
Reviewed for technical accuracy November 13, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

Challenge 2 – Building User Interfaces

Challenge 3 - Production Readiness Assessment

Challenge 1 – Discovery & Analysis

Developers install an AI coding assistant that 

supports the Model Context Protocol (MCP), such as 

Amazon Q Developer, Kiro, or compatible 

alternatives. MCP enables AI assistants to access 

structured, domain-specific capabilities through 

standardized server integrations.

Developers configure AWS MCP Servers in their 

development environment, enabling AI assistants to 

access AWS-specific capabilities. This guidance 

showcases six essential servers, with additional 

specialized servers available in the complete AWS 

MCP collection.

This guidance includes a comprehensive, real-world 

hotel booking application. Developers can deploy 

this reference implementation to their AWS account 

using the provided AWS CDK infrastructure, creating 

a working example for exploring vibe coding 

techniques with AWS MCP Servers.

The reference implementation runs on Amazon 

Bedrock AgentCore, where both the hotel booking 

agent and custom MCP server operate within the 

Amazon Bedrock AgentCore runtime, integrating 

with mock APIs for property resolution, reservations, 

and content moderation. See next slide for detailed 

architecture.

When exploring AWS services and architectures, 

developers leverage their AI assistant's integration 

with AWS Knowledge MCP Server to access official 

documentation and best practices. AWS Diagram 

MCP Server generates architecture visualizations, 

accelerating understanding of complex distributed 

systems.

Developers accelerate frontend development using 

AWS Frontend MCP Server to generate React 

components with AWS integration, while Nova 

Canvas MCP Server creates custom graphics and 

visual elements.

Production readiness assessment leverages AWS 

Pricing MCP Server for cost analysis and AWS CDK 

MCP Server for security evaluation through CDK 

Nag rules and AWS Solutions Constructs patterns, 

enabling data-driven deployment decisions.

1

2

3

4

5

6

Guidance for Vibe Coding with AWS MCP Servers
Overview
This architecture diagram illustrates how to effectively develop AWS applications using AI assistants enhanced with AWS MCP Servers, 

demonstrated through a sample hotel booking application built on Amazon Bedrock AgentCore.

Developer

AWS Knowledge MCP Server

AWS Diagram MCP Server

AWS Frontend MCP Server

Amazon Nova Canvas

MCP Server

AWS Pricing MCP Server

AWS CDK MCP Server

Generated Outputs

AWS Documentation 

and Best Practices Advice

Architecture Diagrams

React UI Components

Visual Assets and Images

Cost Estimation Reports

CDK Security rules 

and CDK patterns

Hotel Booking System (AWS Cloud)

Amazon API 

Gateway

Mock APIs

Sample Application

Hotel Booking System

User’s Workstation

AI Coding assistant

1 2

3

4

5

6

7

7

Amazon Bedrock 

AgentCore

Hotel Booking MCP

Amazon Bedrock 

AgentCore

Hotel Booking Agent



Reviewed for technical accuracy November 13, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

A user, authenticated by Amazon Cognito, submits 

a request (e.g., "Find me a hotel in Seattle for next 

weekend") by invoking the Hotel Booking Agent. The 

agent is deployed on Amazon Bedrock AgentCore. 

Amazon Bedrock AgentCore Runtime provides a 

secure, serverless and purpose-built hosting 

environment for deploying and running AI agents or 

tools.

The agent, built using the Strands Agents SDK, 

invokes an Amazon Bedrock model to leverage 

LLM capabilities for natural language understanding.

The agent retrieves historical data about previous 

interactions with a user. Amazon Bedrock 

AgentCore Memory manages conversation context 

for the agent.

The agent connects to the Hotel Booking MCP 

Server, which is also deployed on Amazon Bedrock 

AgentCore, to discover and invoke tools required to 

complete the user’s request.

Once a tool is selected, the agent calls it through its 

MCP Server. The MCP Server routes requests to 

Amazon API Gateway.

Amazon API Gateway exposes 3 different APIs that 

represent the tools of the MCP Server: Property 

Resolution, Reservations, and Toxicity Detection via 

corresponding AWS Lambda functions.

AWS Lambda functions process the requests:

Property Resolution Lambda: Performs fuzzy 

matching against hotel records and uses Amazon 

Location Service to search properties not in 

Amazon DynamoDB. It returns top 5 matching 

hotels with details like location, amenities, and 

pricing.

Reservations Lambda: Executes CRUD operations 

on reservation data, validates booking parameters 

(dates, guest count, room availability), generates 

confirmation numbers, and manages reservation 

status transitions (Booked → Confirmed → 

Cancelled).

Toxicity Detection Lambda: Analyzes user input 

text using Amazon Comprehend for inappropriate 

content, applies allow list filtering, scores toxicity 

levels, and returns safety assessment results.

1

2

3

4

5

6

Guidance for Vibe Coding with AWS MCP Servers
Hotel Booking System – Sample Application
This complete hotel booking system is provided as a realistic, hands-on example of Amazon Bedrock AgentCore in action. It demonstrates 

how AI agents and custom MCP servers orchestrate complex AWS services through natural language interactions.This slide shows steps 1-6.

7

Region

AWS Cloud

1 5

AWS Lambda

Properties

AWS Lambda

 Reservations

AWS Lambda

Toxicity
Amazon Bedrock AWS AgentCore 

Memory

External APIs

Hotel Booking 

Strands Agent
Hotel Booking 

MCP Server

4

2 3

6

Amazon Comprehend

Amazon API

Gateway

Amazon DynamoDBAmazon API

Gateway

Amazon API

Gateway

7

Amazon DynamoDB

Amazon Location

Service

8

9

10

Users

Amazon Bedrock 

AgentCore Runtime

Amazon Bedrock 

AgentCore Runtime

Amazon Cognito

AWS IAM

11



Reviewed for technical accuracy November 13, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

Guidance for Vibe Coding with AWS MCP Servers
Hotel Booking System – Sample Application
This complete hotel booking system is provided as a realistic, hands-on example of Amazon Bedrock AgentCore in action. It demonstrates 

how AI agents and custom MCP servers orchestrate complex AWS services through natural language interactions.

Region

AWS Cloud

1 5

AWS Lambda

Properties

AWS Lambda

 Reservations

AWS Lambda

Toxicity
Amazon Bedrock AWS AgentCore 

Memory

External APIs

Hotel Booking 

Strands Agent
Hotel Booking 

MCP Server

4

2 3

6

Amazon Comprehend

Amazon API

Gateway

Amazon DynamoDBAmazon API

Gateway

Amazon API

Gateway

7

Amazon DynamoDB

Amazon Location

Service

8

9

10

Users

Amazon Bedrock 

AgentCore Runtime

Amazon Bedrock 

AgentCore Runtime

Amazon Cognito

AWS IAM

11

API Responses are passed back to the MCP 

Server, so that the server can process them as 

tool results. The MCP Server transforms API 

responses into structured tool results, handles 

error conditions, formats data for agent 

consumption, and maintains request/response 

correlation for multi-step booking workflows.

The MCP Server tool results are sent back to the 

Hotel Booking agent for processing. The agent 

determines next steps, leveraging Amazon 

Bedrock foundation models to interpret the tool 

results, and decide the best course of action.

The final response (search results, booking 

confirmation, or error messages) are delivered 

back as a response to the User.

AWS Identity and Access Management (AWS 

IAM) secures the system with dedicated 

execution roles for the hotel booking agent, MCP 

server, and AWS Lambda functions. Each role 

implements least-privilege access to required 

AWS services including Amazon Bedrock 

models, Amazon Bedrock AgentCore Memory, 

and API resources.

8

9

10

11


	Slide 1
	Slide 2
	Slide 3

