SageMaker 

Model Monitor, automate model drift detection, and 

only retrain when predictive performance has fallen 

below defined key performance indicators (KPIs).
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