
Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	1	
	

1.	Introduction	

This	document	outlines	the	steps	to	benchmark	the	performance	of	the	PostgreSQL-compatible	edition	of	
Amazon	Aurora	using	the	pgbench	and	sysbench	benchmarking	tools.	It	describes	how	to	run	a	number	of	
different	workloads	to	simulate	a	base	load	(pgbench),	a	read-write	workload	(pgbench),	and	a	write-heavy	
workload	(sysbench)	on	the	PostgreSQL-compatible	edition	of	Amazon	Aurora.		
	
Note	that	the	results	displayed	in	this	document	are	only	examples.	Your	actual	results	might	vary,	based	on	
environmental	dependencies	such	as	instance	configuration,	region,	network	performance,	etc.	

2.	Setup	

For	this	document,	the	reference	setup	consists	of	one	client	machine	(an	AWS	EC2	r4.8xlarge	instance	
running	sysbench	or	pgbench),	querying	an	Amazon	Aurora	r4.16xlarge	database	instance	in	the	same	
Availability	Zone.	These	instances	are	created	in	an	Amazon	VPC	with	enhanced	networking	enabled,	to	ensure	
that	throughput	numbers	are	not	constrained	by	network	bandwidth.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	setup	tasks	are	as	follows:	

1. Create	an	Amazon	VPC.	For	the	purposes	of	this	test,	the	EC2	instance	(r4.8xlarge	with	AMZN	Linux)	is	in	
the	same	Availability	Zone	as	the	database	instance.	

2. Ensure	that	enhanced	networking	is	enabled	on	the	EC2	instance	(see	
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html).	

3. Install	pgbench	and	sysbench	(version	0.5)	on	the	EC2	instance.	For	detailed	instructions,	see	Appendix	A	
of	this	document.	

4. Launch	an	r4.16xlarge	instance	of	the	PostgreSQL-compatible	edition	of	Amazon	Aurora	database	
engine	in	the	same	VPC.	Amazon	RDS	automatically	enables	enhanced	networking.	

	

	 	

VPC	–	Same	AZ	

Amazon	Aurora	
PostgreSQL-compatible	
edition	r4.16xlarge	

	

EC2	–	AMZN	Linux	
r4.8xlarge	

Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	2	
	

3.	Steps	for	Performance	Testing	
1. Set	the	necessary	environment	variables.	

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgsql/lib
export PATH=$PATH:/usr/local/pgsql/bin/

	
2. Run	the	pgbench	initialization	on	your	Amazon	Aurora	database	instance.	The	following	command	loads	a	

pgbench	database	using	a	scale	factor	of	10000,	vacuums	the	resulting	data,	and	then	indexes	it:	
pgbench -i --fillfactor=90 --scale=10000 --host=<rds-aurora-instance-host-name> \
--username=<db-username> postgres

3. Run	the	pgbench	read/write	workload	using	the	following	command:	
pgbench --host=<rds-aurora-instance-host-name> --username=<db-username> \
--protocol=prepared -P 60 --time=3600 --client=2048 --jobs=2048 postgres

	
4. Prepare	the	sysbench	benchmark	data	in	your	Amazon	Aurora	database	instance.	The	following	command	

will	create	the	test	data:	
sysbench --test=/usr/local/share/sysbench/oltp.lua \
--pgsql-host=<rds-aurora-instance-host-name> --pgsql-db=postgres \
--pgsql-user=<db-username> --pgsql-password=<db-password> --pgsql-port=5432 \
--oltp-tables-count=250 --oltp-table-size=450000 prepare
	

5. Run	the	write	workload	on	the	EC2	sysbench	client,	using	the	following	command:	
sysbench --test=/usr/local/share/sysbench/oltp.lua \
--pgsql-host=<rds-aurora-instance-host-name> --pgsql-db=postgres \
--pgsql-user=<db-username> --pgsql-password=<db-password> --pgsql-port=5432 \
--oltp-tables-count=250 --oltp-table-size=450000 --max-requests=0 --forced-shutdown \
--report-interval=60 --oltp_simple_ranges=0 --oltp-distinct-ranges=0 \
--oltp-sum-ranges=0 --oltp-order-ranges=0 --oltp-point-selects=0 --rand-type=uniform \
--max-time=3600 --num-threads=2048 run

	 	

Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	3	
	

4.	Viewing	the	Results	

4.1	Data	Load:	pgbench	Initial	Load		

The	following	pgbench	output	shows	the	results	of	the	reference	data	load	test	performed	on	the	EC2	instance.	
This	test	loads	the	pgbench	setup	(with	a	scale	factor	of	10000)	into	the	database,	and	then	performs	vacuuming	
and	indexing	tasks.	This	results	in	a	database	with	approximately	1	billion	rows	in	3	tables.		

In	our	tests,	the	initial	load	required	813	seconds	to	load	the	data,	0.4	seconds	to	commit	the	data,	310	seconds	
to	vacuum	the	loaded	data,	and	463	seconds	to	index	the	data.		The	total	time	required	was	1,586	seconds.	All	
of	this	activity	was	performed	while	maintaing	six	copies	of	the	data	in	three	different	Availability	Zones.	

	

	

4.2	Read	and	Write	Workload	-	pgbench	

The	following	pgbench	output	shows	the	results	of	the	read/write	default	test	on	the	EC2	instance,	running	
pgbench,	with	patches	to	allow	more	than	1,000	clients/thread.		These	patches	are	described	in	Appendix	A.	This	
read/write	workload	test	performs	one	SELECT,	three	UPDATEs	and	one	INSERT	for	each	transaction.		

We	ran	this	test	for	3,600	seconds,	and	observed	an	average	performance	of	41,498	transactions	per	second.	
This	resulted	in	approximately	41,498	reads	per	second,	124,494	updates	per	second	and	41,498	inserts	per	
second,	for	a	total	of	165,992	writes	per	second	on	average.	

	

	

	 	

1000000000 of 1000000000 tuples (100%) done (elapsed 812.60 s, remaining 0.00 s)
vacuum...
set primary keys...
total time: 1586.05 s (insert 812.67 s, commit 0.41 s, vacuum 309.60 s, index 463.36 s)
done.

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10000
query mode: prepared
number of clients: 2048
number of threads: 2048
duration: 3600 s
number of transactions actually processed: 149298601
latency average = 49.338 ms
latency stddev = 22.907 ms
tps = 41458.992207 (including connections establishing)
tps = 41497.938898 (excluding connections establishing)

	

Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	4	
	

4.3	Write	Workload	–	sysbench		

The	following	sysbench	output	shows	the	results	of	the	write-heavy	test	running	on	the	EC2	instance	running	
sysbench.		

We	ran	this	test	for	3600	seconds,	and	observed	an	average	performance	of	129,533	write	requests	per	second,	
while	maintaining	six	copies	of	data	in	three	different	Availability	Zones.	During	this	test,	the	system	performed	
32,381	transactions	per	second,	involving	INSERTs,	index	and	non-index	UPDATEs,	and	DELETEs.	

	

	 	

OLTP test statistics:
 queries performed:
 read: 0
 write: 466330406
 other: 233161396
 total: 699491802
 transactions: 116576891 (32381.76 per sec.)
 read/write requests: 466330406 (129533.38 per sec.)
 other operations: 233161396 (64765.63 per sec.)
 ignored errors: 7614 (2.11 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 3600.0791s
 total number of events: 116576891
 total time taken by event execution: 7372677.1231s
 response time:
 min: 4.93ms
 avg: 63.24ms
 max: 887.01ms
 approx. 95 percentile: 103.17ms

Threads fairness:
 events (avg/stddev): 56922.3101/142.57
 execution time (avg/stddev): 3599.9400/0.03

Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	5	
	

Appendix	A	–	Installation	instructions	for	pgbench	v9.6	and	sysbench	v0.5	

For	our	testing,	we	used	the	following	procedure	to	install	and	configure	pgbench	and	sysbench:		

1. By	default,	pgbench	is	limited	to	a	maximum	of	1,000	clients.		To	increase	this	limit,	modify	the	
/etc/security/limits.conf file	so	that	it	contains	the	following	entries:		

	
Note:		To	make	these	settings	take	effect,	you	must	restart	your	session.	

2. Install	the	required	tools	for	building	pgbench	and	sysbench:	

	

3. Install	the	base	PostgreSQL	libraries	and	the	pgbench	utility.		In	this	step,	you	build	and	install	the	
PostgreSQL	libraries	and	binaries,	including	the	following	two	pgbench	patches:	

• 	pgbench-init-timing.patch	-	prints	detailed	timing	information	for	the	different	steps	of	the	initial	
pgbench	load.		

• pgbench-poll.patch	-	allows	pgbench	to	run	more	than	1000	sessions.		

	

	 	

ec2-user hard nofile 65000
ec2-user soft nofile 65000
ec2-user hard nproc 65000
ec2-user soft nproc 65000

sudo yum install ant git php gnuplot gcc make readline-devel zlib-devel \
postgresql-jdbc bzr automake libtool patch libevent-devel openssl-devel \
ncurses-devel

wget https://ftp.postgresql.org/pub/source/v9.6.5/postgresql-9.6.5.tar.gz

tar -xzf postgresql-9.6.5.tar.gz

cd postgresql-9.6.5

wget https://s3.amazonaws.com/aurora-pgbench-patches/pgbench-init-timing.patch
patch -p1 -b < pgbench-init-timing.patch

wget https://s3.amazonaws.com/aurora-pgbench-patches/pgbench-poll.patch

patch -p1 -b < pgbench-poll.patch

./configure

make -j 4 all

sudo make install

cd ..

Amazon	Aurora	PostgreSQL-compatible	Edition	Benchmarking	Guide,	October	2017	–	Page	6	
	

4. Build	and	install	sysbench	0.5:	

	

git clone -b 0.5 https://github.com/akopytov/sysbench.git

cd sysbench
./autogen.sh

CFLAGS="-L/usr/local/pgsql/lib/ -I /usr/local/pgsql/include/" | ./configure \

--with-pgsql --without-mysql --with-pgsql-includes=/usr/local/pgsql/include/ \

--with-pgsql-libs=/usr/local/pgsql/lib/

make

sudo make install

cd sysbench/tests

sudo make install

