
Caching as a
Best Practice for
Microservices-Based
Applications

2

Table of Contents

Abstract 03

The Rise of Microservices 04
The Benefits of Microservices 05

Data Fragmentation Challenges with Microservices 06

Amazon ElastiCache for Microservices 07
ElastiCache as a Fully Managed Service 07

Automated Capacity Management with ElastiCache 07

ElastiCache as a Remote Cache 08

High Availability with ElastiCache 09

The Performance-Durability Tradeoff 09

Sharding and Read Replicas for Improving Read and Write Performance 10

Bridging Kubernetes Workloads to ElastiCache 10

ElastiCache for Cost Optimization of Performance Improvements 12

Low-Latency Access to Operational Data 13
Why Low-Latency Access to Operational Data is Critical 13

Addressing the Impact of Exploding Data Volumes 13

Addressing the Impact of Hot Data 13

ElastiCache for Complex Queries 14

Addressing the Need for User Growth and High Throughput 15

Communication Between Microservices Using Event-Based Architectures 16
Using Redis Pub/Sub as an Asynchronous Message Broker 16

Redis Streams: Sharing Events Across Microservices Using an Event Store 17

Comparing Redis Pub-Sub and Redis Streams 18

Conclusion 19

Appendix A: Caching Topologies and Their Pros and Cons 20
Database-Integrated Cache 20

Local Cache 20

ElastiCache as a Remote Cache 20

Appendix B: Using ElastiCache for Redis as a User Session State Store 21
The Limitations of Sticky Sessions 21

Distributed Session Management 22

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Abstract

Microservices-based applications have been a game changer. This
approach to building applications comes with its own set of tools,
technologies and best practices. This paper is focused on how in-memory
caching, like Amazon ElastiCache, has an important role in microservices-
based applications.

The topics covered in this paper include:

• Microservices-based applications have compelling advantages that
are now indispensable. They are a great fit for containerization and
for use with AWS cloud infrastructure and container orchestration
systems like Kubernetes.

• Microservices introduce network latency. For the overall response-
time of the application to be acceptable, other areas of the
architecture need to be optimized for performance, placing demands
on the latency of each microservice.

• The key to managing reduced microservice latency budgets is to
reduce reliance on a backend, high-latency database as much as
possible.

• The importance of high availability and how ElastiCache supports this.

• How storing a user’s session data in ElastiCache enhances the
user’s experience.

• How ElastiCache can be used as a message broker or an event store
for inter-microservice communications.

In this whitepaper, we examine the role of the data layer, and how the
use of Amazon ElastiCache as an in-memory cache can be a critical
infrastructure component in support of microservices architectures.

3

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

The Rise of Microservices

Microservices-based architectures are now a well-established best practice for building
web-scale applications.

The complexities of web-scale applications have made traditional
monolithic approaches unsustainable.

With microservices, applications are broken
down into smaller, isolated services that are
accessed via their APIs.

As shown in the preceding graphic, consider
the microservices that constitute a ride-
sharing app. The eight microservices are
processes that communicate with each
other over the network in order to fulfill a
goal. In short, the microservice architectural
style is an approach to developing a single
application as a suite of smaller services.
Each microservice runs in its own process
and communicates with lightweight
mechanisms, often an HTTP resource
API. These microservices are built around
business capabilities and independently
deployable by fully automated deployment
machinery.

There is a bare minimum of centralized
management of these microservices, which
may be written in different programming
languages and use different styles
of databases.

The API gateway is the single-entry point
for all customers. It handles requests by
fanning out to multiple services. Rather
than providing a one-size-fits-all style API,
the API gateway can expose a different API
for each client. The API gateway might also
implement security, such as authenticate
the client (AuthN) and verify that the
client is authorized to perform the request
(AuthZ).

Microservices-based ride-sharing application

PASSENGER
MANAGEMENT

DRIVER
 WEB UI

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

PAYMENTS

NOTIFICATION

BILLING

PASSENGER
WEB UI

API
GATEWAY

4

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

The Benefits of Microservices
• Release velocity: Since microservices

are isolated services with minimal
interdependence, each microservice
team can release their service on their
own schedule. This loose coupling is the
key enabler of an overall time-to-market
acceleration and innovation benefit
because team interdependence is a
recipe for slow progress. Microservices
support incremental, rapid release of
software, characteristic of agile DevOps
methodologies, and reduce the risk of
failure inherent in the “all-or-nothing”
monolithic approach.

• Best fit technology choices for optimized
performance: Working autonomously,
each team can make their own best fit
technology choices.

At the data layer, each team
is empowered to choose
purpose-built backend
databases that are best suited
for their workloads, a practice
known as polyglot persistence.

How the data is modeled is also an
autonomous decision, local to each
microservice.

• Simpler and easier to maintain: Complex
monolithic codebases are difficult to
maintain. Tightly interwoven code is more
brittle. So, even minor code changes
may have a broad impact on the entire
application needing to go through a
lengthy process of regression testing,
user acceptance testing, and performance
testing.

• Easier to scale: Microservices can be
scaled independently based on need.
This granular scaling approach is more
efficient and effective than scaling an
entire monolithic application. Microservices
frequently run inside of containers, making
them fast to start up or shut down, with
their lifecycles automatically managed
by container orchestration systems.

Microservices are a natural fit for cloud
infrastructures that provide dynamic, on-
demand capacity.

• More reliable: The ability to dynamically
add instances of containerized
microservices also provides an elegant
solution for high availability. If an instance
fails, another instance of the same
microservice can pick up the load. Whereas,
monolithic applications cannot granularly
handle component failures.

• Deeper functionality: Development teams
can focus on a scope that is bounded by
a business function which results in more
optimized, hardened code with deeper
functionality. It is easier for each team to
develop expertise on the business function
they are automating.

Microservices are often deployed as
Kubernetes (K8s) containers, with one
or more microservice per container. As
containers, K8s can manage the lifecycle
of microservices by starting, stopping, and
scaling containers as needed. K8s gives us
an elegant approach to scaling stateless
workloads.

Microservices mark the
convergence of an evolution
comprised of several industry
developments and iterations.

With all of these high-impact benefits, it’s
no surprise that microservices have now
emerged as the way forward.

5

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Data Fragmentation Challenges with
Microservices
Despite the benefits of a microservices
architecture, the distributed nature of
microservices introduces challenges related
to the fragmentation of data and network
latency. In many cases, the application logic
has to invoke multiple microservices to
retrieve data. One service might send a task
to another, which must then query its
database to get the result before the first
service can finish up.

These cascading service calls
can quickly become problematic,
creating a snowball effect that
increases latency and slows
down overall performance.

Consider the following examples of cascading
microservices:

Example 1: What is my insurance co-pay for a medical procedure?
The responding microservice would first look up the patient’s policy by sending
a request to the patient microservice. It would then have to look up the details
of the policy by sending a request to the policy microservice. Other required
lookups include the coverage, provider, and procedure. All of this would have to be
composed to answer the co-pay query. Optimizing lookup speeds pays dividends
because of the sheer frequency with which lookups occur.

Example 2: What is the status of my restaurant order?
The orders microservice receives this request and serves as an aggregator by
calling other microservices to pull order status information together. The kitchen
microservice returns the status of the order from the restaurant’s perspective
and the estimated time it will be ready for pickup. The delivery microservice
returns delivery status, estimated delivery information, and its current location.
The accounting microservice returns the order’s payment status. All of these
microservices would need to respond to fulfill the user’s query.

The overall application’s
service-level agreement (SLA)
on latency puts inordinate
pressure on microservices,
with each microservice being
granted only a fraction of the
latency budget of the overall
application.

In the remainder of this white paper,
we describe how Amazon ElastiCache
for Redis is a great way to boost the
performance of microservices based
applications. We start by describing the
service, focusing on the main features
that are well aligned with the needs
of microservices, followed by common
patterns and use cases.

6

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

The ElastiCache in-memory caching service
is easy to deploy, operate, and scale in
the cloud. It is designed for improving the
performance of applications by retrieving
information from fast, fully managed, in-
memory caches instead of relying on slower
disk-based databases.

ElastiCache offers two in-memory engines
that are compatible with popular open-
source technologies, Redis and Memcached.
ElastiCache for Redis is a Redis-compatible
in-memory service that delivers the ease-
of-use and power of Redis along with the
availability, reliability, and performance
suitable for the most demanding
applications. ElastiCache for Memcached
is a Memcached-compatible caching service
that works seamlessly with popular tools
that you use with existing Memcached
environments. Both engines are widely used
key-value stores, and you can choose which
engine you want to use depending
on your specific needs.

ElastiCache clusters can scale up to
500 nodes, up to 340 TB of in-memory
data, and up to 1 PB of total data using the
data tiering feature. Data tiering provides
a new price-performance option for Redis
workloads by using lower-cost solid state
drives (SSDs) in each cluster node, in
addition to storing data in memory.

ElastiCache as a
Fully Managed Service
ElastiCache is a fully managed service,
making it easier to deploy, operate, and
scale. AWS takes care of the maintenance
and management tasks for you. This
includes patching, backups, and failure
recovery. You can simply create a cache
cluster, and AWS will handle nearly all of
the rest.

Automated Capacity Management
with ElastiCache
ElastiCache reduces or eliminates capacity
management tasks by automating the
allocation or de-allocation of capacity
based on changing workloads. ElastiCache
has two deployment options: serverless
caching and self-designed clusters.

Serverless caching
Serverless caching simplifies cache creation
and instantly scales to support your most
demanding applications. With ElastiCache
Serverless, you can create a highly-available
and scalable cache in less than a minute,
eliminating the need to provision, plan
for, and manage cache cluster capacity.
Serverless caching automatically scales
both vertically and horizontally without
any capacity management. Clients connect
to a single endpoint. Serverless caching is
the easiest way to get started with a cache
when you have unpredictable application
traffic or when you are creating a new cache
for new or unknown workloads.

Amazon ElastiCache for Microservices

7

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/memcached/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html

Self-designed clusters
For more fine-grained control over your
ElastiCache for Redis cluster, you can choose to
design your own Redis cluster with ElastiCache.
Self-designed clusters give you the flexibility to
initially choose and later change the node-type,
number of nodes, and node placement across
AWS Availability Zones for your cluster. With
the Auto-Scaling feature you can also configure
scaling based on a schedule, or scale based
on metrics like CPU and Memory usage on the
cache. Self-designed clusters are good option
when you don’t expect your application traffic
to fluctuate much or you can accurately predict
your application traffic peaks and troughs. The
ability to forecast your capacity requirements
enables you to choose reserved node pricing
which provides a significant discount off the
ongoing hourly usage rate for the node(s) you
reserve in one-year or three-year terms.

Self-designed clusters are also a better option
if you need to use ElastiCache Global Datastore
for low-latency reads and disaster recovery
across AWS Regions. Also, if you want to use
ElastiCache with Kubernetes, you can manage
a self-designed cluster as an external AWS
managed resource directly from Kubernetes.
(see Bridging Kubernetes Workloads to
ElastiCache). Self-designed cluster also support
data tiering, which provides price-performance
option for Redis workloads by utilizing lower-
cost solid state drives (SSDs) in each cluster
node in addition to storing data in memory.

ElastiCache as a Remote Cache
A number of caching topologies can be
deployed across your IT infrastructure. These
topologies include database-integrated caches,
local caches, and remote caches.

ElastiCache is a remote cache. As such, it is
separate and decoupled from any application
or database instances, and it is dedicated to
storing and sharing the cached data in-memory.

Remote caches are a good fit for
microservices-based applications
because the separation of
the cache server from the
microservice provides the
flexibility to independently scale
up the cache service.

For a full discussion of caching topologies and
their pros and cons, see Appendix A: Caching
Topologies and Their Pros and Cons.

8

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/data-tiering.html

High Availability with ElastiCache
Distributed architectures have dozens of
application and database instances that all
communicate over a network. That means
maintaining acceptable levels of availability
with distributed architectures can be
more challenging than with monolithic
architectures. The reliance on a network
increases the importance of network
availability in the equation.

The increase in the number
of components that comprise
an application increases the
likelihood of failure.

Developers need to write extensive error or
exception-handling code. Not only do they
need to detect microservice failures, but
they also need to restart your microservice.

In addition to the microservice code, the
microservice data and state also need
resilience. As microservices are stopped and
started, the state of a stopped microservice
is needed for a new microservice instance to
recover successfully.

Amazon ElastiCache for Redis provides high
availability, with automated failover and
recovery.

When a primary node fails,
ElastiCache detects the failure
and promotes a replica node
to be the new primary. This
process usually takes less
than 30 seconds.

The failed node is then replaced and
returned to the cluster as a replica node.
For multi-AZ deployments, ElastiCache
for Redis provides a 99.99% SLA for high
availability.

The Performance-Durability
Tradeoff
Like other caches, ElastiCache is an ephemeral
cache. As such, it’s susceptible to data loss
in the event of a cache failure. The high-
availability feature in ElastiCache mitigates
this exposure considerably. ElastiCache
asynchronously replicates data from the
primary instance to read replicas. If the
primary instance of an ElastiCache fails,
ElastiCache will detect the failure and
promote the least lagging read replica to the
role of a new primary. Data loss is limited to
the changes that were ‘in-flight’ just before
the failure. These are the changes that were
made in the primary before the failure,
but the failure prevented the outbound
replication of these changes.

If zero data loss is a requirement, then
Amazon MemoryDB for Redis, which is a
durable in-memory database, is a better fit.
When an application writes to MemoryDB
for Redis, the write is not acknowledged
until it is synchronously written into both the
memory layer as well as a durable multi-AZ
transaction log.

For read performance, both ElastiCache and
MemoryDB provide ultra-fast microseconds
response time and throughput improvements
over disk storage. For write performance,
ElastiCache takes microseconds, whereas
MemoryDB can take a few milliseconds.

9

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://aws.amazon.com/redis/
https://aws.amazon.com/memorydb/?nc2=h_ql_prod_db_memdb

Sharding and Read Replicas for Improving
Read and Write Performance
Sharding is a technique that splits up a
large data set by partitioning data along
a keyspace. A keyspace refers to the full
range of a key that is partitioned and
distributed across different shards. This
results in data segments (shards) that cover
a bounded range within the keyspace.
By spreading shards across multiple
instances of ElastiCache, each instance
can independently operate in parallel.
Since shards are mutually exclusive, each
shard can be updated without any update
collisions with other shards. Reads also run
faster because of the power of parallelism.
For further acceleration of reads within
each shard, read replicas can be created by
replicating the shard’s primary instance.

Shards and replicas can be
added or removed online,
while the cluster continues
serving incoming requests.

Each node in a cluster has the same
compute, storage, and memory
specifications. The ElastiCache API lets you
control cluster-wide attributes, such as the
number of nodes, security settings, and
system maintenance windows.

A Redis cluster, with cluster mode disabled,
will never have more than one shard. With
cluster mode enabled, you can create a
cluster with a high number of shards and a
low number of replicas totaling up to 500
nodes per cluster. For example, you can
choose to configure a 500-node cluster that
ranges between 83 shards (one primary and
5 replicas per shard) and 500 shards (single
primary and no replicas).

Re-sharding is an online process that allows
scaling in/out while the cluster continues
serving incoming requests. Autoscaling
automatically adds shards and replicas to
your cluster when traffic spikes and your
cluster is under load.

Conversely, your cluster can automatically
scale-in when traffic subsides. Using pre-
defined metrics is a fast and easy way to
define autoscaling policies. Alternatively,
you can use Amazon CloudWatch for
crafting custom metrics.

You can scale on a set schedule. This is
useful when your workload is predictable
and you have a solid understanding of
what your cluster capacity needs are as a
function of time.

With ElastiCache Serverless, scaling is
handled transparently by the service using
a combination of vertical and horizontal
scaling for variable workloads. With a
serverless cache, you do not need to add
or remove shards or replicas, as the cache
will scale to handle your dataset size and
request rate.

Sharding and read replicas with and without cluster mode

REDIS CLUSTER
Cluster mode disabled

REDIS CLUSTER
Cluster mode enabled

SHARD SHARD SHARD

PRIMARY NODE PRIMARY NODE PRIMARY NODE

REPLICA
NODE-1

REPLICA
NODE-1

REPLICA
NODE-1

REPLICA
NODE-N

REPLICA
NODE-N

REPLICA
NODE-N

10

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Bridging Kubernetes Workloads
to ElastiCache
As an AWS managed service, ElastiCache
mirrors Kubernetes (K8s) by providing a
similarly fluid ability to scale the cache
workload. But how do the worlds of K8s
and fully managed services on AWS come
together?

Fortunately, you can manage
ElastiCache as an
external AWS managed
resource directly from K8s.

The key cluster management actions are
supported, such as scaling up, down, in,
or out. You can also scale the number of
read replicas and create other ElastiCache
resources, such as snapshots, parameter
groups, and subnet groups. Managing
ElastiCache in a K8s world relies on a
controller that extends K8s. Controllers
use the K8s API to control the lifecycle of
custom resources that are not native to K8s,
like databases and caches.

By using a controller for
ElastiCache, the management
of ElastiCache can be
automated, much like a native
K8s resource.

AWS Controller for Kubernetes (ACK)
for ElastiCache adopts the approach of
managing ElastiCache as an external
resource. With ACK, you can use AWS
managed services for your K8s applications
without needing to define resources outside
of the K8s cluster. Or you can run services
that provide supporting capabilities like
databases, caches, or message queues
within the K8s cluster. Each ACK service
controller manages resources for a
particular AWS service, and is packaged
into a separate container image that is
published in a public repository.

Developers can leverage
their knowledge of the
K8s resource model for
working with ElastiCache,
just like any other K8s
resource.

ACK enables K8s users to describe the
desired state of AWS resources using
the K8s API and configuration language.
ACK resources are defined using YAML-
formatted manifest files to both initially
define the resource configuration and
also to modify it. Once the manifest
file is created, the resource it defines is
initially created by using the file name as
the input argument to the Kubernetes
“kubectl apply” command. To change
a resource configuration, you simply
edit the appropriate parameters in the
existing resource manifest file, then call
the “kubectl apply” command in the same
manner as the initial resource creation.

Also, ACK is declarative, so you can define
the desired state and allow the controller to
take the necessary steps without defining
an imperative list of steps. The K8s control
loop manages the state of your cluster as
well the configuration you passed in for
your AWS resource. Periodically, an ACK
service controller will look for any drift and
attempt to remediate.

A single consolidated approach
using ACK makes it easier
to adopt a GitOps based
approach to automating your
deployments.

ACK for Amazon ElastiCache itself runs in
a container on any K8s distribution on-
premise or in the cloud. Hence it is not
limited to Amazon Elastic Kubernetes
Service (Amazon EKS).

11

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Developers and architects often try
to address performance requirements
by scaling the database used by each
microservice. This involves tuning, indexing
and applying various performance
optimization techniques. Performance
optimizations of backend databases require
increasingly more effort and become
increasingly more expensive. In the case of
legacy databases that were not built for the
cloud, the only option often available is to
vertically scale the database. This is usually
extremely costly and disruptive.

Ultimately for any disk-based
database, the performance
of the database hits a limit
because of the physics of
retrieving data from disk.

The use of ElastiCache for achieving
performance targets is a simpler and more
cost-effective approach. ElastiCache for
Redis supports a throughput of 1 million
requests per second per node or 500
million requests per second per cluster
with microsecond response time. With
ElastiCache serverless caches, you only
pay for the resources you use, including
the data stored and requests made against
the cache. You do not need to provision
capacity. Alternatively, with self-designed
clusters you have full flexibility and control
over horizontal scaling using sharding and
read replicas (as previously discussed) and
vertical scaling by changing the node type
to resize the cluster. Vertical scaling allows
scaling up/down online while the cluster
continues serving incoming requests.

The ease with which
ElastiCache scales, both
vertically and horizontally,
results in a more cost-effective
approach to achieving
performance at scale than
trying to scale backend
databases, many of which were
not designed for this purpose.

ElastiCache for Cost Optimization
of Performance Improvements

12

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Low-Latency Access to Operational Data

Why Low-Latency Access to
Operational Data is Critical
Whether serving the latest news,
displaying items in a product catalog,
or selling tickets to an event, speed is of
paramount importance. For example, a
typical web application opening page is
comprised of dozens of calls to several
microservices to collect the data needed
for the display. This can include calls to
microservices for user management, billing,
subscription management, personalized
recommendations, and more. A large
number of users can hit the opening page
concurrently placing demands on the
throughput of the application.

Supporting high throughput
with low-latency responses is
critical to achieve customer
satisfaction.

The New York Times found
that users can register a
250-millisecond (1/4 second)
difference between competing
sites. Users tend to opt out of
the slower site in favor of the
faster site.

Tests done at Amazon revealed that for
every 100 ms (1/10 second) increase in load
time, sales decrease by 1%.

Today’s enterprises need to be more agile
to improve their customers’ experience,
respond to changes quickly, and have
the freedom to innovate. As part of their
digital transformation journey in the cloud,
these businesses need to scale quickly to
potentially millions of users, have global
availability, and provide ultra-fast response
times for customers.

Addressing the Impact of Exploding
Data Volumes
Increasing data volumes exacerbates the
performance bottlenecks of disk-based
backend databases, even more so with
relational databases. When the database
management system has to sift through
terabytes of data, the response time is
inadequate for many modern applications.

Data volumes have exploded in the last
two decades, and this trend will continue.
This growth in data increases the need to
distinguish between hot data and cold data
so that caching can be applied to hot data.
Although the lines are shifting so that more
data can be cached in memory, often the
sheer volume of data imposes a need to
store data based on a tiered approach.

Addressing the Impact of Hot Data
In-memory caching has been a long-
standing solution for addressing slow
response times from disk-based data stores,
but it has often been relegated to data
that is most frequently and concurrently
accessed, also know as hot data. Segmenting
data by the frequency of access gives us
the ability to allocate data layer resources
based on the ‘temperature’ continuum—hot
data can be stored in ultra-fast in-memory
caches, while warm data can be stored in
traditional disk or SSD storage, and cold
data can be archived in the least costly
storage. This approach optimizes the overall
cost of storage.

Relegating caches to only hot data has
been a common practice as a result of
several factors. The cost of memory was
prohibitive. Caches were limited in capacity
and difficult to scale. Also, the applications
of the past didn’t have the same response
time requirements of today’s applications,
so relegating caching to hot data was a
workable solution.

All of these limiting factors are continually
changing in favor of broader adoption of
caching.

Memory costs have declined
substantially. The ability to
scale caches horizontally has
reduced capacity limitations.
And a growing share of
applications now require near-
real-time response.

13

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html?pagewanted=all&_r=0
http://pearanalytics.com/blog/2009/how-webpage-load-time-related-to-visitor-loss/
https://www.statista.com/statistics/871513/worldwide-data-created/

With these shifts, a re-examination of
old assumptions is warranted. The less
frequently accessed data still contributes
to the overall responsiveness of your
application.

It is now reasonable to
consider caching much more
of your application’s data,
such as your warm data or
perhaps even all of your
application data.

In the case of very high data volumes a
tiered approach is still needed. But shifts in
technology provide the opportunity to re-
draw the lines of your data segmentation
strategy.

ElastiCache can significantly lighten the
load on the database by servicing most of
the requests for data. With lazy loading,
only the first instance of a request is
subject to the performance of backend
databases. With the write-through pattern,
each write is subject to the performance
of backend databases after which each
subsequent read request can be served
by ElastiCache. You can cache anything
that can be queried where the underlying
source of the data could be from relational
databases or non-relational databases.
You can even cache data that can
be accessed through an application
programming interface (API).

ElastiCache for Complex Queries
Querying a database is always slower
and more expensive than locating a
key in a key-value pair cache. Some
database queries are especially expensive
to perform. Examples include queries
that involve joins across multiple tables
or queries with intensive calculations. By
caching such query results, you pay the
price of the query only once. Then you can
quickly retrieve the data multiple times
without having to re-execute the query.

Various types of custom
analytics are a common
category of use cases because
they often involve some data
consolidation. A cache can
serve as the aggregation layer
for this data.

For example, determining whether there
is any relationship between customer
satisfaction and your suppliers requires
a unified view of data. The customer
satisfaction information and the supplier
information are likely handled by different
microservices. Unifying this information
in a cache makes this analysis easier.
Other common analytic use case examples
include the detection and prevention of
security infractions and fraud, and creating
consolidated information snapshots to
allow for point-in-time queries. Moreover,
snapshots can be pieced together to build
trend lines of data changes.

14

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html#Strategies.LazyLoading
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html#Strategies.WriteThrough

User growth is a common key performance
indicator (KPI) for businesses as applications
mature, needing to support up to millions
of new customers and expansion into new
regions.

Expanding an application’s
user base can generate
higher levels of requests
for data. These workloads
need to handle high levels of
throughput and respond in
microseconds while sustaining
high performance
at scale.

A common approach to scaling microservices
for increasing users is by adding additional
microservice instances. Adding instances
scales the business logic of the microservice.
This is one of the benefits of microservices
—you can scale different services
independently. Large-scale deployments
are likely to require many instances of each
microservice, and microservice instances can
be added or removed as needed. This level
of dynamism is easier if your microservices
are designed to be stateless. All forms of
data are stored externally in a database,

hence no state information is lost when
microservice instances are removed.

As the microservice instances increase,
the number of times the business logic is
executed also increases, with commensurate
increases in requests for data. The elasticity
and scalability of a microservices architecture
is impacted by the throughput constraints
of the database. Caching can be used to
alleviate this pressure.

Multiple instances of a microservice can
access different nodes of an ElastiCache
cluster.

The horizontal scalability
of ElastiCache makes it
well suited for a distributed
architecture.

As a remote cache, ElastiCache presents the
application layer with a single view of data
accessible by any instance, and updates are
available to all microservice instances. Just
like multiple instances of a microservice can
scale the number of users of the business
logic, multiple replicas of data can scale the
number of simultaneous reads and writes
ElastiCache can process.

Addressing the Need for User Growth
and High Throughput

Adding microservice instances to scale the number of users
DATABASE

AMAZON ELASTICACHE

MICROSERVICES

15

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Some communication between microservices
is often needed, even when they’re isolated.
Since applications consist of several
microservices, the microservices will need to
function together as an application. Changes
in the state of a given microservice may be
of interest to other microservices. Data from
one microservice may be needed by another
microservice. There are many reasons for
microservices to communicate.

Organizations often use specialized
integration services to build event-based
architectures for inter-microservice
communication (Amazon Simple Notification
Service, Amazon Managed Streaming for
Apache Kafka, Amazon Kinesis, Amazon
EventBridge, and more.).

In many organizations, ElastiCache for Redis
is also often used for this purpose. The
other options provide delivery guarantees
and durability. Nonetheless, Redis has
broad adoption because of its lightweight
ease of use, and it’s an attractive choice
for organizations that are already familiar
with Redis. As a cache, ElastiCache for Redis
stores ephemeral data, and for use cases
that can tolerate the possibility of a loss
of events, the performance of ElastiCache
for Redis makes it an attractive choice.
For example, if your use case involves
analytics on counts or aggregations of
events, statistics, and trendlines rather
than individual events, then a small loss
of events in a large total count of events is
immaterial. The loss of events is minimized
by ElastiCache’s high availability and
failover capabilities. If durability of events
is of utmost importance, then Amazon
MemoryDB for Redis is a better choice. The
same performance vs. durability trade-off
discussed earlier applies to this use case
as well.

There are two approaches to building event-
based architectures with ElastiCache for
Redis centered around two features—using
Redis Pub/Sub or building an event store
using Redis Streams.

Using Redis Pub/Sub as an
Asynchronous Message Broker
The Redis Pub/Sub server is often used for
orchestration of messages. In contrast to
point-to-point communication, with the
Pub/Sub approach, the message publisher
sends messages to channels which serve as
a mechanism for organizing messages. To
receive messages on a channel, the Redis
instance on the receiving side subscribes
to the channel. In addition, a subscriber
can specify a pattern to subscribe to all
messages that match the pattern. Messages
are sent and received by the Redis caching
layer underneath each microservice, via the
Redis Pub/Sub server.

The Pub/Sub mechanism in Redis is
inherently asynchronous.

An asynchronous, message-
based, event-driven
system minimizes the
inter-dependence between
microservices by making the
required communications
between them non-intrusive.

Microservices can produce events without
needing to be aware of which microservices
are consuming these events and how the
events are being handled. For microservices
development teams, an event-driven
architecture allows each team to focus on
their own problem domain.

“Build systems that can evolve.
And the best way to make
evolvable systems is to focus
on event driven architectures.”

Werner Vogels
VP and CTO at Amazon.com

Communication Between Microservices
Using Event-Based Architectures

16

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://aws.amazon.com/memorydb/
https://aws.amazon.com/memorydb/

Redis Streams: Sharing Events
Across Microservices Using an Event
Store
An alternate approach is to build an event
store using Redis Streams. With Redis
Streams, events are generated directly from
the cache without requiring developers to
build major pieces of an event-driven system
within the application.

The event store is a
sequential log, and it serves
as the destination for the
event streams from each
microservice. Event streams
are propagated from source
microservices to the
event store.

Consumers of these events can then
subscribe to and read the events of interest.
The event store essentially serves as an
event source for each consumer. Consumers
maintain their own logic related to the filters
that will be applied to determine whether
an event is of interest. Each consumer also
maintains their own pointer/offset into the
event store to serially process the events.
The consolidation of events across
microservices opens up an entire category
of use cases—those having to do with
cross-domain information that spans
microservices.

The complete view of all
events presented in the unified
event log can be used to play
back selected events and
create a projection of
the information in any
way desired.

CONSUMER A CONSUMER CCONSUMER B CONSUMER D

AMAZON ELASTICACHE

EVENT HANDLERS

CONSOLIDATED
EVENT STORE

AMAZON ELASTICACHE

ELASTICACHE EVENT

MICROSERVICE 1

AMAZON ELASTICACHE

ELASTICACHE EVENT

MICROSERVICE 2

AMAZON ELASTICACHE

ELASTICACHE EVENT

MICROSERVICE 3

AMAZON ELASTICACHE

ELASTICACHE EVENT

MICROSERVICE 4

Amazon ElastiCache as a consolidated event store

17

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Consumers of a stream can be data
warehouses like Amazon Redshift for
analytics, Amazon OpenSearch for search
indexing and searching across microservices,
Amazon CloudWatch for application-level
monitoring, consolidation for debugging,
and many more.

A unified log can have demanding
requirements for performance and
scalability given the large number of
microservices that can source event streams.

ElastiCache for Redis’ design
for speed, scale, and massive
concurrency, together with its
Streams data type, makes it an
increasingly popular choice as
a unified log.

Redis can support a large number of
consumers and retain large amounts of data
with very little overhead. Based on their use
case, event consumers can generate data
projections by replaying the appropriate
events in the log. As data flows through the
system, it can be validated and enriched.

Projections from the unified event log can
be stored in the most appropriate data
management technology for the anticipated
workload. For example, with analytics
use cases, creating projections in Amazon
Redshift is a good option. For high-volume
concurrent lookups with low-latency
responses, another separate instance of
ElastiCache can be used as a target. Amazon
Neptune can be used if queries are run based
on graph-oriented relationships between
the entities in the domain model. Amazon
Aurora is a good fit for relational workloads.
AWS provides a full portfolio of purpose-
built databases, and the choice of a database
can be based on anticipated workload.
Both the underlying data management
technology and the data model can be
specialized for the use case.

Comparing Redis Pub/Sub and
Redis Streams
Redis Pub/Sub is an at-most-once “fire
and forget” model using a push protocol,
and it cannot protect against network
disconnections or lapses in the subscriber’s
availability. All parties need to be active at
the same time to be able to communicate.
If a message is published and there are no
subscribers listening, the message is lost
and cannot be recovered. Redis Streams
offers both at-most-once or at-least-once
(explicit acknowledgement sent by the
receiver) communications. If a subscriber is
unavailable when a message is published,
it can connect later and read all messages
since it last checked.

Pub/Sub is blocking-mode only. Once
subscribed to a channel, the client is put into
subscriber mode, and it has become read-
only. It can only issue limited commands
related to subscribing and unsubscribing.
Redis Streams allows consumers to read
messages in blocking or non-blocking mode.
Pub/Sub uses a fan-out mechanism only.
All active clients get all messages. Redis
Streams allows fan-out, but it also allows
you to route different messages to different
consumers using consumer groups.

Redis Streams offers a lot more flexibility
and reliability than Redis Pub/Sub. Redis
Streams provide many more features, like
time-stamps, field-value pairs, ranges, and
more. On the other hand, Redis Streams
consumes a lot more memory capacity.
The needs of your use case can guide your
choice.

18

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://aws.amazon.com/products/databases/
https://aws.amazon.com/products/databases/

Microservice-based application architectures
are the de facto approach to building
modern applications. However, the
performance of microservices-based
applications is highly sensitive to network
latency, the weakest link in the performance
of distributed systems. Ensuring that the
overall application latency meets the needs
of modern applications puts pressure
on data access latency. ElastiCache for
Redis is a horizontally scalable cache
that provides ultra-fast in-memory read
and write performance, with support
for hundreds of millions of operations
per second. ElastiCache for Redis is a
fully managed, real-time, cost-optimized
solution that transforms the performance of
microservices-based applications.

ElastiCache for Redis is a good fit
for improving the user experience of
applications by storing session data.
Externalizing session data in ElastiCache
for Redis provides resilience from failures
of components that impact user sessions.
For a more detailed discussion, see Appendix
B: Using ElastiCache for Redis as a User
Session State Store.

For a collection of microservices to function
as a unified application, microservices need
mechanisms for communication with each
other. ElastiCache for Redis is a popular
choice as a message broker or as an
event store.

To get started, you can gain free, hands-on
experience with ElastiCache - at the free-
tier page. AWS also offers an Optimization
and Licensing Assessment (OLA) to help
you evaluate options for migrating to
the cloud. Sign up here so the AWS OLA
team can help you. You can also learn
more about ElastiCache by heading over
to the ElastiCache for Redis page where
you’ll find related content and additional
documentation.

Conclusion

19

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=categories%23databases
https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=categories%23databases
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://pages.awscloud.com/windows-ola-contact-us.html
https://aws.amazon.com/elasticache/redis/

A number of caching topologies can be
deployed across your IT infrastructure. The
topologies and their pros and cons are as
follows.

Database-Integrated Cache
These caches are tightly coupled and built
into each database instance. They have
built-in write-through capabilities, and can
significantly boost database performance.
Database integrated caches are much easier
to set up. However, integrated caches are
typically limited to a single node with
memory allocated by the database instance.
Therefore, data can’t be shared with other
instances across nodes. Database-integrated
caches are a good choice when the data
access pattern has affinity with a database
instance.

Database-integrated caches are limited
in capacity. For example, on the largest
instance supported by Amazon RDS the
maximum instance memory size is 3.9 TiB
(db.x1e.32xlarge).

Local Cache
These caches are coupled with applications,
meaning they are local to each application
node and its web server. This makes data
retrieval faster than with other caching
topologies because it removes network
latency that is associated with retrieving
data. A major disadvantage of a local cache
is that each application instance has its own
resident cache working in a disconnected
manner.

This creates challenges in a distributed
environment where most applications
use multiple instances of applications,
each on their own application server. If
an application instance mostly consumes
only the data it creates and the need for
data sharing is limited, then a local cache
can provide a high cache hit ratio. If the
architecture can be set up so that any given
user is always routed to the same instance,
then the desired locality of reference
can be achieved and a local cache can be
effective. However, this results in a more
complex solution. It also results in a bad user
experience when an instance to which that
user has affinity is unexpectedly lost.

ElastiCache as a Remote Cache
A remote cache (or side cache) is separate
and decoupled from any application or
database instances, and it is dedicated to
storing and sharing the cached data in-
memory. ElastiCache is a remote distributed
cache offering multi-node scalability (up
to 500 nodes in a single cluster). The
largest memory capacity available for an
ElastiCache for Redis cluster is 310TiB.

ElastiCache stores data in key-value format
on dedicated servers. It supports very high
throughput with greater than 1 million
requests per second, per cache node.

The average latency of a server-side request
to a remote cache is on a microseconds
timescale, which is faster than a request
to a disk-based database by an order of
magnitude.

With ElastiCache, the cache itself is not
directly connected to the database, but is
optionally used adjacent to it. The database
is optional because a large class of use
cases do not require a backing database in
conjunction with the cache. For example,
if the cache stores responses from calls to
other services or if the cache aggregates
data from multiple databases for running
queries against consolidated data, then a
database is not a requirement.

Appendix A: Caching Topologies and
Their Pros and Cons

AMAZON ELASTICACHE DATABASE

MICROSERVICE
INSTANCE

ElastiCache as a decoupled remote cache

20

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Microservices-based application
architectures fragment user sessions
across multiple microservices. This can be
addressed by externalizing session state
information in a single and shared remote
cache. This is a key pattern for improving the
user’s experience, hence is often a starting
point for using caching as part of distributed
application’s infrastructure.

Session data is different from application
data (or user data) in some important ways.
Application or user data populates the
application’s databases. It is used by the
application to do its job, such as product
data or pricing. It can also consist of data
about each user, such as user preferences.

On the other hand, session data is data
about the user’s session or application
state. It consists of metadata about the
application’s interactions stored as session
variables. Session data is ephemeral. When
the session ends, either from the user
closing the browser or due to a time-out,
the session variables are cleared. Examples
of session variables are user id, password,
preferences, and privileges.

There are various ways to manage user
sessions. You can store those sessions
locally to the node responding to the HTTP
request or designate a layer in your
architecture which can store those sessions
in a scalable and robust manner. Common
approaches include using Sticky sessions or
using a Distributed Cache for your session
management.

The Limitations of Sticky Sessions
Sticky sessions, also known as session
affinity, allow you to route a site user to
the particular web server that is managing
that individual user’s session. The session’s
validity can be determined by a number of
methods. This includes client-side cookies
or by configurable duration parameters that
can be set at the load balancer, which routes
requests to the web servers. While this
approach is cost effective and fast because
it minimizes network latency relative to
remote caches, it has key limitations. In the
event of a failure, you are likely to lose the
sessions that were resident on the failed
node. An ElastiCache for Redis cluster,
with replicas across multiple AZs for high
availability, is unlikely to lose session state
information.

If the number of web servers changes, for
example a scale-out scenario, it’s possible
that the traffic may be unequally spread
across the web servers as active sessions
may exist on particular servers. If not
mitigated properly, this can hinder the
scalability of your applications.

Sticky sessions are also subject to capacity
limitations. For nodes that handle a large
number of sessions, the memory capacity of
a web server may not be able to store all the
session data.

The use of ElastiCache as a highly available
remote cache is a much more reliable
way of storing both application data and
session information, boosting the overall
performance and availability of your
applications.

Appendix B: Using ElastiCache for Redis
as a User Session State Store

21

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

Distributed Session Management
To address scalability and provide shared
data storage for sessions that can be
accessible from any individual web server,
you can abstract the HTTP sessions from the
web servers themselves. A common solution
is to leverage ElastiCache as a remote key-
value cache for its in-memory performance.

ElastiCache is perfectly suited for session
data because it provides fast, highly
available access to state information, which
is critical for elastic operations. Session state
information can be used for improving the
user’s experience by providing resilience to
failures.

If a microservice instance fails, another
instance can be spun up and the new
instance can read state information from the
cache and continue processing from where
the failed instance left off. For example,
in an e-commerce application, the user’s
shopping cart and browsing history can be
recovered even after a failure.

Externalized and shared session data
provides support for the high degree of
elasticity that comes with microservices.
Multiple ephemeral microservice instances
or multiple disparate microservices can
share the same user session context.
Shared session state caches are a key
enabling technology for maintaining the
infrastructure’s scalability.

CACHE CACHECACHE CACHE

AZ1

DISTRUBUTED
CACHE

Auto scaling: Dynamically
provisions EC2 instances
based on your scaling
policies. If sessions are
stored on nodes, session
loss is a risk.

AZ2

WEB SERVERWEB SERVER

LOAD BALANCER

Persist session data in an external distributed cache

22

THE RISE OF
MICROSERVICES

AMAZON ELASTICACHE
FOR MICROSERVICES

ELASTICACHE FOR
COST OPTIMIZATION
OF PERFORMANCE
IMPROVEMENTS

COMMUNICATION
BETWEEN MICROSERVICES
USING EVENT-BASED
ARCHITECTURES

LOW-LATENCY ACCESS
TO OPERATIONAL DATA

CONCLUSION

ABSTRACT

ADDRESSING THE NEED
FOR USER GROWTH AND
HIGH THROUGHPUT

APPENDIX A: CACHING
TOPOLOGIES AND THEIR
PROS AND CONS

APPENDIX B: USING
ELASTICACHE FOR REDIS
AS A USER SESSION
STATE STORE

© 2024, Amazon Web Services Inc., or its affiliates. All rights reserved.

