Guidance for Vibe Coding with AWS MCP Servers

Overview

This architecture diagram illustrates how to effectively develop AWS applications using Al assistants enhanced with AWS MCP Servers,

demonstrated through a sample hotel booking application built on Amazon Bedrock AgentCore.

User’s Workstation

999,

Al Coding assistant

A

Developer

A
> [

Sample Application
Hotel Booking System

o !

Challenge 1 — Discovery & Analysis

Generated Outputs

AWS Documentation

AWS Knowledge MCP Server

and Best Practices Advice

AWS Diagram MCP Server

Challenge 2 — Building User Interfaces

Architecture Diagrams

AWS Frontend MCP Server

Amazon Nova Canvas

React Ul Components

MCP Server

Challenge 3 - Production Readiness Assessment

AWS Pricing MCP Server

Cost Estimation Reports

|
|
|
|
I
1
I
|
|
T Visual Assets and Images
|
|
|
|
|
|
I
|
|

AWS CDK MCP Server

%F;}I
N

Amazon Bedrock Amazon Bedrock Amazon API
AgentCore AgentCore Gateway
Hotel Booking Agent Hotel Booking MCP Mock APIs

aWS Reviewed for technical accuracy November 13, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CDK Security rules
1 and CDK patterns

Developers install an Al coding assistant that
supports the Model Context Protocol (MCP), such as
Amazon Q Developer, Kiro, or compatible
alternatives. MCP enables Al assistants to access
structured, domain-specific capabilities through
standardized server integrations.

Developers configure AWS MCP Servers in their
development environment, enabling Al assistants to
access AWS-specific capabilities. This guidance
showcases six essential servers, with additional
specialized servers available in the complete AWS
MCP collection.

This guidance includes a comprehensive, real-world
hotel booking application. Developers can deploy
this reference implementation to their AWS account
using the provided AWS CDK infrastructure, creating
a working example for exploring vibe coding
techniques with AWS MCP Servers.

The reference implementation runs on Amazon
Bedrock AgentCore, where both the hotel booking
agent and custom MCP server operate within the
Amazon Bedrock AgentCore runtime, integrating
with mock APIs for property resolution, reservations,
and content moderation. See next slide for detailed
architecture.

When exploring AWS services and architectures,
developers leverage their Al assistant's integration
with AWS Knowledge MCP Server to access official
documentation and best practices. AWS Diagram
MCP Server generates architecture visualizations,
accelerating understanding of complex distributed
systems.

Developers accelerate frontend development using
AWS Frontend MCP Server to generate React
components with AWS integration, while Nova
Canvas MCP Server creates custom graphics and
visual elements.

Production readiness assessment leverages AWS
Pricing MCP Server for cost analysis and AWS CDK
MCP Server for security evaluation through CDK
Nag rules and AWS Solutions Constructs patterns,
enabling data-driven deployment decisions.

Guidance for Vibe Coding with AWS MCP Servers

Hotel Booking System — Sample Application

This complete hotel booking system is provided as a realistic, hands-on example of Amazon Bedrock AgentCore in action. It demonstrates
how Al agents and custom MCP servers orchestrate complex AWS services through natural language interactions.This slide shows steps 1-6.

IE AWS Cloud

Amazon Bedrock
AgentCore Runtime

Amazon Bedrock
AgentCore Runtime

4

Users

e

Hotel Booking
Strands Agent

Z

Hotel Booking
MCP Server

A
7

N

|
E

Amazon Cognito

Amazon Bedrock AWS AgentCore

External APls

Bl— ®—

Amazon APl AWS Lambda
Gateway Properties

>
Amazon Location
Service

-5

Amazon DynamoDB

N

g

ol

Memory

><—>%

Amazon DynamoDB

;—__@

Amazon APl AWS Lambda
Gateway Reservations

Amazon APl AWS Lambda Amazon Comprehend
Gateway Toxicity

aWS Reviewed for technical accuracy November 13, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A user, authenticated by Amazon Cognito, submits
arequest (e.g., "Find me a hotel in Seattle for next
weekend") by invoking the Hotel Booking Agent. The
agent is deployed on Amazon Bedrock AgentCore.
Amazon Bedrock AgentCore Runtime provides a
secure, serverless and purpose-built hosting
environment for deploying and running Al agents or
tools.

The agent, built using the Strands Agents SDK,
invokes an Amazon Bedrock model to leverage
LLM capabilities for natural language understanding.

The agent retrieves historical data about previous
interactions with a user. Amazon Bedrock
AgentCore Memory manages conversation context
for the agent.

The agent connects to the Hotel Booking MCP
Server, which is also deployed on Amazon Bedrock
AgentCore, to discover and invoke tools required to
complete the user’s request.

Once a tool is selected, the agent calls it through its
MCP Server. The MCP Server routes requests to
Amazon API Gateway.

Amazon APl Gateway exposes 3 different APIs that
represent the tools of the MCP Server: Property
Resolution, Reservations, and Toxicity Detection via
corresponding AWS Lambda functions.

AWS Lambda functions process the requests:
Property Resolution Lambda: Performs fuzzy
matching against hotel records and uses Amazon
Location Service to search properties not in
Amazon DynamoDB. It returns top 5 matching
hotels with details like location, amenities, and
pricing.

Reservations Lambda: Executes CRUD operations
on reservation data, validates booking parameters
(dates, guest count, room availability), generates
confirmation numbers, and manages reservation
status transitions (Booked — Confirmed —
Cancelled).

Toxicity Detection Lambda: Analyzes user input
text using Amazon Comprehend for inappropriate
content, applies allow list filtering, scores toxicity
levels, and returns safety assessment results.

Guidance for Vibe Coding with AWS MCP Servers

Hotel Booking System — Sample Application

This complete hotel booking system is provided as a realistic, hands-on example of Amazon Bedrock AgentCore in action. It demonstrates

how Al agents and custom MCP servers orchestrate complex AWS services through natural language interactions.

IE AWS Cloud

Amazon Bedrock
AgentCore Runtime

Amazon Bedrock
AgentCore Runtime

4

Users

e

Hotel Booking
Strands Agent

Z

Hotel Booking
MCP Server

A
7

N
7

Amazon Cognito

N

Amazon Bedrock AWS AgentCore

External APls

o o0 B

Amazon Location

Service
Amazon APl AWS Lambda

Gateway Properties —)

Amazon DynamoDB

N

g

ol

Memory

><—>%

Amazon APl AWS Lambda Amazon DynamoDB
Gateway Reservations

Amazon APl AWS Lambda Amazon Comprehend
Gateway Toxicity

aWS Reviewed for technical accuracy November 13, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API| Responses are passed back to the MCP
Server, so that the server can process them as
tool results. The MCP Server transforms API
responses into structured tool results, handles
error conditions, formats data for agent
consumption, and maintains request/response
correlation for multi-step booking workflows.

The MCP Server tool results are sent back to the
Hotel Booking agent for processing. The agent
determines next steps, leveraging Amazon
Bedrock foundation models to interpret the tool
results, and decide the best course of action.

The final response (search results, booking
confirmation, or error messages) are delivered
back as a response to the User.

AWS Identity and Access Management (AWS
IAM) secures the system with dedicated
execution roles for the hotel booking agent, MCP
server, and AWS Lambda functions. Each role
implements least-privilege access to required
AWS services including Amazon Bedrock
models, Amazon Bedrock AgentCore Memory,
and API resources.

	Slide 1
	Slide 2
	Slide 3

