
Data modeling with
Amazon DocumentDB

2

Table of Contents

Introduction 03

The relational model 04

Adapting to the document model 05

The Document API 07
Documents and the _id field 08

Inserting documents 09

Reading documents 10

Sorting, projecting, and other options 14

Updating documents 15

Deleting documents 17

Aggregation framework 18

Transactions 20

Operations conclusion 21

Data modeling Patterns 22
Schema management in DocumentDB 23

Managing your schema in your application code 23

Managing your schema with DocumentDB’s JSON Schema validation 24

Managing relationships in DocumentDB 26

Managing relationships with embedding 27

Handling relationships with duplication 28

Managing relationships with referencing 31

Indexes in DocumentDB 33

Compound indexes 34

Multi-key indexes 36

Sparse indexes 37

Advanced tips 39
Use the aggregation framework wisely 40

Scaling with DocumentDB 41

Reduce I/O 42

Reduce document size 44

Conclusion 45

Introduction
For decades, the relational database was the primary choice for storing
data. New developers learned the SQL language and the virtues of
database normalization. To reduce the learning curve of SQL or the tedium
of mapping between paradigms, developers use object-relational mappers
(ORMs) to translate between their live application and their durable
storage. The relational database provided enough flexibility and ubiquity
to be the default choice.

In the early 2000s, the ground shifted. New databases arose, often
grouped under the term ‘NoSQL’. While there were many flavors of NoSQL
databases, the document database was the most popular. Document
databases provided a flexible data model that more closely matched the
objects used in application code. This allowed developers to avoid the
famed impedance mismatch between the relational model and application
objects. Further, document databases provided a flexible schema that
allowed developers to evolve their data model over time without the pain
of database migrations.

In this book, we’ll look at how to model your data in a document database.
We’ll focus on Amazon DocumentDB, a fully managed document database
service that is compatible with MongoDB. We’ll start by looking at the
differences between the relational model and the document model as
well as some key principles for adopting the document model. Then, we’ll
look at the core API operations in DocumentDB. Finally, we’ll look at some
common data modeling patterns for DocumentDB.

https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

The relational model
Before we dive into the details of data modeling in DocumentDB, let’s
take a step back and look at the relational and document models. How are
these two models similar and where do they differ?

In a traditional relational model, each entity in your application is contained
in a separate table. If your application has teams, users, and support tickets,
you would have a teams table, a users table, and a tickets table. Each
table would contain only the data for that entity.

Within each table, you would define a schema for the records contained
in that table. This schema is made up of columns, and each column has
a name and data type. In our users table, we might have a username
column of type string, a name column of type string, an email column
of type string, and a created_at column of type datetime. Each row
in the table would contain the data for a single user, and each column
would contain a single piece of data for that user.

Traditionally, column types would be simple scalar values like strings and
numbers. If you had more complex data, like an array of values, you would
split that data into a separate table and use a reference to that table in
your original table. For example, a team will have multiple users. Rather
than storing the users within the team record, each user record will point to
its corresponding team record via a foreign key.

Thus, the three key characteristics of the relational model are (1) a fixed
schema for each table, (2) a flat data model using scalar values, and (3)
references across entities via foreign keys.

Adapting to the document model
As we’ll see, the document model does not have these three main characteristics of a
relational database. But while there are significant differences between the document and
relational models, you don’t need to throw away all of your existing database experience.

You’re still working with individual records made of attributes, and these records are grouped
together within the database. The specifics of the terminology differ. An individual record is
called a document in DocumentDB as compared to a row in a relational database. Within a
document, individual attributes are called fields in DocumentDB instead of columns like in a
relational database. Documents are kept together in collections rather than in tables.

The biggest difference between the relational and document models is in the flexibility of
designing your data objects. This flexibility can be a benefit, as we’ll see throughout this
book, but you should be careful in how you use it. In general, there are two areas where the
document model is more flexible than the relational model.

First, the document model provides more schema flexibility than the relational model. In
a relational database, you must define a schema for your table before you can insert any
data. This schema defines the columns that are available for each row, and the data type
of each column. Once you’ve defined this schema, you can only insert rows that match the
schema. If you try to insert a row with a column that doesn’t exist in the schema, or a value
that doesn’t match the data type of the column, the database will reject the insert.

In contrast, you don’t need to define a schema for a document database like DocumentDB.
Documents in DocumentDB are self-describing, like JSON objects. This allows you to
customize the shape of each document to match the needs of your application. This
can prove particularly useful in situations with highly flexible data, such as a content
management system that includes a variety of different types of content, each with their
own set of fields.

Additionally, DocumentDB’s schema flexibility reduces the operational pain of evolving
your data model over time. In a relational database, you would need to perform table-
level DDL operations to add or remove a column. Traditionally, this was a painful process
that could require downtime for your application. Even with modern relational databases
with online DDL, performing these operations can require significant resources on your
database instance.

While this schema flexibility is useful, it does come with a cost. A relational database
would do the work to ensure your data was in the format you expected. With a schemaless
database like DocumentDB, these guardrails are gone. You’ll need to do the work to
enforce the schema of your application data. In the data modeling section below,
we’ll look at different approaches to managing your schema in a schemaless database
like DocumentDB.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

5

A second way that DocumentDB is more flexible than a relational database is in the way it
selectively encourages denormalization of your application data.. In a relational database,
you would typically normalize your data model following the principles of Edgar Codd.
This often requires splitting your data into multiple tables and tracking references across
tables using foreign keys. It also avoids using nested data structures, such as objects or
arrays, in your data model. Rather, you would split these nested data structures into their
own tables. To combine data from different tables, you would use joins at query time.

Database normalization is a useful technique that helps to avoid data anomalies and
provide query flexibility. However, normalization has its downsides as well. It can reduce
query-time performance as your join is hopping around multiple tables to assemble your
required data. It can also increase the complexity of your application code if you need to
perform multiple queries to assemble your data. Finally, it can be difficult to translate the
normalized data model into the objects used by your application, which often use nested
data structures.

In a document model, you use a more denormalized model when you don’t need
the benefits of normalization. You may duplicate data across multiple documents,
particularly when that data is not changing frequently. This can change an expensive join
operation to a simple lookup. Further, you may choose to use nested data structures. This
selective denormalization can improve the performance of your queries and simplify your
application code.

These two changes - schema flexibility and careful
denormalization - make up the fundamental differences between
the relational model and the document model.

In the rest of this ebook, we’ll look how to adopt our data modeling techniques to take
advantage of these differences. First, we’ll start with an overview of the DocumentDB API.
Then, we’ll cover the three core aspects of proper data modeling in DocumentDB. Finally,
we’ll close with some advanced tips for using DocumentDB well.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

6

The DocumentDB API
Just as there are differences in terminology and style between
DocumentDB and a traditional relational database, there are also
differences in the API. In this section, we’ll look at core API operations in
DocumentDB to get a feel for how to interact with the database. These
operations will form the building blocks for the data modeling patterns
we’ll look at later.

DocumentDB provides compatibility with the MongoDB API. Thus, you can
use the MongoDB client libraries as well as third-party ORMs and other
tools. In the examples below, we’ll use the Node.js SDK for MongoDB.
However, the concepts are the same regardless of the SDK you use.

Documents and the _id field
As noted, a single record in DocumentDB is called a document. This is comparable to
a row in a relational database. As we’ve seen, a document is more similar to a JSON
object than a record you’re used to in a relational database. A document has no set
schema by default and can contain nested data structures.

There is one caveat to DocumentDB’s schemaless model: every document must
have an ‘_id’ field. This field is required for every document, and it must uniquely
identify a single document in a collection. This _id field is similar to a primary key in
a relational database.

You may provide a value for the _id field when inserting a document. This is useful
when you have a natural key for your document, such as a username or email
address. The _id field is indexed by default, so using a natural key for the _id field
can take full advantage of this index.

If you don’t provide an _id field for a document, DocumentDB will provide one for
you. This will be in the form of an ObjectId, which is a twelve-byte unique identifier.
The first four bytes of an ObjectId are a timestamp indicating when the object
was created. In addition to providing uniqueness, this can be useful for sorting
documents by creation time.

Finally, remember that each document must belong to a collection in DocumentDB.
When interacting with documents, you must specify the collection that contains the
document. Thus, you often have some initialization code to get a reference to the
collection you want to interact with.

For example, the following code gets a reference to the users collection in the main
database.

const db = client.db(‘main’);
const collection = db.collection(‘users’);

Then, you can use the collection variable to interact with documents in the
users collection.

With this core understanding of documents, let’s look at how you can interact with
them in DocumentDB.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

8

Inserting documents
The first operation we’ll look at is inserting documents. This is the equivalent of
and INSERT operation in a relational database. You can insert a single document or
multiple documents at a time.

To insert a document into your database, you will use the insertOne method.

You can provide a single object to the insertOne method. This will be serialized
into a document and inserted into the collection. The insertOne method returns
a result object that contains the _id of the inserted document as an insertedId
property.

As noted above, you can specify the _id property yourself if you want. However,
the write will fail if you specify an _id that already exists in the collection.

const result = await collection.insertOne({
 username: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’,
 created_at: new Date(),
});

console.log(result.insertedId); // 65836d8ad4211546b47af455

const result1 = await collection.insertOne({
 _id: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’,
 created_at: new Date(),
});

console.log(result.insertedId); // johndoe

const result2 = await collection.insertOne({
 _id: ‘johndoe’,
 name: ‘Jonathan Doe’,
 email: ‘john.doe12@example.com’,
 created_at: new Date(),
}); // Throws error because _id already exists

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

9

You can also insert multiple documents at once using the insertMany method.

When inserting multiple documents at once, the insertedIds property of the
result object will be an array of the _id values for each inserted document, in the
order they were inserted.

Reading documents
Inserting documents is all well and good, but our data is only really useful if
we can read it back out. In this section, we’ll look at how to read documents
from DocumentDB.

To read documents from DocumentDB, you will use the find method.

const result = collection.find();

for await (const doc of result) {
 console.log(doc);
}

const result = await collection.insertMany([
 {
 username: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’,
 created_at: new Date(),
 },
 {
 username: ‘janedoe’,
 name: ‘Jane Doe’,
 email: ‘jane@example.com’,
 created_at: new Date(),
 }
]);

console.log(result.insertedIds); // [65836d8ad4211546b47af455,
65836d8ad4211546b47af456]

The result of the find method is a cursor object, similar to a cursor in a relational
database. This cursor object is an async iterator, which means you can use it in a
for await ... of loop to iterate over the documents in the result set. Under
the hood, the find method is retrieving batches of records. As you iterate over the
cursor, it will fetch the next batch of records as needed.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

10

The example above returns all documents within a collection. This would be like a
SELECT * FROM users query in a relational database. However, you often want
to filter the documents during a particular query to only return the documents you
need. You can do this by passing a filter object to the find method.

With this filter object, DocumentDB will only return documents where the
username field is equal to johndoe. This would be like a SELECT * FROM users
WHERE username = ‘johndoe’ query in a relational database.

When doing an exact match filter on the username property, it’s likely you will
receive only a single document back. In situations where you expect a single
document, you can use the findOne method instead of the find method.

Note that the findOne method returns a single document, not a cursor. This means
you wouldn’t use a for await ... of loop to iterate over the results. Rather, you
can simply await the result of the findOne method.

In the examples above, we’ve used a simple exact match on the username field to
locate matching records. However, you can use a wide range of operators to filter
your results. Let’s quickly look at a few of these operators.

A common requirement is to find matching records with a value greater than or less
than a particular value. You can use the $gt and $lt operators to do this.

For example, you can use the $gt operator to find documents where the
created_at field is greater than a particular date.

const result = collection.find({
 username: ‘johndoe’
});

for await (const doc of result) {
 console.log(doc);
}

const result = await collection.findOne({
 username: ‘johndoe’
});

console.log(result); // { _id: 65836d8ad4211546b47af455,
username: ‘johndoe’, ... }

const result = collection.find({
 created_at: { $gt: new Date(‘2024-01-01’) }
});

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

11

Notice that the value for the created_at field is an object with a $gt property.
This is how you specify operators in DocumentDB. The value of the $gt property is
the value you want to compare against. The use of a $ is an indicator that this is an
operator, not a field name.

If you want values that are greater than or equal to (or less than or equal to), you
can use the $gte and $lte operators.

Another common requirement is to find matching records where a field is in a list of
values. For example, we may want to find all support tickets that were created by a
particular set of users.

You can use the $in operator to do this:

This will return all documents where the username field is equal to either johndoe
or janedoe.

As mentioned before, DocumentDB is a schemaless database that allows for nested
data structures. You can query those data structures directly using dot notation --
referring to the nested field by the path from the root of the document.

For example, let’s extend our users collection to include an address field with
nested values:

If you want to find all the users that live in a specific zip code, you can use dot
notation to query the nested zip field.

const result = collection.find({
 username: { $in: [‘johndoe’, ‘janedoe’] }
});

const result = collection.find({
 ‘address.zip’: ‘11111’
});

{
 _id: 65836d8ad4211546b47af455,
 username: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’,
 address: {
 street: ‘123 Broadway’,
 city: ‘New York’,
 state: ‘NY’,
 zip: ‘11111’
 }
}

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

12

This will return all documents where the zip field in the address object is equal
to 11111.

Finally, while dot notation works well for nested objects, you may want to query for
documents that contain a particular value in an array. For example, let’s extend our
users collection to include a roles field with an array of roles.

If you want to find all the users that have a particular role, you can use the
$elemMatch operator. With the query below, we can find all users with the
admin role.

The $elemMatch operator is composable, so you construct a subquery that is
applied to all elements in an array. DocumentDB will return any document where
the subquery matches at least one element in the array.

There are a number of other operators available in DocumentDB, including
regex matching, JSON schema matching, geospatial queries, and bitwise
operations. For a full listing of compatibility with MongoDB APIs, see the
DocumentDB documentation. For details on the operators available in
DocumentDB, see the MongoDB documentation on query operators.

{
 _id: 65836d8ad4211546b47af455,
 username: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’,
 address: {
 street: ‘123 Broadway’,
 city: ‘New York’,
 state: ‘NY’,
 zip: ‘11111’
 },
 roles: [‘admin’, ‘user’]
}

const result = collection.find({
 roles: { $elemMatch: { $eq: ‘admin’ } }
});

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

13

https://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html
https://www.mongodb.com/docs/manual/reference/operator/query/

The sort method takes an object with the fields you want to sort on. The value of
each field is either 1 for ascending order or -1 for descending order. In this case, we
want to sort by the created_at field in descending order, so we use -1.

You can sort by multiple fields by including multiple fields in the sort object. The
documents will be sorted by the first field, then the second field, and so on.

In the example below, we can find users ordered by state, then by created date to
find the most recent users in each state.

One of the easiest ways to improve the performance of your queries is to reduce
the amount of data you’re reading and sending back. If you’re retrieving a set of
records but have a maximum number of records you want to return, you can use
the limit method.

This is powerful when combined with the sort method. For example, if you want
to find the ten most recently created users, you can use the sort method to sort
by created_at in descending order and then use the limit method to limit
the results to ten. For top performance, index on your sort field to avoid a full
collection scan. More on indexing can be found in the data modeling section below.

Finally, in addition to reducing the number of records sent back, you can also
reduce the size of each record. If you don’t need all the fields in a document, you
can use the project method to specify which fields to include or exclude.

const result = collection.find().sort({ created_at: -1 });

const result = collection.find().limit(10);

const result = collection.find().project({ username: 1, name: 1 });

const result = collection.find().sort({ state: 1, created_at: -1 });

Sorting, projecting, and other options
When reading documents from DocumentDB, you may want to alter the returned
results in some way. This could mean changing the order of a set of documents
by including a preferred sort order. Additionally, it could mean limiting the fields
returned in the result set to only those you need.

DocumentDB has a chainable API that allows you to specify these options. Let’s
look at a few of the most common options.

First, it’s common to want to sort the results of a query. You can do this using the
sort method.

If we wanted to return users in order of the most recently created, we could do this
as follows:

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

14

The project method uses a similar syntax as the sort method, but it includes
some explicit and implicit behavior. Essentially, you can explicitly specify the fields
you want by listing them with a value of 1. This implicitly excludes all other fields.

Alternatively, you can explicitly state the fields you don’t want by listing them with
a value of 0. This implicitly includes all other fields.

If you have large, sprawling documents but only need a subset of them, using a
project operation can significantly reduce the amount of data you’re sending back
and forth. For large response bodies, this can significantly improve the performance
of your application. Check out the indexing section below for more information on
how to optimize this further by using covered queries.

Updating documents
In addition to writing new documents to DocumentDB, you’ll often need to update
existing documents. Perhaps a user wants to change their email address, upgrade
their plan, or change their address. In this section, we’ll look at how to update
documents in DocumentDB.

Like the read operations, DocumentDB contains two core update methods:
updateOne and updateMany. Like the read operations, the operation you choose
depends on whether you want to update a single document or multiple documents.

Let’s start with the updateOne method. This method takes two arguments: a filter
object and an update object. The filter object is used to find the document you want
to update. The update object is used to specify the changes you want to make to
the document.

In the example below, we will update the johndoe user to have a new email address.

const result = await collection.updateOne(
 { username: ‘johndoe’ },
 { $set: { email: ‘johndoe@example.com’ } }
);

Notice our filter object -- { username: ‘johndoe’ } -- is the same as the filter
object we used to find the document in the section on reading documents. All the
query syntax works the same for update operations as it does for read operations.

In the update object, we use the $set operator to specify the changes we want to make
to the document. The $set operator takes an object with the fields you want to update.
In this case, we want to update the email field to johndoe@example.com.

Sometimes you want to remove a field from a document altogether. You can do this
using the $unset operator.

const result = await collection.updateOne(
 { username: ‘johndoe’ },
 { $unset: { email: ‘’ } }
);

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

15

The $set and $unset operators will do most of the update work you need.
However, there are other operators available as well, including $inc for
incrementing a counter or $rename for renaming an existing field. You can find the
full documentation on update operators here.

Note that the updateOne method will always modify a single document, regardless
of how many documents are matched by your filter object. If multiple documents
are matched, only the first one will be modified by the updateOne operation.

Sometimes you want to update multiple documents at once. This may be an
application-level update like updating all users that belong to a specific team
or organization, or it may be a schema migration where you want to update all
documents in a collection.

In these cases, you can use the updateMany method. This method takes the same
arguments as the updateOne method, but it will update all documents that match
the filter object.

In the example below, we will rename the email field to email_address for all
documents in the users collection.

const results = await collection.updateMany(
 {},
 { $rename: { email: ‘email_address’ } }
)

Notice that we’ve used an empty filter object. This will match all documents in the
collection. This is similar to a SELECT * FROM users query in a relational database.

The updateMany operation can be helpful for changing multiple documents at
once, but use caution when using it. Performing a write operation on large numbers
of documents can be a resource-intensive operation. If you’re updating a large
number of documents, you may want to perform the update in batches to avoid
overloading your database.

A final update operation is the replaceOne method. Remember that a document
in DocumentDB is uniquely identified by its _id property. In the default update
operations, the document will only alter the fields specified by the update object.
All other properties on the document will remain unchanged.

Sometimes you want to replace the entire document with a new document. This is
where the replaceOne method is useful. You can use it to completely overwrite an
existing document with a new document.

Like the updateOne method, the replaceOne method takes two arguments. The
first is a filter object that is used to identify the object to replace, and the second
object is the new document to replace it with.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

16

https://www.mongodb.com/docs/manual/reference/operator/update-field/

In the example below, we will replace the johndoe user with a new document.

const result = await collection.replaceOne(
 { username: ‘johndoe’ },
 {
 username: ‘johndoe’,
 name: ‘Johnny Doe’,
 email: ‘johnny12@example.com’,
 }
);

There are two important things to note with the replaceOne method. First, note
that the replacement will occur for only the first matching document for the filter
object. If you include a wide filter that matches multiple documents, only one will
be updated. Thus, ensure you’re specific with your filter object when using the
replaceOne method. Ideally you are using the _id field or another unique field to
identify the document to replace.

Second, notice that the replaceOne document takes in a full document rather than
an update object with the update operators. This is more similar to the insertOne
method than the updateOne method.

In each situation where using the update methods, consider what type of updates
you want to make.

• Are you updating a single document or multiple documents?
• Do you want to update the document in place or replace it with a new

document?

The answers to these questions will help you determine which update method
to use.

Deleting documents
The final CRUD operation we’ll look at is deleting documents. This is the equivalent
of a DELETE operation in a relational database. You can delete a single document
or multiple documents at a time.

Like the update operations, there are separate operations for deleting a single
document and for deleting multiple documents. Let’s start with the deleteOne
method.

The deleteOne method takes a filter object as its only argument. This filter object
is used to identify the document to delete.

const result = await collection.deleteOne({ username: ‘johndoe’ });

This will delete a single document where the username field is equal to johndoe.
Like the updateOne method, it will only delete the first matching document if the
filter matches multiple documents.

If you want to bulk delete items, you can use the deleteMany method. This can be
good for cascading deletes or bulk cleanup operations.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

17

In the operation below, we will delete all users that have not logged in for the past
90 days.

const result = await collection.deleteMany({
 last_login: { $lt: new Date(Date.now() - 90 * 24 * 60 * 60 * 1000) }
});

Just like the updateMany, think carefully about how many items will be affected
before running a deleteMany operation. You don’t want to tie up your database
with a large delete operation.

Aggregation framework
The core CRUD operations we’ve looked at so far are the basic building blocks for
working with DocumentDB. However, DocumentDB also provides some advanced
tools for data querying. One of these tools is the aggregation framework.

The aggregation framework is a pipeline-based operation that allows you
to perform a series of operations on a set of documents. Each operation in
the pipeline takes the results of the previous operation and performs some
transformation on it. The result of the final operation is returned to the caller.

One common example is to emulate JOIN-like functionality in a relational database
by combining two documents via a reference.

Imagine you have one collection where every document has a userId field that
points to the _id field of a document in the users collection. You might use the
aggregate operation as follows:

const result = await collection.aggregate([
 {
 $match: {
 “user_id”: ‘65836d8ad4211546b47af456’
 }
 },
 {
 $lookup: {
 from: “users”,
 localField: “user_id”,
 foreignField: “_id”,
 as: “userInfo”
 }
 }
]);

In the aggregate operation, you provide an array of steps. These steps are
performed in sequential order by the database engine. In this case, we have two
steps. First, we use the $match operation to filter the documents in the collection
to only those that match the provided filter. Then, we use the $lookup operation to
join the users collection to our original collection.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

18

Enriching data with a $lookup operation is a common use case for the aggregation
framework. However, DocumentDB supports a number of other stage operations as
well. Many of these operations compare to different operators in SQL.

We won’t run through examples for all of the stages, but some of the more useful
ones include:

• $match: Filters the documents in the collection to only those that match
 the provided filter (compare to a WHERE clause in SQL);
• $project: Allows you to specify which fields to include or exclude from
 the result set (compare to a SELECT clause in SQL);
• $group: Allows you to group documents together based on a field or
 fields (compare to a GROUP BY clause in SQL);
• $unwind: Allows you to explode arrays into individual documents per
 element in the array to work on those elements individually;
• $bucket: Allows you to group documents together based on a range of
 values (compare to a GROUP BY clause with a range in SQL);
• $sort: Allows you to sort the documents in the result set (compare to an
 ORDER BY clause in SQL);
• $limit: Allows you to limit the number of documents returned (compare
 to a LIMIT clause in SQL);
• $skip: Allows you to skip a number of documents in the result set
 (compare to an OFFSET clause in SQL).

See the Advanced Tips section below for more on using the aggregation
framework well.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

19

https://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html#mongo-apis-aggregation-pipeline-stage

Transactions
Another advanced query feature of DocumentDB is support for transactions.
Transactions allow you to perform multiple operations in a single, atomic
operation. If one of your steps fails, the entire transaction is rolled back and
no changes are made to the database. This is a common feature of relational
databases but was missing in early versions of document databases.

There are a few common reasons you may need to use transactions. The simplest is
to ensure that multiple operations are performed atomically -- that is, either all of
the operations succeed or none of them succeed.

A simple example is in creating a user that will belong to a team. Perhaps we want
to keep track of the total members of the team on the team object. To do so, we
increment the memberCount field on the team object when we create a new user.

If we need this operation to be atomic, we can use a transaction to ensure that the
user is created and the memberCount field is incremented in a single operation. If
either operation fails, the entire transaction is rolled back and no changes are made
to the database.

You could handle this using the following code:

const session = client.startSession();

try {
 session.startTransaction();

 // Create the user
 const usersCollection = client.db(‘main’).
collection(‘users’);
 await usersCollection.insertOne({ ... }, { session });

 // Increment the memberCount field on the team
 const teamsCollection = client.db(‘main’).
collection(‘teams’);
 await teamsCollection.updateOne(
 { _id: ‘65836d8ad4211546b47af456’ },
 { $inc: { memberCount: 1 } },
 { session }
);

 // Commit the transaction
 await session.commitTransaction();
} catch (error) {
 await session.abortTransaction();
 throw error;
} finally {
 await session.endSession();
}

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

20

This is complex, so let’s walk through it step-by-step.

First, you create a session using the startSession() method on the client. This
session will be used to perform the transaction.

You then call the startTransaction() method on the session to start the
transaction. Remember that errors could occur during your transaction, so you’ll
want to wrap it in a try/catch block to handle the error and rollback the transaction.

Then, you would perform the actions you want to take. In this case, we’re creating a
new user and incrementing the memberCount field on the team.

To complete the transaction, you call the commitTransaction() method on the
session to commit the transaction to the database.

Notice in our catch block that we call the abortTransaction() method on the
session. This will roll back the transaction and undo any changes made during the
transaction. Any changes made during the transaction will be discarded.

Finally, we use a finally block to close the session using the closeSession()
method.

In every transaction you do, you must ensure you handle the preparation and
clean up tasks. Start your session at the beginning, and close it when your work
is through. Start a new transaction from your session, and commit or abort it
when you’re done. If you don’t do this, you’ll end up with orphaned sessions and
transactions that will eventually time out, all while holding locks on your database.

Further, you should try to design your data model to avoid transactions where
possible. Transactions require coordination, which can be expensive. Try to lean into
a document model and avoid the need for transactions where possible. You can do
this by using the patterns discussed below, including the embedded pattern to keep
related data together.

Both the aggregation framework and transaction capabilities are powerful
features of DocumentDB that give you some of the same power and flexibility of
a traditional relational database. However, be sure to use these features sparingly.
See where you can find a simpler, more scalable solution using the patterns
discussed above.

Operations conclusion
In this section, we learned the basic CRUD operations in DocumentDB. These will be
the bulk of your operations in DocumentDB, so you should understand them well.
Specifically, think about how DocumentDB will match the documents you want to
read, update, or delete. Work to ensure this is a fast, efficient operation. You can do
this using some of the indexing patterns discussed below.

We also reviewed some of the advanced features of the DocumentDB API, such as
the aggregation framework and transactions. These are powerful features that can
help you solve complex problems. However, they can also be expensive operations
that can slow down your database. Use them sparingly and consider whether there
are simpler solutions to your problem.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

21

Data modeling patterns
Now that we know the basics of the DocumentDB API, let’s look at some
common data modeling patterns. The sections below provide tactical
advice for real-life data modeling problems. These patterns are not
exhaustive, but they should provide a good starting point for your data
modeling efforts.

In general, three areas will make the biggest difference for success in
DocumentDB:

• Schema management;
• Modeling relationships;
• Proper indexes.

Focus on getting these three areas right first, then focus on the more
advanced topics at the end of this ebook.

Schema management in DocumentDB
One of the best things you can do for a scalable and efficient data model is to
maintain sanity for the shape of your existing documents. We saw above that
DocumentDB is a schemaless database by default -- we won’t be defining column
names and data types for our documents like we would with a relational database.
While that flexibility is useful, particularly as your schema evolves over time, you do
want to manage some semblance of a schema for your documents.

There are two common patterns for managing your schema in DocumentDB. The
first, more traditional, way is to verify your schema yourself in your application
code. The second, more modern, way is to use JSON Schema to define a schema for
your documents and use DocumentDB’s validation feature to enforce that schema.

Let’s review each of these patterns in turn.

Managing your schema in your application code
In the early days of NoSQL databases, there was no server-side schema
management available. This meant the only pattern available to enforce your
schema was via your application code. You would need to verify that your
documents matched your expected schema before writing them to the database. To
be safe, you’d likely want to verify the schema again when reading the document
back from the database.

To manage this schema, you can use a generic schema validation tool like JSON
Schema. Alternatively, you can use a language-specific tool such as Zod to define
your schema and validate your documents. Some client libraries for DocumentDB,
such as Mongoose for Node.js, include schema validation tools as well.

Let’s look at an example of using Zod to validate a document before writing it to
DocumentDB.

const userSchema = z.object({
 username: z.string(),
 name: z.string(),
 email: z.string().email(),
 created_at: z.date(),
});

async function createUser(userData) {
 const user = userSchema.parse(userData);
 return collection.insertOne(user);
}

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

23

https://zod.dev/
https://mongoosejs.com/

In this example, we’ve defined a schema for our user documents using Zod. Then,
in our createUser function, we parse the user data against the schema. If the user
data does not match the schema, Zod will throw an error. Otherwise, we can safely
insert the user into DocumentDB.

This pattern works well for managing your schema, but it does have some
downsides. First, you must manage the schema validation yourself. This means
carefully ensuring that, in every place you write to the database, you are validating
the schema. This can be difficult to manage as your application grows.

Additionally, you may be doing update operations on your documents that alter
only a portion of your document. For example, you may be updating a user’s
email address. In this case, you would want to validate that the email address is in
the correct format, but you wouldn’t want to validate the entire document. This
requires careful management of your schema validation and a deep understanding
of your schema requirements.

For this reason, you may prefer to use server-side validation of your schema
instead. Let’s explore that next.

Managing your schema with DocumentDB’s JSON Schema validation
A second approach to schema validation is to have DocumentDB validate your
documents via its JSON schema validation feature. This allows you to define a
schema for your documents and have DocumentDB validate that schema before
writing the document to the database.

A schema is defined at the collection level and can be added when creating the
collection or added to an existing collection. Let’s look at an example of creating a
collection with a schema.

const result = await db.createCollection(‘users’, {
 validator: {
 $jsonSchema: {
 bsonType: ‘object’,
 required: [‘username’, ‘name’, ‘email’, ‘created_at’],
 properties: {
 username: {
 bsonType: ‘string’,
 },
 name: {
 bsonType: ‘string’,
 },
 email: {
 bsonType: ‘string’,
 pattern: ‘^.+@.+$’,
 },
 created_at: {
 bsonType: ‘date’,
 },
 },
 },
 },
 “validationLevel”: “strict”, “validationAction”: “error”
});

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

24

Now, when you insert a document, DocumentDB will throw an error if the
document does not match the schema.

This schema validation will also apply during updates. In general, this greatly
simplifies the management of your schema. As long as you can describe it correctly
via JSON schema, you’ll be able to validate it with DocumentDB.

DocumentDB also allows for updates to your schema as your application evolves.
You can update your schema at any time by using the collMod command. Note
that this will not retroactively change or validate any existing documents -- you will
be responsible for making corresponding changes yourself.

If you have existing documents that will not pass your new schema validation rules
and you don’t want to update them, you can reduce the validation level of your
schema. By setting validationLevel to moderate, DocumentDB will only apply
schema validation to new documents and to existing documents that are valid
before the update. If you have prior versions of documents that are invalid, they
will not be validated during updates.

The moderate validation level can ease the pain of updating your schema, but it
does come with a cost. If you have invalid documents in your collection, you may
not be able to trust the data in your collection. You’ll need to perform additional,
application-side validation and transformations to handle invalid documents. For
this reason, it’s best to keep your schema validation level at strict if possible.

Using server-side validation may seem like we’ve come full circle. Part of the reason
document databases gained in popularity was their flexible schema, but now we’re
back to enforcing it in the database again! Note, however, that DocumentDB still
has a more flexible schema system than a traditional relational database. It natively
allows for nested data types like objects and arrays. Further, updating your schema
is a much easier operation in DocumentDB. It doesn’t require locking your table or
costly background resources.

In general, the server-side, JSON-schema-based approach to schema validation will
be easier to manage than the application-side approach. Whichever pattern you
choose, enforcing some schema in your application will make it easier to trust the
data in your DocumentDB database.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

25

Managing relationships in DocumentDB
One of the biggest changes in moving from a relational database to a document
database is how you manage relationships between data. Many people incorrectly
think that ‘relational’ in a relational database refers to relationships between
records. This is not true. Rather, the relational model refers to the fact that data is
stored in tables with rows and columns and has more in common with set theory.

Taking this misconception further, some state that a “non-relational” database
like DocumentDB cannot handle relationships between data. This is also not
true. DocumentDB can handle relationships between data. In fact, it’s almost
meaningless to consider data without relationships. However, you do need to
handle relationships differently in DocumentDB than you would in a relational
database.

Let’s start by reviewing what relationships (not relations!) are and how they’re
handled in a relational database. Then, we’ll look at how to handle relationships
in DocumentDB.

A relationship describes some connection between two pieces of data. For example,
a user may belong to a team or organization, a support ticket may be assigned to
a user, or a blog post may have comments. These are all examples of relationships
between data.

In a relational database, you commonly model different data entities as separate
tables. In our example relationships above, we would have a users table, a teams
table, a support_tickets table, a blog_posts table, and a comments table. Each
table would have its own set of columns, and each row in the table would represent
a single record.

To indicate relationships between different entities, you could use foreign keys. A
foreign key uses a reference in one table to identify a record in another table. For
example, the support_tickets table may have a user_id column that references
the id column in the users table. This would indicate that the support ticket
belongs to a particular user.

When reading these items back, you would use the JOIN operation to combine data
from multiple tables. For example, imagine that you want to find all the support
tickets for a particular user. You don’t know the ID for each support ticket for that
user, but you do have the user’s username. You could use a JOIN operation to find
all the support tickets that have a user_id that matches the user’s ID.

SELECT * FROM support_tickets
JOIN users ON support_tickets.user_id = users.id
WHERE users.username = ‘johndoe’;

In this case, we’re linking the two tables together using the foreign key relationship.
This allows me to filter the support_tickets table on a field that’s only present in
the users table.

DocumentDB does include a JOIN-like operation -- $lookup, via the aggregation
framework discussed above -- but you should avoid it where possible.
Rather, lean in to a document model by using the relationship patterns common in
document databases.

There are three common patterns for modeling relationships in DocumentDB:
embedding, duplicating, and referencing. Let’s look at each of these in turn.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

26

{
 _id: 65836d8ad4211546b47af455,
 title: ‘The Hobbit (75th Anniversary Edition)’,
 formats: [
 {
 ISBN: ‘978-0547928227’,
 type: ‘hardcover’,
 price: 19.99,
 pages: 304
 },
 {
 ISBN: ‘978-0547928210’,
 type: ‘softcover’,
 price: 12.99,
 pages: 410
 },
 {
 ISBN: ‘978-0547928241’,
 type: ‘ebook’,
 price: 9.99,
 },
 {
 ISBN: ‘978-0547928234’,
 type: ‘audiobook’,
 price: 19.99,
 lengthInMinutes: 912
 }
]
}

Managing relationships with embedding
The first pattern for managing relationships in DocumentDB is to embed the
related data directly in the document. As we’ve seen throughout this book,
DocumentDB allows you to store nested data structures in your documents. Using
the embedding pattern takes advantage of this feature.

One example where you could use embedding is in selling a book in an online store.
A single book may have a few different formats -- hardcover, softcover, ebook,
and audiobook. Rather than storing these as four separate documents, you could
embed the different formats directly in the book document.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

27

Now, in fetching a book, you can retrieve all the formats for the book in a single
query by using an indexed field like the book’s title:

const result = await collection.findOne({ title: ‘The Hobbit
(75th Anniversary Edition)’ });

The embedded pattern works best in the following situations:

• You often require the related data when retrieving the parent record. In our
example above, users will be searching for a particular book and reviewing its
details. In doing so, we want to display information on all available formats so
they can choose the one that best fits their needs. By embedding the formats
directly in the book document, we can retrieve all the data we need with a
single lookup on the book’s title.

• The related data is not retrieved directly. This factor pairs with the previous
one, but if you are only retrieving the embedded data through the parent item,
the embedded pattern makes sense. You won’t need to index the embedded
data separately, and you can get the benefits of indexing the parent item to
retrieve the embedded data.

• The number of related items is limited. With databases in general, we want
to prevent reading data that we don’t actually need. If you embed data that is
unbounded, your documents will grow in size and result in slower performance.
In our example above, we have a limited number of formats for a book.
However, if we were to embed all the reviews for a book in the book document,
we could end up with a large number of reviews. This would result in a large
document that would be slow to read from disk. In this case, we would want to
use one of the other patterns.

These factors will be true in a number of situations with related data. In those
situations, using the embedded pattern is a great way to simplify your application
code by saving your application objects directly to the database. Further, you can
enhance performance by avoiding the need for database joins or multiple queries
to the database.

Handling relationships with duplication
While the embedded model is popular, there are a number of situations where
it doesn’t work well. Most commonly, it doesn’t work well when the number of
related items is unbounded, as your document size will grow as the number of
related items grows. This larger document size will result in slower performance.

Additionally, the embedded model doesn’t work as well with many-to-many
relationships. In that situation, a piece of data will be related to multiple other
pieces of data. For example, a user may belong to multiple teams, or a support
ticket may be assigned to multiple users. In these situations, you can’t embed the
related data in a single document.

In situations like these, you can use the duplication pattern to duplicate data
across multiple documents. Like the embedded pattern, this is a violation of the
normalization principles of the relational model. To achieve third normal form, you
should not duplicate data across multiple records. However, when used correctly,
duplication can be a powerful tool for improving performance in DocumentDB.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

28

Think back to the initial example in the introduction to this managing relationships
section. We had a SQL query that retrieved all the support tickets for a particular
user as identified by the username. We used a JOIN operation to combine the
support_tickets and users tables to find the matching support tickets.

SELECT * FROM support_tickets
JOIN users ON support_tickets.user_id = users.id
WHERE users.username = ‘johndoe’;

We had to perform this JOIN operation because the information we had, the
username, was only available in the users table.

With the duplication pattern in DocumentDB, we could avoid this JOIN operation
by duplicating the username in our support ticket documents. This would allow us
to query the support_tickets collection directly to find all the support tickets for
a particular user.

A support ticket document could look as follows:

{
 _id: 65836d8ad4211546b47af455,
 title: ‘Support ticket title’,
 description: ‘Support ticket description’,
 text: ‘....’,
 user: {
 _id: 65836d8ad4211546b47af456,
 username: ‘johndoe’,
 name: ‘John Doe’,
 email: ‘john@example.com’
 }
}

This would allow us to make the following query to find all the support tickets for a
particular user:

const results = collection.find({ ‘user.username’: ‘johndoe’ });

We’ve avoided the JOIN operation and gone directly to the support documents to
find this information. This can be a powerful performance optimization, especially
because DocumentDB allows you to index nested documents.

In addition to using duplicated data to help locate related records, you can also
duplicate data that needs to be displayed for a given record. For example, imagine
our online bookstore wants to show the purchase method used when a customer
reviews an order. Rather than including a pointer to a specific payment method, we
can simply duplicate that data onto the order record itself.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

29

// Example order document
{
 _id: ‘658c32831bd77b6c38e72615’,
 purchaseDate: ‘2023-12-27T14:19:47.000Z’,
 total: 19.99,
 items: [...],
 purchaseMethod: {
 type: ‘credit_card’,
 cardType: ‘Visa’,
 lastFour: ‘1234’
 }
}

In our order document, we have a purchaseMethod field that contains the details
of the payment method used for the order. This allows us to display the payment
method on the order without needing to perform a JOIN operation to retrieve the
payment method. We aren’t retrieving the order by the payment method directly,
but we are duplicating it to avoid an additional read.

Like all data modeling patterns, there are tradeoffs to the duplication pattern.
The benefits of normalization’s preference for a single, canonical source of truth
is in the consistency of the data. If a data record is updated, all other records
that refer to that record will see the benefits of the update when they fetch the
canonical record.

On the other hand, if you duplicate data, you’ll have to manage and handle
corresponding updates to all duplicates. Failure to do so can lead to data
inconsistencies and a confusing user experience.

The key factors to look at here are (1) whether the duplicated data is immutable,
and (2) how widely the data is duplicated. Let’s explore these factors in the context
of our examples.

For our first example, we duplicate the user record into our support ticket to handle
searching by username. In many applications, the username is immutable. This
makes it much safer to duplicate this data as we won’t need to update it in the
future.

If you look closely at our example, we also duplicate the user’s name and email
address. These are attributes that are more likely to be mutable and thus require
corresponding updates to the duplicated data. Because support tickets are
essentially unbounded, this could be an expensive operation for our application.
For this reason, we may decide not to duplicate these mutable attributes onto our
support ticket documents.

For our second example, we duplicate the payment method onto the order
document. This seems like data that may be mutable, as a user can change
their payment methods over time. However, think about it from the perspective
of the order -- once an order is placed, the payment method for that order
does not change. Thus, we can safely duplicate the payment method onto the
order document.

The duplication pattern is a powerful pattern and another example of how selective
denormalization can improve performance in DocumentDB. However, be sure to
consider the tradeoffs of this pattern before using it in your application.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

30

Managing relationships with referencing
The final pattern for managing relationships in DocumentDB is to use references.
This is the most similar to the relational model, as you are using a reference to
identify a related record.

In general, the reference pattern works well when the embedded or duplication
patterns do not fit. If you have a large or unbounded set of data that is mutable, it
may not be a good fit for the embedded or duplication patterns. Further, if you’re
likely to fetch a related record directly, outside of the context of its parent record,
the reference pattern may be a good fit. Finally, if you have a many-to-many
relationship, the reference pattern is a good fit.

If you use a reference pattern, there are generally two ways to fetch your data. You
can use DocumentDB to perform the join for you using the $lookup operation, or
you can perform multiple queries to fetch the related data.

Let’s look at an example of using the $lookup operation using the aggregation
framework discussed in the previous chapter.

In the support ticket example from the duplication section, we duplicated the
user record onto the support ticket to allow us to search for support tickets by
username. However, we noted that the user’s name and email address are mutable
and thus may not be a good fit for duplication.

We can update our support ticket document to look as follows:

{
 _id: 65836d8ad4211546b47af455,
 title: ‘Support ticket title’,
 description: ‘Support ticket description’,
 text: ‘....’,
 user: {
 _id: 65836d8ad4211546b47af456,
 username: ‘johndoe’,
 }
}

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

31

We still copy the username and _id reference in the user field, but we don’t copy
the name and email address, but we no longer include the more mutable name and
email address fields.

If we need the user’s name and email address when fetching a support ticket,
we can use the $lookup operation to join the users collection to the support_
tickets collection.

const result = await collection.aggregate([
 {
 $match: {
 “user._id”: ‘65836d8ad4211546b47af456’
 }
 },
 {
 $lookup: {
 from: “users”,
 localField: “user._id”,
 foreignField: “_id”,
 as: “userInfo”
 }
 }
]);

Note that this operation does two steps which are performed sequentially. First,
it matches all the support tickets for a particular user. Then, it uses the $lookup
operation to join the users collection to the support tickets collection. This will
return all the support tickets for a particular user, along with the user’s record.

This simplifies our application logic but pushes the compute to our database.

To reduce the compute load on our DocumentDB cluster, we could perform two
queries instead. First, we could query the support_tickets collection to find all
the support tickets for a particular user. Then, we could query the users collection
to find the user’s record.

const tickets = collection.find({ “user._id”:
‘65836d8ad4211546b47af456’ });
const user = users.findOne({ _id: ‘65836d8ad4211546b47af456’ });

In this case, we’re able to perform both queries in parallel, which will reduce the
overall time to fetch the data. In some situations, you may need to do the queries
sequentially. For example, imagine we fetch a support ticket by its _id and then
want to fetch the user’s record. In this case, we would need to wait for the first
query to complete. Then, once we have the user._id value, we can perform the
second query.

While the selective denormalization patterns of embedding and duplication are
often preferred in DocumentDB, the reference pattern can be a good fit in certain
situations. Be sure to consider the tradeoffs of each pattern before deciding which
one to use.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

32

Indexes in DocumentDB
Good performance in DocumentDB relies on proper data modeling, and data
modeling is heavily influenced by the indexes you create. In this section, we’ll see
why indexes are important and how to create them in DocumentDB.
Then, we’ll learn about the different types of indexes and how you can use them
to solve your needs.

In previous sections, we retrieved a user by their username. By default, there is not
an index on the username field. This means that DocumentDB must scan the entire
collection to find the matching document. This results in a ton of data being read
from disk and eventually discarded.

Let’s do some quick math to see this in action. Let’s assume that each document
in our users collection is 1KB in size. If we have 1 million users in our collection,
that means we have 1GB of data in our collection. If we want to find a user by their
username, DocumentDB must read all 1GB of data from disk to find the matching
document. Once the matching document is found, we’ll throw away the other
999,999 documents that we read from disk. That’s a lot of wasted work!

Further, 1GB is a pretty small collection. For a large application, you might have
collections that surpass hundreds of GBs or even terabytes of data. In those
cases, you can see how inefficient it would be to scan the entire collection to find
a single document.

To avoid this, we can create an index on the username field. This will allow
DocumentDB to find the matching document without scanning the entire
collection. The index will not only be much smaller than the full dataset, as only
the username field is indexed, but it will also be sorted by the username field. This
allows DocumentDB to use a binary search to find the matching document, which is
much faster than scanning the entire collection.

Let’s create an index on the username field.

await collection.createIndex({ username: 1 });

In specifying the index, you must provide an object with the field you want to index
as the key. The value of the key is the sort order of the index. For a single field
index like this one, the sort order doesn’t matter too much as there is only one field
to sort, and the index can be used for queries in either direction. However,
for compound indexes discussed below, the sort order can be important.

You can use single-field indexes on any field in your document, including nested
fields. Like when querying nested fields, you use the dot notation syntax to specify
the nested field.

For example, if we wanted to index an embedded zip code field, you could do it
as following:

await collection.createIndex({ ‘address.zip’: 1 });

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

33

We’ll look at additional index types below, but first let’s think about the process
when creating an index. When creating an index in DocumentDB, the default
setting is to create the index in the foreground. This means DocumentDB will
obtain a lock on the collection and prevent all write operations to the collection
while the index is being built.

If you have an existing collection with a large amount of data that’s serving live
traffic, this will result in downtime for your users. Instead of doing a foreground
index build, you can do a background build by passing the background: true
option to the createIndex method.

await collection.createIndex({ username: 1 }, { background: true });

A background index build will take longer but will avoid downtime for your users.
This is the recommended approach for building indexes on existing collections.

In addition to the simple single-field indexes, DocumentDB also supports more
advanced indexing methods. Let’s look at each of those and see when you might
want to use them.

Compound indexes
The second most common type of index is a compound index. With a compound
index, you’re indexing multiple fields in a single index. This is good for situations
where you’re querying on multiple fields at the same time.

In the users example we’ve been using, imagine you want to find all adult users in a
particular zip code. To do this, you would do an equality query on the address.zip
field and a range query on the birthdate field, as follows:

const results = collection.find({
 ‘address.zip’: ‘12345’,
 ‘birthdate’: { $lte: new Date() - 18 * 365 * 24 * 60 * 60 *
1000 }});

If you had a single field index on the address.zip field, it would be able to
find all the users in a particular zip code. However, it would then need to scan
all the users in that zip code to find the ones that are adults. This could be
a slow operation.

Instead, you can create a compound index on the address.zip and birthdate
fields. This will allow DocumentDB to find all the users in a particular zip code and
then find the ones that are adults. This will be much faster than scanning all the
users in the zip code.

To create a compound index, you pass an object with the fields you want to index
as the key. Like with a single-field index, the value of the key is the sort order of
the index.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

34

In this case, we’re creating a compound index on the address.zip and birthdate
fields. The index will be sorted first by the address.zip field and then by the
birthdate field.

Proper configuration of your compound indexes can greatly reduce your query
times, but subtle mistakes can avoid the power of the index. There are two tricks to
make your compound indexes go from good to great.

First, understand that a properly configured compound index can support multiple
query patterns. For example, you could query on the address.zip field alone, or
you could query on the address.zip and birthdate fields together. However, you
cannot query on the birthdate field alone. Thus, think carefully about your actual
query patterns when creating your compound index. This is covered further in the
Advanced Tips section.

A second tip for your compound indexes is to try to provide covered queries if
possible. Like most databases, DocumentDB stores full records separately from
the index. This means that, when you query on a field that’s not in the index,
DocumentDB must fetch the full record from disk. When applied to a large number
of records, this can greatly increase the latency of your operation.

To avoid this, you can try to provide a covered query. A covered query is one where
all the fields you need are in the index. This allows DocumentDB to retrieve the
data directly from the index without needing to fetch the full record from disk.

To achieve a covered query, you’ll need to provide a projection that includes
only the fields you need. In our example above, if we only need the zip code and
birthdate of users that match our query, we could do the following:

await collection.createIndex({ ‘address.zip’: 1, ‘birthdate’: 1 });

const results = collection.find({
 ‘address.zip’: ‘12345’,
 ‘birthdate’: { $lte: new Date() - 18 * 365 * 24 * 60 * 60 * 1000 }
})
.project({ ‘address.zip’: 1, ‘birthdate’: 1 });

Because we’re only asking for fields that are in the compound index, DocumentDB
can handle this query without needing to fetch the full record from disk.

The example here is a simple one, but the harder problem is when you need
additional fields from the document that aren’t required in your query filter. For
example, perhaps we also need the username field in this query. We could add this
field at the end of our compound index, even though we don’t use it for querying,
in order to achieve a covered query. However, this results in a larger index and more
work for DocumentDB to maintain the index.

Additionally, due to DocumentDB internals, the efficacy of a covered index may
drop with a write-heavy workload.

In aiming for a covered query, think carefully about these tradeoffs. An additional
field or two in the index may not be a big deal, but if you’re adding a large number
of fields to the index, you may want to reconsider your approach.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

35

Multi-key indexes
In multiple places above, we’ve seen that DocumentDB allows you to store arrays
in your documents. This is a powerful feature that allows you to store nested data
structures in your documents. However, it does present a challenge when indexing
your data -- how can you query on an array field?

Fortunately, DocumentDB allows you to query array fields by creating a multi-key
index. A multi-key index is an index on an array field that creates an index entry
for each element in the array. This allows you to query on the array field and have
DocumentDB return all the documents that match the query.

Think back to our bookstore example. We have a book document that uses the
embedding pattern to store the related formats for a book.

{
 _id: 65836d8ad4211546b47af455,
 title: ‘The Hobbit (75th Anniversary Edition)’,
 formats: [
 {
 ISBN: ‘978-0547928227’,
 type: ‘hardcover’,
 price: 19.99,
 pages: 304
 },
 {
 ISBN: ‘978-0547928210’,
 type: ‘softcover’,
 price: 12.99,
 pages: 410
 },
 {
 ISBN: ‘978-0547928241’,
 type: ‘ebook’,
 price: 9.99,
 },
 {
 ISBN: ‘978-0547928234’,
 type: ‘audiobook’,
 price: 19.99,
 lengthInMinutes: 912
 }
]
}

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

36

Note that each format has an ISBN field that is a unique identifier for the book. It’s
common that we’ll want to find a book by the ISBN of one of its formats.

To do this, we can create a multi-key index on the formats.ISBN field.

await collection.createIndex({ ‘formats.ISBN’: 1 });

Now, we can efficiently query for a book by the ISBN of one of its formats.

const results = collection.find({ ‘formats.ISBN’: ‘978-0547928227’ });

These multi-key indexes are very powerful in DocumentDB as they allow us to use
the embedded pattern to keep related data together while still allowing us to query
on the embedded data directly.

Sparse indexes
When creating your index, you can pass additional properties to configure the
index. One of these properties is the sparse property. This property allows you to
create a sparse index, which is an index that only includes documents that have the
indexed field.

Using a sparse index can greatly improve your performance and reduce the size of
your index in the right circumstances. You may even want to alter the structure of
your documents to take advantage of a sparse index.

Let’s think of our support tickets example from above. Imagine that we often want
to find all the support tickets for a user, sorted by the date they were created. In
fetching these, we only want to show open support tickets.

Over many years, our database will gather lots of support tickets. However, most
of these support tickets will be irrelevant to our users as they’re for old issues that
have been resolved.

You may think to create an index like the following:

await collection.createIndex({ ‘status’: 1, ‘user._id’: 1, ‘created_
at’: -1 });

In this, we’re creating a compound index on the status, user._id, and created_
at fields. While this would work, it’s also bloating the size of our index to include
all the closed tickets that we don’t care about. This will result in a larger index and
slower performance.

A second solution is to delete the closed support tickets, but often this won’t fit
with your business requirements. You may need to keep historical data for archival
or reporting purposes.

Instead, we can alter our document slightly. For open tickets only, we can add a
open_created_at field that is a duplicate of our created_at field. Then, we can
create a sparse index on the user._id and open_created_at fields.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

37

Notice that we passed {sparse: true} as the second argument to the
createIndex() method. This tells DocumentDB to create a sparse index, which
will only include documents that have values for all fields in our index. Because
only open tickets will have the open_created_at field, only open tickets will be
included in the index.

To utilize a sparse index, you must pass the {$exists: true} operator on the
indexed field to tell the DocumentDB query engine that you only want documents
where the field exists.

await collection.createIndex({ ‘user._id’: 1, ‘open_created_at’: -1
}, { sparse: true });

const results = collection.find({ ‘open_created_at’: { $exists:
true } });

Ideally your sparse index will use actual fields on your documents rather than
fields that are constructed solely for the index. However, don’t be afraid to use this
pattern if it fits your use case. It can greatly improve your performance and reduce
the size of your index.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

38

Advanced tips
Once you have figured out the core aspects of schema management,
relationship modeling, and index optimization in DocumentDB, you can get
pretty far. But as you start to push DocumentDB further, you might need
more advanced optimizations.

This section includes advanced tips for improving your DocumentDB
performance as you scale. We’ll look at how to use the aggregation
framework well and how to think about scaling your DocumentDB cluster.
Additionally, we’ll look at tips to reduce your I/O consumption and your
overall document size. These tips will take you to the next level with
DocumentDB.

Use the aggregation framework wisely
In the section on the DocumentDB API, we saw that the aggregation framework is
a tool for complex operations in DocumentDB. This can be both a blessing and a
curse. On one hand, you can use the aggregation framework to perform advanced,
multi-step operations that would be difficult to manage with a bunch of ad-hoc
queries. On the other hand, you can burn through a lot of CPU and I/O with an
unoptimized query.

Remember that the aggregation framework allows you to specify multiple steps to
be performed sequentially by DocumentDB. Sometimes, DocumentDB may be able
to condense multiple steps together in order to reduce processing by the engine.
However, you shouldn’t count on that and should work to optimize the overall
query as much as possible.

In general, you should try to reduce the amount of data being passed between
steps. Efficient database usage is all about filtering down to the relevant data as
much as possible, and this is particularly critical in the aggregation framework.
Think about ways to cull your dataset earlier in the process.

One way to do this is to use the $match operator early in your query. The $match
operator is similar to a SQL WHERE clause, and it will filter out records that are
unnecessary. The earlier you can do that -- ideally by using an index -- the better.

In addition to $match, the $project operator is a good way to reduce your data
size. If you have documents that are a few KB in size but you only need a few small
properties for your aggregation query, use the $project operator to select just
those properties early on. This will reduce CPU usage for later stages. Likewise,
the $group and $bucket operators help to reduce batches of records into a smaller
summary.

Finally, once you have reduced the data set, then apply the $sort and $limit
operators on the remaining records. This will greatly reduce the time to sort and,
ideally, avoid spilling to disk to perform the sort operation.

Focus on this core principle -- reduce your dataset as early as possible -- in order to
keep your aggregation queries performant and efficient.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

40

Scaling with DocumentDB
As your application and DocumentDB usage grows, you may find yourself needing
to scale your DocumentDB cluster. At first, this can be as simple as increasing your
DocumentDB instance size. This is an operation that the DocumentDB service will
manage for you with minimal downtime.

As your needs continue to grow, you may consider horizontal scaling by increasing
the number of instances in your DocumentDB cluster. Here, it is beneficial to know
more about DocumentDB’s underlying architecture.

In many modern databases, a common remedy to scaling is to horizontally scale by
sharding your data. In sharding, you split your entire dataset into shards, each of
which will hold a subset of the entire dataset. This sharding is typically based on a
highly used attribute in your application, such as a userID or tenantID, that allows
requests to be routed to a single shard for processing.

With these horizontally scalable databases, you might shard your database for
three reasons:

• Increasing write throughput, as you can spread writes across more instances in
the cluster;

• Increasing read throughput, as you can spread reads across more instances; or
• Increasing storage capacity, as each instance won’t need to hold the entire

dataset.

DocumentDB does provide sharding via Elastic Clusters, but you won’t need to
jump to sharding as quickly as you will with other database systems. In fact, many
databases that are sharded on other databases will find they can remove sharding
altogether by migrating to DocumentDB as it has a more scalable architecture that
separates compute and storage allowing for storage to elastically grow.

Let’s run through each of the reasons for sharding above and see how you can
handle these with DocumentDB.

First, you will rarely need to shard your DocumentDB cluster to account for
additional storage capacity. DocumentDB’s storage capacity grows automatically
as you use it, up to a maximum capacity of 128 TiB. This is enough for the vast
majority of use cases. That said, if you do require additional storage, an elastic
cluster can scale its storage to a maximum of 4 PiB.

Second, sharding is usually not the correct approach to increase your read
throughput with DocumentDB. DocumentDB allows you to create up to 15 read
replica instances in your DocumentDB cluster. These instances only handle reads
and are an easy way to provide additional read capacity to your application.
Because DocumentDB uses a shared underlying storage volume, read replicas can
be created quickly, regardless of the size of your dataset. Further, there’s no impact
on the primary instance in your cluster.

You should note that replication to read replicas is asynchronous and thus may be
slightly out of date with your primary instance. For most applications, this eventual
consistency is fine. If you require stronger consistency guarantees on reads, you can
direct certain reads to the primary instance. Further, DocumentDB allows you to
monitor replication lag via the DBInstanceReplicaLag metric in CloudWatch.

Finally, if you need to increase the write throughput of your DocumentDB cluster
and you’ve decided against increasing the instance size of your primary instance,
you can use DocumentDB elastic clusters to shard your data.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

41

In sharding your database by using elastic clusters, you are adding an additional tier
to your database infrastructure. DocumentDB will add a request router layer that
will be the primary point to handle your request. After the request router parses
the request, it will forward the request to the relevant shard(s) to process the
request and return the result to your client. Note that, because of this additional
request router tier, there may be a slight increase in overall latency when moving to
an elastic cluster.

In creating your elastic cluster, you’ll need to choose which collections are sharded.
For those that are unsharded, the entire collection will be located on a single shard
in your elastic cluster. For collections that are sharded, they will be split across the
instances according to a shard key that you specify.

Choosing a shard key for your collection is very important to see the benefits of
elastic clusters. You’ll want to choose a shard key that is evenly distributed across
your dataset so that the data ends up being well-distributed across your shards.
If you use an unbalanced shard key, you won’t get the full benefit of splitting up
your data.

Additionally, you want to use a shard key that correlates with your access patterns.
Ideally you are using a shard key that contains an exact match in all or most of your
database operations. This way, your operations can be directed to a single shard to
handle the request rather than doing a scatter-gather operation across all of the
shards. Again, this will allow you to take full advantage of the decision to shard.

Finally, elastic clusters can also be helpful in the rare case where you need to
increase the number of connections to your DocumentDB cluster. While a single
DocumentDB instance maxes out at 30,000 open connections, an elastic cluster
supports up to 300,000 open connections.

DocumentDB provides a number of mechanisms to scale your database to
meet your usage. In general, try to avoid sharding your database with elastic
clusters where you can, due to the extra latency and planning work that requires.
In the event that you do need to scale via sharding, DocumentDB provides a
straightforward mechanism via elastic clusters.

Reduce I/O
A second advanced tip is to reduce your I/O consumption in DocumentDB. In
DocumentDB, I/O is cost. It is cost not only literally, in the sense that you are
charged directly for I/O consumption, but also in the sense that I/O reduces your
performance by consuming scarce resources.

To understand how to reduce I/O consumption, let’s first review some details about
DocumentDB’s underlying architecture. Then, we’ll look at some tips for optimizing
your I/O consumption.

Under the hood, DocumentDB is using a multi-version concurrency control (MVCC)
architecture. This is common to many database systems and can assist with
handling concurrent operations without the use of locks. A MVCC architecture may
have multiple versions of a particular document that existed at different times in
the database lifecycle.

To understand DocumentDB’s effects on I/O, you need to know both what happens
during individual write operations (inserts, updates, and deletes) as well as the
garbage collection process.

A caveat up front -- this is an advanced topic that goes deep into DocumentDB
architecture. As you learn about these MVCC internals, do not confuse this with
whether it affects the correctness of your results. You’ll read about multiple versions
of your document and the impact on indexes, but the query engine understands
how to handle these versions to return the proper result.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

42

Every insert of a document will result in not only writing the full document to the
heap but also updating every index where applicable for that document. On the
other hand, deleting a document will only mark the time when the document was
deleted. It won’t delete the document from storage (yet!), and it won’t update the
indexes to remove the entry for the deleted document.

An update operation is a combination of an insert and a delete operation. It
will create a new version of the document on the heap and update all indexes
accordingly. Additionally, it will mark the time when the old version of the
document was deleted.

You might be thinking that this leaves a lot of old data lying around, and you’d be
correct. This is where garbage collection comes in. DocumentDB has automated
thresholds where it will run a garbage collection process to remove any document
versions that are not visible to any current queries and to clean out expired entries
from indexes. This garbage collection process consumes I/O in your DocumentDB
cluster.

An easy way to synthesize this knowledge is to remember that an insert consumes
more I/O during the actual operation, as it has to update the indexes as well. A
delete consumes less I/O during the operation but adds more I/O later during the
garbage collection process. An update combines the two since it is essentially an
insert plus a delete operation.

With that background in place, let’s consider how to reduce our I/O consumption.
The first way to do this is to reduce the number of indexes you have. An insert
updates each index for that document (and a document could even have multiple
entries in an index, such as with a multi-key index). Reducing the number of indexes
will reduce your I/O consumption accordingly.

The best way to do this is to discover and remove both redundant and unused
indexes. Many unoptimized databases have redundant indexes for handling
different queries.

Going back to our compound index example, imagine you create an index that
looks as follows:

await collection.createIndex({ ‘address.zip’: 1, ‘birthdate’: 1 });

This would allow you to handle multiple types of queries:

1. An exact match query on just the address.zip field;
2. A range query on the address.zip field;
3. An exact match query on the address.zip field plus an exact match on
 the birthdate field;
4. An exact match query on the address.zip field plus a range query on
 the birthdate field.

With compound indexes, recall that you don’t need to filter on all values to use the
index. Compound indexes are evaluated from left-to-right up to and including the
first range query.

Thus, an index like the following on just address.zip would be redundant:

await collection.createIndex({ ‘address.zip’: 1 });

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

43

This query could be served by the compound index we created previously.

The DocumentDB documentation provides some advice on locating unused indexes.
Some quick analysis here can save you significant I/O in your DocumentDB cluster.

A second, more difficult, tip for reducing I/O is to consider splitting up a single
document into multiple documents in certain situations. This is particularly useful
when you can break a document into a mutable portion and an immutable portion.
When the mutable portion changes, you will have smaller write operations and
correspondingly less I/O usage. Further, any immutable portions that are indexed
will not be changed when updating the mutable portion.

Reduce document size
Another data modeling optimization that relies on DocumentDB internals is to
reduce your document size. In most circumstances, smaller documents will result
in better performance. In certain circumstances, this performance impact can be
much larger.

Consider why smaller documents can be better. Smaller documents mean less I/O
consumption and more documents in memory, skipping the new for I/O altogether.
Further, it’s less CPU consumption as you’re reading over these documents.

There are a couple patterns for reducing your document size. The first, and easiest,
is to compress your documents, particularly when they contain highly compressible
field names or field values that are not queried or updated directly. DocumentDB
does offer compression at the document level.

A second option is to reduce the size of your keys in DocumentDB. Remember
that DocumentDB objects are self-describing, so they contain their entire
schema within it. While descriptive key names like “username”, “updatedAt”, and
“isAPayingMember” may be helpful for reading, they do expand the size of your
document. Consider abbreviating these values to shorter values.

As with all of these advanced tips, consider the tips on reducing document size
carefully. Make sure that the added complexity is worth the benefits on document
size that will result.

Introduction

The DocumentDB API

The relational
model

Adapting to
the document model

Documents and
the _id field

Reading documents

Inserting documents

Sorting, projecting,
and other options

Updating
documents

Deleting
documents

Aggregation
framework

Operations
conclusion

Schema management
in DocumentDB

 – Managing your schema
in your application code

 – Managing relationships
with embedding

 – Managing relationships
with referencing

 – Compound indexes

 – Sparse indexes

 – Multi-key indexes

Indexes in DocumentDB

 – Managing your schema
with DocumentDB’s JSON
Schema validation

Managing relationships
in DocumentDB

Data modeling
patterns

Transactions

Advanced tips

Conclusion

Scaling with
DocumentDB

Reduce I/O

Reduce document size

Use the aggregation
framework wisely

 – Handling relationships
with duplication

44

https://docs.aws.amazon.com/documentdb/latest/developerguide/user_diagnostics.html#user-diag-index-usage
https://docs.aws.amazon.com/documentdb/latest/developerguide/doc-compression.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/doc-compression.html

Conclusion
In this ebook, we learned how to model data in DocumentDB. We started
off by learning the basics of DocumentDB, including how the document
model differs from a relational model. Then, we learned about the
DocumentDB API and how to use it to interact with our database. Next,
we saw some of the key data modeling patterns including how to manage
your schema, how to handle relationships, and how to use indexes well.
Finally, we looked at some advanced tips that covered proper use of the
aggregation framework, scaling your database, and low-level optimizations
of indexes and documents.

DocumentDB is a powerful database that can be used for a wide variety
of applications. By understanding the basics of DocumentDB and how to
model your data, you can build powerful applications that scale to meet
your needs.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

