
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon FreeRTOS Qualification Program
Developer Guide

Document Version V1.1.0

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 2

Amazon FreeRTOS Qualification Program: Developer Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is
not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that
disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their
respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 3

Revision History
Date Version Change History Compatible Amazon

FreeRTOS Version
July 31, 2018 1.0.0 Initial Version. 1.3.0

August 09, 2018 1.0.1 Updates in appendices:

 Updates in Porting Order chart.

 Updates in PKCS#11 “Porting” section.

 File path changes in TLS “Test Setup”
section and TLS Server Setup step 9.

 Fix hyperlinks in MQTT prerequisite
section.

 Add AWS CLI config instruction in BYOC
certificate creation example.

1.3.1
1.3.2

August 27, 2018 1.1.0 Added tests for Over-the-air (OTA) updates
and guidelines for bootloader

1.4.0

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 4

Contents
Revision History .. 3

Introduction .. 6

What is the Amazon FreeRTOS Qualification Program? ... 6

Target System Requirements .. 6

Document Outline ... 6

Qualification Process... 7

(A) Get Started with AFQP .. 7

(A1) Contact Amazon .. 7

(A2) Sign Up for AWS Partner Network .. 7

(A3) Agree on Shared Work Plan .. 7

(B) Pass Qualification Test Suite ... 8

(B1) Download Amazon FreeRTOS Source Code... 8

(B2) Set Up Your Amazon FreeRTOS Project ... 8

(B2.1) Preparing Amazon FreeRTOS Folders ... 8

(B2.2) Create the Test Project ... 10

(B3) Port, Build and Test Libraries and Demos ... 16

(B3.1) Port Libraries, Build and Test Libraries ... 16

(B3.2) “Hello World” Demo and Getting Started Guide ... 17

(B3.3) Configure your board name ... 17

(C) Get Verified.. 18

(C1) Send Reports and Ship Development Board ... 18

(C2) Amazon Runs Verification Tests .. 18

(C3) Development Board is Amazon FreeRTOS Qualified ... 18

FAQs .. 20

Contact Us ... 21

Appendix ... 22

Appendix A: configPRINT_STRING() .. 23

Appendix B: FreeRTOS kernel ... 25

Appendix C: Wi-Fi Management ... 27

Appendix D: FreeRTOS TCP/IP Stack ... 30

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 5

Appendix E: Secure Sockets .. 33

Appendix F: PKCS #11 ... 36

Appendix G: TLS .. 39

Appendix H: MQTT .. 45

Appendix I: OTA Updates .. 47

Appendix J: Bootloader ... 51

Appendix K: Test List ... 52

Appendix L: TLS Server Setup .. 57

Appendix M: “Hello World” Demo Project Set Up.. 58

Appendix N: Checklist for Qualification .. 61

Appendix O: Troubleshooting Porting Setup .. 62

Appendix P: Instructions to Create a BYOC (ECDSA)... 63

Appendix Q: Source for ca.config.. 65

Appendix R: Modify issuer in a certificate .. 71

Appendix S: Shared Work Plan for Partnership .. 75

Appendix T: Getting Started Guide Template ... 78

Appendix U: Hardware Information ... 81

Appendix V: Glossary .. 82

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 6

Introduction
What is the Amazon FreeRTOS Qualification Program?
The Amazon FreeRTOS Qualification Program (AFQP) defines a process that the author of an Amazon

FreeRTOS port1 must follow, and a set of tests that the port must pass, in order for the port to be described

as 'qualified by Amazon'. Amazon only distributes and supports Amazon FreeRTOS ports that have passed

the qualification program. The purpose of the AFQP is to give developers confidence that qualified

Amazon FreeRTOS ports behave correctly and consistently with each other.

Target System Requirements
It is recommended that Amazon FreeRTOS is only qualified on microcontrollers (MCUs) that have a

minimum processing speed of 25MHz, a minimum of 64K bytes of RAM, and a minimum of 128K bytes of

program memory per executable image stored on the MCU. For future qualification requirement with

Over-the-air update (OTA) functionality, two executable images must be stored in program memory at

the same time.

Document Outline
Figure 1 shows the Amazon FreeRTOS qualification workflow. This document guides you through each

workflow step. Appendixes provide more detail on step B3, “Port Libraries, Build, and Test Project”, with

one appendix per Amazon FreeRTOS library.

Figure 1 The Amazon FreeRTOS qualification workflow

1 An Amazon FreeRTOS port is a board-specific implementation of APIs for certain Amazon FreeRTOS libraries. The port enables these APIs to

work on the specific board, and implements the required integration with device drivers and BSPs provided by the platform vendor. It should
also include any configuration adjustments (e.g. clock rate, stack size, heap size etc.) required by the board.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 7

Qualification Process
Follow the AFQP checklist for the qualification process.

(A) Get Started with AFQP
Follow the steps below.

(A1) Contact Amazon
If you have not already done so, apply for the AFQP by sending an email to the Amazon FreeRTOS

Qualification team with your name, contact, company, and board name.

(A2) Sign Up for AWS Partner Network
The AWS Partner Network (APN) is the global partner program for AWS. If you have not already done so,

sign up for the APN on the APN registration page. An APN representative (referred to from here on as the

“Qual-Rep”) will respond and guide you through the qualification steps.

(A3) Agree on Shared Work Plan
Review and agree on a shared work plan (Appendix S: Shared Work Plan for Partnership) with your Qual-

Rep so both parties move forward with a common understanding of the joint goals, and a definition of

roles, responsibilities, and commitments. You are encouraged to start working on the next step (Pass the

Qualification Test) while you are reviewing the Shared Work Plan.

mailto:freertos-qual@amazon.com?subject=AFQP%20Application
mailto:freertos-qual@amazon.com?subject=AFQP%20Application
https://partnercentral.awspartner.com/AWS_Partner_Application

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 8

(B) Pass Qualification Test Suite
Follow the steps below.

(B1) Download Amazon FreeRTOS Source Code
You can download Amazon FreeRTOS source code and test code from GitHub:

https://github.com/aws/amazon-freertos

You should import the repository to your own private GitHub repository and configure to watch Amazon

FreeRTOS public repository. You will get notifications if there are new releases on our master branch.

If you are using Windows, you must keep the file path short (for example clone to C:\AFreeRTOS rather

than C:\Users\username\programs\projects\AmazonFreeRTOS\) to avoid a Windows limitation with

long file paths. The chosen folder will be referred as $AFR_HOME from here on in the document.

(B2) Set Up Your Amazon FreeRTOS Project
At the end of this step, you will have a working project that can write to a serial console.

(B2.1) Preparing Amazon FreeRTOS Folders
All qualified Amazon FreeRTOS ports use the same directory structure. New files, including IDE project

files, must be created in the correct folder locations.

The directory structure is explained below. Detailed instructions on how to create the same directory

structure are listed in the grey box.

Directory Structure:

The three root level folders under $AFR_HOME are:

$AFR_HOME
├───demos Contains projects that build demo applications
├───lib Contains Amazon FreeRTOS and third-party libraries
└───tests Contains projects that build qualification tests

Create your project in the tests folder, which is structured as follows:

$AFR_HOME
└───tests
 ├───common Contains files built by all test projects
 ├───pc Contains a reference test project for the FreeRTOS Windows port
 └───vendor Template, to be renamed to the name of the MCU vendor
 └───board Template, to be renamed to the name of the development board

Instructions:

1. Rename the $AFR_HOME/tests/vendor folder to the name of the company that manufactures the
MCU – from here on the folder is referred to as [vendor].

2. Rename the $AFR_HOME/tests/board folder to the name of the development board being qualified
– from here on the folder is referred to as [board].

https://github.com/aws/amazon-freertos

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 9

The $AFR_HOME/tests/[vendor]/[board] folder is a template provided to simplify the creation of a new

test project and ensures all test projects have a consistent organization. It has the following structure:

$AFR_HOME
└───tests
 └───[vendor]
 └───[board]
 ├───common
 │ ├───application_code Contains main.c, which itself contains main()
 │ │ └───vendor_code Contains vendor supplied board specific files
 │ └───config_files Contains Amazon FreeRTOS config files
 └───ide Contains an IDE specific project

Test projects always require vendor-supplied driver libraries. Some vendor-supplied libraries, such as a

header file that maps a GPIO output to an LED output, are specific to the target development board.

Other vendor-supplied libraries, such as the GPIO library itself, are specific to the target MCU family.

For Vendor-supplied driver libraries that are specific to the target development board:

Instructions (continued):

3. Save any required vendor-supplied libraries that are specific to the board in the
$AFR_HOME/tests/[vendor]/[board]/common/application_code/vendor_code folder.

4. Rename the $AFR_HOME/tests/[vendor]/[board]/ide folder to the name of the IDE that will be used
to build the test project – from here on the folder is referenced as [IDE].

Vendor-supplied driver libraries that are specific to the target MCU family belong in the

$AFR_HOME/lib/third_party/mcu_vendor folder, which has the following structure:

$AFR_HOME
└─lib
 ├──AmazonLib1 Contains an Amazon FreeRTOS library (example name only)
 ├──AmazonLib2 Contains an Amazon FreeRTOS library (example name only)
 └──third_party Contains all non-board specific third-party libraries
 ├───Lib1 Contains a third-party library (example name only)
 ├───Lib2 Contains a third-party library (example name only)
 └───mcu_vendor Contains vendor-supplied MCU specific libraries
 └──vendor Template, to be renamed to the name of the MCU vendor
 └─driver_library Template, to be renamed to the library name
 └─driver_library_version Template, to be renamed to the library version

Instructions (continued):

5. Rename the $AFR_HOME/lib/third_party/mcu_vendor/vendor folder to [vendor] (the name of the
company that manufactures the MCU).

6. Likewise, rename the contained driver_library folder to the name of the vendor’s MCU specific driver
library, and the contained driver_library_version folder to the version number of the vendor’s MCU
specific driver library.

7. Copy the vendor-supplied driver library into the newly renamed driver_library_version folder.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 10

NOTE: DO NOT save vendor-supplied libraries that are specific to the MCU family anywhere within

either the $AFR_HOME/tests or $AFR_HOME/demos folders!

(B2.2) Create the Test Project
All qualified Amazon FreeRTOS test projects look the same when viewed from within an IDE. This section

describes and demonstrates the required project structure. By the end of this section you will have a

project with FreeRTOS Kernel libraries ready to run. The next section (B3) will cover porting of other

Amazon FreeRTOS libraries into the project.

Instructions:

1. Read this section of the document, and then replicate the project it describes, but using the selected
IDE, and targeting the hardware being qualified. Take care to ensure the structure of the created
project matches that described below.

NOTE 1: All files in the project must be built in the file’s original position within the folder structure.

They are imported into the project by linking the files. Never directly copy files into the project’s folder

or use absolute file paths.

NOTE 2: If you are using an Eclipse based IDE, do not configure the project to build all the files in any

given folder. Instead, add source files into the project by linking to each source file individually.

The project is called aws_tests. Under aws_tests, there are three virtual folders. In this context, a virtual

folder is created in an IDE to better organize the source code. It may not correspond to a physical directory

on disk. The three virtual folders are application_code, config_files and lib, as described below:

aws_tests The project name
├───application_code Contains application logic, in this case it is AFQP test code
├───config_files Contains header files that configure Amazon FreeRTOS libraries
└───lib Contains Amazon and third-party libraries

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 11

Figure 2 shows how the top three virtual folders appear in an IDE. The depicted IDE is Eclipse, but the

structure is the same in all IDEs.

Figure 2 The top three virtual folders viewed in an IDE’s project explorer view

Figure 3 shows the contents of the application_code virtual folder.

Figure 3 An IDE project with the application_code virtual folder expanded

NOTE:

 The main.c file, and the vendor_code folder, are

(physically on the disk) located in the

$AFR_HOME/tests/[vendor]/[board]/common/

application_code folder.

 common_test is a virtual folder – it does not

actually exist within the $AFR_HOME directory

structure. The folders under common_test are

located in the $AFR_HOME/tests/common

folder. The project builds the source files located

in those folders.

NOTE:

 The “Includes” folder is generated
automatically by Eclipse. It is not part
of the required structure

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 12

Figure 4 shows the contents of the config_files virtual folder.

Figure 4 An IDE project with the config_files folder expanded

Figure 5 shows the contents of the lib virtual folder.

Figure 5 IDE project with the lib group expanded

NOTE:

 The files shown under config_files are located

in the

$AFR_HOME/tests/[vendor]/[board]/common

/config_files folder.

NOTE:

 aws and third_party are virtual folders.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 13

Figure 6 shows the contents of the lib/aws folder, which contains AWS (as opposed to third party)

provided libraries. It only contains FreeRTOS kernel library at this stage. You will import more libraries

in this folder during later porting effort.

Figure 6 IDE project with the lib/AWS
group expanded

NOTE:

 The files and folders shown under lib/aws/FreeRTOS are

located in the $AFR_HOME/lib/FreeRTOS folder. The figure

shows lib/aws/FreeRTOS/portable/MSVC-MingW being

included in the project. That folder contains the FreeRTOS

kernel Windows port and should be substituted with

whichever folder contains the correct FreeRTOS port for

your target IDE and MCU, see below instruction.

 The file shown under

lib/aws/FreeRTOS/portable/MemMang is located in the

$AFR_HOME/lib/FreeRTOS/MemMang folder. It is

FreeRTOS memory management implementation.

 The files shown under lib/aws/include are located in the

$AFR_HOME/lib/include folder. Although not shown in

Figure 6, it includes all the header files and folders under

$AFR_HOME/lib/include.

 aws_system_init.c is located in the $AFR_HOME/lib/utils

folder.

Instructions (continued):

1. Replicate the folder structure (continued)

a. Import the FreeRTOS Kernel port for your compiler and architecture in place of
lib/aws/FreeRTOS/portable/MSVC_MingW in Figure 6.
$AFR_HOME/lib/FreeRTOS/portable contains the FreeRTOS kernel port files organized
first by compiler, and then by architecture.

b. Import one of the FreeRTOS Kernel memory management implementation to
lib/aws/FreeRTOS/portable/MemMang. For Amazon FreeRTOS, we use heap_4.c. For
more information, please visit FreeRTOS Memory Management

https://www.freertos.org/a00111.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 14

Figure 7 shows the contents of the lib/third_party directory.

Figure 7 IDE project with the lib/third_party
group expanded

Instructions (continued, to be followed after creating the project):

2. Make sure the following compiler include paths are set in the project property.

a. $AFR_HOME/tests/common/include, which is

aws_tests/application_code/common_tests/include when viewed in the IDE project.

b. $AFR_HOME/lib/include, which is aws_tests/lib/aws/include when viewed in the IDE.
c. $AFR_HOME/lib/include/private, which is aws_tests/lib/aws/include/private when viewed in

the IDE.
d. $AFR_HOME/lib/FreeRTOS/portable/[compiler]/[architecture], which is

aws_tests/lib/aws/FreeRTOS/portable/[compiler]/[architecture] when viewed in the IDE.
e. $AFR_HOME/tests/common/third_party/unity/src, which is aws_tests/lib/third_party/unity

when viewed in the IDE.
f. $AFR_HOME/tests/common/third_party/unity/extras/fixture/src, which is

aws_tests/lib/third_party/unity_fiture when viewed in the IDE.
g. $AFR_HOME/demos/vendor/board/common/config_files, which is aws_tests/config_files

when viewed in the IDE.
h. Any paths necessitated by vendor-supplied driver libraries.

3. Define the following two project level macros in your IDE:

 UNITY_INCLUDE_CONFIG_H

 AMAZON_FREERTOS_ENABLE_UNIT_TESTS

NOTE:

 unity and unity_fixture are virtual folders.

 The files shown under unity are located in the

$AFR_HOME/tests/common/third_party/unity/src

folder.

 The files shown under unity_fixture are located in the

$AFR_HOME/tests/common/third_party/unity/extras

/fixture folder.

 Although not shown in Figure 7, also add the MCU

specific vendor-supplied driver libraries that were

saved in the

$AFR_HOME/lib/third_party/[mcu_vendor]/[vendor]/

[driver_library]/[driver_library_version] folder (see

section (B2.1) Preparing Amazon FreeRTOS Folders).

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 15

Figure 8 Preprocessor Macro Definitions Example (Visual Studio)

Visual Studio 2017 Example: Project Properties => Preprocessor => Preprocessor Definitions

4. Implement configPRINT_STRING() as described in Appendix A.

5. Make sure the new project builds successfully, that the resultant executable binary can be loaded to

the target hardware. If you run the project in debug mode, the pc should stop at the first line of
main().

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 16

(B3) Port, Build and Test Libraries and Demos

(B3.1) Port Libraries, Build and Test Libraries
With the folder structure and test projects prepared you are ready to start porting and testing the

Amazon FreeRTOS libraries. You must enable AFQP test group first.

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h contains a

macro defined shown below. Uncomment the following line:

/*#define testrunnerAFQP_ENABLED */

Then bring an Amazon FreeRTOS library into your test project and port the library to your hardware.

The libraries are listed in below table. The detailed instruction on porting and testing procedures are

listed in the appendices – one appendix per library. The order of the appendices accounts for

interdependencies between libraries so should be followed in turn.

Library Details in
Location

Notes

configPRINT_STRING Macro Appendix A Required for console output.

FreeRTOS Kernel Appendix B Required for the FreeRTOS kernel.

Wi-Fi Management Appendix C Required only if hardware supports network
connectivity over Wi-Fi.

FreeRTOS TCP/IP Stack Appendix D Required only if a board does not have its own
TCPIP stack support.

Secure Sockets Appendix E Required for AWS cloud connectivity.

PKCS#11 Appendix F Required for over-the-air (OTA) and TLS
support.

TLS Appendix G Required for TLS support.

MQTT Appendix H Required for AWS cloud connectivity.

OTA Updates Appendix I Required for OTA updates.

Bootloader (demo) Appendix J Required for OTA updates.

There are constants defined in

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h file which can

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 17

be used as a switch to trigger a test set for a library. To enable a set of tests, set the constant to 1.

These constants listed in table below:

Defined constant to trigger a set of tests on a library Default value. (set to ‘1’
for enabling the test)

testrunnerFULL_CBOR_ENABLED 0

testrunnerFULL_OTA_AGENT_ENABLED 0

testrunnerFULL_OTA_PAL_ENABLED 0

testrunnerFULL_MQTT_ALPN_ENABLED 0

testrunnerFULL_MQTT_STRESS_TEST_ENABLED 0

testrunnerFULL_MQTT_AGENT_ENABLED 0

testrunnerFULL_TCP_ENABLED 0

testrunnerFULL_GGD_ENABLED 0

testrunnerFULL_GGD_HELPER_ENABLED 0

testrunnerFULL_SHADOW_ENABLED 0

testrunnerFULL_MQTT_ENABLED 0

testrunnerFULL_PKCS11_ENABLED 0

testrunnerFULL_CRYPTO_ENABLED 0

testrunnerFULL_TLS_ENABLED 0

testrunnerFULL_WIFI_ENABLED 0

(B3.2) “Hello World” Demo and Getting Started Guide
Prepare the “Hello World” demo project in the code packaged delivered to Amazon. The project

creation process is similar to the test project creation. Please see Appendix M: “Hello World” Demo

Project Set Up for detailed instructions.

Prepare a “Getting Started Guide” for your board to help users run the Hello World Demo project (and
any other demos you may include). You can use the Getting Started Guide template to start and look at
the guide for the Window Simulator for reference.

(B3.3) Configure your board name
Please put your board name in:

$AFR_HOME/demos/[vendor]/[board]/common/config_files/FreeRTOSConfig.h

#define mqttconfigMETRIC_PLATFORM "Platform=Unknown"

Replace “Unknown” with your own board name.

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_windows.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 18

(C) Get Verified

(C1) Send Reports and Ship Development Board
Test results are output to a UART console.

Figure 9 Console Output of Test Results (Example)

Instructions to submit test results:

1. Once all the tests pass, copy the console output into a text file called “Test_Report.txt”. If memory
constraints require the tests to be run in batches, then concatenate the output generated by each
batch in the same Test_Report.txt file.

Upload the test report file to your private GitHub repository. Add the “Qual-rep” to your GitHub

repository as a “contributor” so that he/she has the access to your test result and qualification-

ready code. The “Qual-rep” later will be able to fetch the qualification-ready code from your private

GitHub repository.

2. Ship three development boards, along with all required power adapters, cables and setup
instructions, to

Amazon ATTN: Amazon FreeRTOS AFQP
1800 9th Ave., 15th floor
Seattle, WA 98101

(C2) Amazon Runs Verification Tests
After receiving the test reports and the development boards, Amazon will run verification tests.

(C3) Development Board is Amazon FreeRTOS Qualified
If the verification tests are successful, your development board will be Amazon FreeRTOS qualified. On a

mutually agreed timeframe, it will be included in the Amazon FreeRTOS console. The port code and

https://console.aws.amazon.com/freertos/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 19

driver code for the board will be merged in Amazon FreeRTOS public GitHub repository. The details of

the development board, your company logo, and relevant links will be included in the Amazon FreeRTOS

Getting Started webpage and Amazon FreeRTOS documents.

https://aws.amazon.com/freertos/getting-started/
https://aws.amazon.com/documentation/freertos/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 20

FAQs
1. What is an Amazon FreeRTOS port?

An Amazon FreeRTOS port is a board-specific implementation of APIs for certain Amazon FreeRTOS
libraries. The port enables these APIs to work on the specific board, and implements the required
integration with device drivers and BSPs provided by the platform vendor. It should also include any
configuration adjustments (e.g. clock rate, stack size, heap size) required by the board.

2. Do I need to retest for minor version releases of Amazon FreeRTOS?

There is no need to retest for qualification with minor version releases of Amazon FreeRTOS.

3. What network ports will need to be opened to run AFQP tests?
The network connections needed in the AFQP tests include

Port Protocol
443, 8883 MQTT
8443 Greengrass Discovery

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 21

Contact Us
If you have any questions, please contact your Qual-Rep or the Amazon FreeRTOS Qualification team.

mailto:freertos-qual@amazon.com

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 22

Appendix
The Appendix contains detailed descriptions of Amazon FreeRTOS libraries and macros to be ported, as

well as steps to verify them.

Here is the recommended porting order:

Appendix A

Appendix B

Appendix C

Appendix D Appendix E

Appendix F

Appendix G

Appendix I and J

Appendix I:

OTA Update

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 23

Appendix A: configPRINT_STRING()

Description
configPRINT_STRING() is a macro used by the AFQP test framework to output test results as human
readable ASCII strings. It must be implemented before AFQP porting and testing can begin.
These instructions assume test results are output over a UART serial port.

Pre-requisites
1. A development board that supports UART or virtual COM port output.

2. A test project that was created in accordance with the instructions provided in the body of this
document, and that is building vendor-supplied UART initialization and output functions.

3. The UART initialization and output must not have any dependency on FreeRTOS.

Setup
1. Connect a terminal emulator, such as TeraTerm, to the port on the target hardware that is to be

used to output test results.

Porting
1. Locate the call to configPRINT_STRING(“Test Message”) within the function prvMiscInitialization(),

which is itself in the file
$AFR_HOME/tests/[vendor]/[board]/common/application_code/main.c.

2. Immediately before the call to configPRINT_STRING(“Test Message”), add code that uses the
vendor-supplied UART driver to initialize the UART to 115200 baud

3. $AFR_HOME/tests/[vendor]/[board]/common/config_files/FreeRTOSConfig.h contains an
empty definition of configPRINT_STRING(). The macro takes a NULL terminated ASCII C string
as its only parameter. Update the empty definition of configPRINT_STRING() so that it calls the
vendor-supplied UART output function. For example, if the UART output function has the following
prototype:

then you would implement configPRINT_STRING() as:

Manual Testing
Build and execute the application. If “Test Message” appears in the UART console then the console is

connected and configured correctly, and configPRINT_STRING() is behaving as expected. If this is the

void MyUARTOutput(char *DataToOutput, size_t LengthToOutput);

#define configPRINT_STRING(X) MyUARTOutput((X), strlen((X)))

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 24

case then configPRINT_STRING() testing is complete and the call to configPRINT_STRING(“Test

Message”) can be removed from prvMiscInitialization().

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 25

Appendix B: FreeRTOS kernel

Description
Amazon FreeRTOS uses the FreeRTOS kernel for multitasking and inter-task communications. This

appendix describes how to integrate a port of the FreeRTOS kernel into the AFQP test project.

The FreeRTOS.org website contains a list of all the available kernel ports.

Porting the FreeRTOS kernel to a new architecture is out of scope of this document. Contact the

Amazon FreeRTOS Qualification team if a port does not exist for your architecture.

Pre-requisites
1. An official FreeRTOS kernel port for the target MCU architecture.
2. A test project that was created in accordance with the instructions provided in the body of this

document ((B2.2) Create the Test Project), and that includes the correct FreeRTOS kernel port files
for the MCU and compiler in use.

3. An implementation of configPRINT_STRING() that was created and tested as described in Appendix

A.

Porting
The header file $AFR_HOME/tests/[vendor]/[board]/common/config_files/FreeRTOSConfig.h

contains application specific FreeRTOS kernel configuration settings. The FreeRTOS.org website

provides a description of each configuration option. In particular, ensure the following constants are set

correctly for your hardware:

Configuration definitions Comment
configCPU_CLOCK_HZ The frequency of the clock used to generate the tick interrupt.
configMINIMAL_STACK_SIZE As a starting point, this can be set to whichever value is used in the

official FreeRTOS demo for the FreeRTOS kernel port in use. Official
FreeRTOS demos are those distributed from the FreeRTOS.org web
site. Ensure stacks overflow checking is set to 2, and increase
configMINIMAL_STACK_SIZE if overflows occur. To save RAM, set
stack sizes to the minimum value that does not result in a stack
overflow.

configTOTAL_HEAP_SIZE Sets the size of the FreeRTOS heap. Like task stack sizes, the heap
size can be tuned to ensure unused heap space does not consume
RAM.

ARM Cortex-M3, M4 and M7 devices must also have configPRIO_BITS and

configMAX_SYSCALL_INTERRUPT_PRIORITY set correctly.

https://freertos.org/RTOS_ports.html
mailto:freertos-qual@amazon.com
https://freertos.org/a00110.html
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://www.freertos.org/a00111.html
https://www.freertos.org/RTOS-Cortex-M3-M4.html
https://www.freertos.org/RTOS-Cortex-M3-M4.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 26

The MQTT (Appendix H) and Secure Sockets (Appendix E) libraries have not been ported yet, so

it is necessary to comment out the lines that call BUFFERPOOL_Init(), MQTT_AGENT_Init()

and SOCKETS_Init() from within function SYSTEM_Init(), which is implemented in
$AFR_HOME/lib/utils/aws_system_init.c.

Test Setup
No further setup is required for this section.

Qualification Test
1. Build and execute the project.
2. If a “.” appears in the UART console every 5 seconds then the FreeRTOS kernel is operating as

expected and this test is complete. Set configUSE_IDLE_HOOK to 0 in
$AFR_HOME/tests/[vendor]/[board]/common/config_files/FreeRTOSConfig.h before moving
to the next section. Setting configUSE_IDLE_HOOK to 0 stops the FreeRTOS kernel from executing
vApplicationIdleHook(), and so stop the “.” Being output during future test executions.

3. If a “.” appears at any other frequency then check the setting of configCPU_CLOCK_HZ in
$AFR_HOME/tests/[vendor]/[board]/common/config_files/FreeRTOSConfig.h.
configCPU_CLOCK_HZ must be set to the correct value for your board.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 27

Appendix C: Wi-Fi Management

Description
The Wi-Fi Management library is the Amazon FreeRTOS interface to vendor-supplied Wi-Fi drivers. Skip

this section if your hardware does not support Wi-Fi.

Pre-requisites
1. A test project that was created in accordance with the instructions provided in the body of this

document, and that is building vendor-supplied Wi-Fi drivers.

2. An implementation of configPRINT_STRING() that was created and tested as described in Appendix A.
3. A validated FreeRTOS kernel configuration, as described in Appendix B: FreeRTOS kernel
4. Two wireless Access Points.

Preparing the IDE Project
1. Add the source file $AFR_HOME/lib/wifi/portable/[vendor]/[board]/aws_wifi.c into the

[project_top_level]/lib/aws/wifi virtual folder of the IDE project.
2. Add the source file $AFR_HOME/tests/common/wifi/aws_test_wifi.c into the

[project_top_level]/application_code/common_tests/wifi virtual folder of the IDE project.
3. Enable the Wi-Fi connection code in

$AFR_HOME/tests/[vendor]/[board]/common/application_code/main.c by deleting the #if 0
and #endif compiler directives in the functions vApplicationDaemonTaskStartupHook(void)
and prvWifiConnect(void).

Porting
1. $AFR_HOME/lib/wifi/portable/[vendor]/[board]/aws_wifi.c contains empty definitions of a

set of Wi-Fi management functions. Use the vendor-supplied Wi-Fi driver library to implement at
least the subset of functions listed in the table below. $AFR_HOME/lib/include/aws_wifi.h
provides the information necessary to complete the implementations.

Function Description

WIFI_On Turns on Wi-Fi module. Initializes the drivers

WIFI_ConnectAP Connects to a Wi-Fi Access Point (AP)

WIFI_Disconnect Disconnects from the currently connected AP

WIFI_Scan Performs a Wi-Fi network scan

WIFI_GetIP Retrieves the Wi-Fi interface’s IP address

WIFI_GetMAC Retrieves the Wi-Fi interface’s MAC address

WIFI_GetHostIP Retrieves the host IP address from a hostname using DNS

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 28

 Since the MQTT library is not used for running Wi-Fi tests, comment out the lines that call
BUFFERPOOL_Init(), MQTT_AGENT_Init()in function SYSTEM_Init()in file

$AFR_HOME/lib/utils/aws_system_init.c. Bufferpool and mqtt_agent are used in MQTT
library. If you have not ported the SOCKETS library (Appendix E), comment out the line that calls
SOCKETS_Init()in function SYSTEM_Init(), in file $AFR_HOME/lib/utils/aws_system_init.c.

Test Setup
1. In $AFR_HOME/tests/common/include/aws_clientcredential.h, set the macros shown in table

below to be correct for the first Wi-Fi access point.

Macro name Value

clientcredentialWIFI_SSID The Wi-Fi SSID as a C string (in quotes)

clientcredentialWIFI_PASSWORD The Wi-Fi password as a C string

clientcredentialWIFI_SECURITY Either eWiFiSecurityOpen,
eWiFiSecurityWEP, eWiFiSecurityWPA, or
eWiFiSecurityWPA2. eWiFiSecurityWPA2 is
recommended.

2. In $AFR_HOME/tests/common/wifi/aws_test_wifi.c, set the macros shown in table below to be
correct for the second Wi-Fi access point.

Macro name Value

testwifiWIFI_SSID The Wi-Fi SSID as a C string (in quotes)

testwifiWIFI_PASSWORD The Wi-Fi password as a C string

testwifiWIFI_SECURITY Either eWiFiSecurityOpen,
eWiFiSecurityWEP, eWiFiSecurityWPA, or
eWiFiSecurityWPA2. eWiFiSecurityWPA2 is
recommended.

The Wi-Fi management tests listed in the bullet points below have a dependency on the

Secure Sockets library, which may not have been ported yet. If the Secure Sockets library

has not been ported then all the Wi-Fi management tests other than those listed in the bullets

below must pass. After the Secure Sockets library has been ported it is necessary to re-run the Wi-Fi

management tests to ensure all the tests (including those in the bullet points below) pass.

Additionally, the tests listed in the bullet points attempt to communicate with an echo server. See

the Appendix E: Secure Sockets section “Test Setup” for information on starting the echo server.

 WiFiConnectionLoop

 WiFiIsConnected

 WiFiConnectMultipleAP

 WiFiSeperateTasksConnectingAndDisconnectingAtOnce

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 29

3. Enable the Wi-Fi tests, by setting the testrunnerFULL_WIFI_ENABLED macro in
$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h to 1.

Qualification Test
1. Build and execute the test project.
2. View the test results in the UART console. As noted in the ‘Test Setup’ section of this appendix, not

all the tests will pass until porting of the Secure Sockets library is complete. If all the tests that are
expected to pass are passing, then save the test results by cutting and pasting them from the UART
console into a text file, and move to the next section.

Example output:

…

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 30

Appendix D: FreeRTOS TCP/IP Stack

Description
FreeRTOS+TCP is the TCP/IP stack used by Amazon FreeRTOS. See https://www.freertos.org/FreeRTOS-

Plus/FreeRTOS_Plus_TCP for more information. Skip this section if your target hardware offloads TCP/IP

functionality to a separate network processor or module.

This appendix only describes how to create a port to the target hardware’s Ethernet driver, and test as

far as ensuring the Ethernet driver can connect to the network. Actually sending and receiving data is

not tested until the Secure Sockets library port is complete.

Pre-requisites
1. A test project that was created in accordance with the instructions provided in the body of this

document, and that is building vendor-supplied Ethernet drivers.
2. An implementation of configPRINT_STRING() that was created and tested as described in Appendix

A.
3. A validated FreeRTOS kernel configuration, as described in Appendix B: FreeRTOS kernel.

Preparing the IDE Project

In all steps below, add source files to the IDE project from their existing location on the disk (by

reference) – do not create duplicate copies of source files on the disk:

1. Add the source files from the $AFR_HOME/lib/FreeRTOS-Plus-TCP/source directory to the
[project_top_level]/lib/FreeRTOS-Plus-TCP/source folder of the IDE project.

2. Add the header files from the $AFR_HOME/lib/FreeRTOS-Plus-TCP/include directory to the
[project_top_level]/lib/FreeRTOS-Plus-TCP/include folder of the IDE project.

3. Add the port source files from the $AFR_HOME/lib/FreeRTOS-Plus-
TCP/source/portable/NetworkInterface/[board_family]/ directory to the
[project_top_level]/lib/FreeRTOS-Plus-TCP/portable/NetworkInterface folder of the IDE
project.

4. Add the $AFR_HOME/lib/FreeRTOS-Plus-
TCP/source/portable/BufferManagement/BufferAllocation_2.c source file to the
[project_top_level]/lib/FreeRTOS-Plus-TCP/portable/BufferManagement folder of the IDE

project.

FreeRTOS has five example heap implementations under $AFR_HOME

/lib/FreeRTOS/portable/MemMang. Using FreeRTOS+TCP and BufferAllocation_2.c

requires the heap_4.c implementation.

5. Add the directory $AFR_HOME/lib/FreeRTOS-Plus-TCP/include to your compiler’s include path.

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 31

Porting
1. Check the $AFR_HOME/lib/FreeRTOS-Plus-TCP/source/portable/NetworkInterface/

directory to see if a port to your target hardware already exists.
2. If a port does not exist, then:

a. Rename the $AFR_HOME/lib/FreeRTOS-Plus-
TCP/source/portable/NetworkInterface/[board_family] directory to be
appropriate for the target hardware.

b. Follow the instruction on the FreeRTOS.org website for porting the TCP/IP stack to a
different microcontroller, and if necessary, a different compiler, to create a new port
that uses the vendor supplied Ethernet drivers. Implement the new port in a file called
NetworkInterface.c, and save the file in the newly renamed directory.

Note: The files in $AFR_HOME/lib/FreeRTOS-Plus-TCP/source/portable/BufferManagement

are used by multiple ports so must not be edited.

3. Update the FreeRTOS+TCP configuration file
$AFR_HOME/tests/[vendor/[board]/common/config_files/FreeRTOSIPConfig.h so it is correct
for your target hardware. The FreeRTOS.org website describes each configuration option.

Since the MQTT library is not used for running Wi-Fi tests, comment out the lines that call
BUFFERPOOL_Init(), MQTT_AGENT_Init()in function SYSTEM_Init()in file

$AFR_HOME/lib/utils/aws_system_init.c. Bufferpool and mqtt_agent are used in MQTT library. If
you have not ported the SOCKETS library (Appendix E), comment out the line that calls
SOCKETS_Init()in function SYSTEM_Init(), in file $AFR_HOME/lib/utils/aws_system_init.c.

Test Setup
1. In $AFR_HOME/tests/[vendor]/[board]/common/application_code/main.c, uncomment the

call to FreeRTOS_IPInit() in main(). By default, the IP address is acquired by DHCP. If DCHP fails
or you do not want to use DHCP, you must set a static IP address in

$AFR_HOME/tests/[vendors]/[board]/common/application_code/main.c. The following
variables must be set to valid values of your actual network:

Network configuration variables Description

uint8_t ucMACAddress[6]

uint8_t ucIPAddress[4]

uint8_t ucNetMask[4]

uint8_t ucGatewayAddress[4]

uint8_t ucDNSServerAddress[4]

uint8_t ucMACAddress[6]

2. In $AFR_HOME/tests/[vendor]/[board]/common/config_files/FreeRTOSIPConfig.h set the
ipconfigUSE_NETWORK_EVENT_HOOK macro to 1.

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Ethernet_Porting.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Ethernet_Porting.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Compiler_Porting.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_IP_Configuration.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 32

3. In $AFR_HOME/tests/[vendor]/[board]/common/application_code/main.c add the code below
at the start of vApplicationIPNetworkEventHook():

Qualification Test
1. Build and execute the test project.
2. If “Network connection successful” appears in the UART console, then the Ethernet driver has

successfully connected to the network and this test is complete.

if (eNetworkEvent == eNetworkUp)

{

 configPRINT("Network connection successful.\n\r");

}

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 33

Appendix E: Secure Sockets

Description
The Secure Sockets library API is based on the Berkeley sockets API. It provides the API functions

necessary to create and configure a TCP socket, connect to an MQTT broker, and send and receive TCP

data.

The library is called Secure Sockets as it also encapsulates TLS functionality. To create a TLS protected

socket the application writer need only creates a standard TCP socket, then uses a setsockopt call make

the socket use TLS.

If your target hardware does not offload TCP/IP functionality to a separate network chip then use the

FreeRTOS+TCP TCP/IP stack. A Secure Sockets implementation already exists for the FreeRTOS+TCP

TCP/IP stack used in conjunction with mbedTLS – so if you are using those libraries no porting is

necessary, but the Secure Sockets tests must still be executed and pass.

Pre-requisites
1. If you are using Wi-Fi for network connectivity: A port of the Wi-Fi management library as described

in Appendix TBD.
2. If you are using the FreeRTOS+TCP TCP/IP stack: A port of the FreeRTOS+TCP library as described in

Appendix TBD.

Preparing the IDE Project
In all steps below, add source files to the IDE project from their existing location on the disk (by

reference) – do not create duplicate copies of source files on the disk:

1. Add $AFR_HOME/lib/secure_sockets/portable/[vendor]/[board]/aws_secure_sockets.c to
the [project_top_leve]/lib/aws/secure_sockets folder of the IDE project.

2. Add
$AFR_HOME/tests/common/secure_sockets/portable/[vendor]/[board]/aws_test_tcp_port

able.h and
$AFR_HOME/tests/common/secure_sockets/portable/[vendor]/[board]/aws_test_tcp.c to
the [project_top_level]/application_code/common_tests/secure_sockets folder of the IDE
project.

Porting
If you use the FreeRTOS+TCP TCP/IP stack then no porting is necessary – simply copy the existing

FreeRTOS+TCP port from TBD to $AFR_HOME/lib/secure_sockets/portable/[vendor]/[board].

If your target hardware offloads TCP/IP functionality to a separate network chip then it is necessary to

implement all the functions for which stubs already exist in

$AFR_HOME/lib/secure_sockets/portable/[vendor]/[board]/aws_secure_sockets.c.

$AFR_HOME/lib/include/aws_secure_sockets.h contains the information necessary to

create the implementations.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 34

Since the MQTT library is not used for running Wi-Fi tests, comment out the calls to
BUFFERPOOL_Init() and MQTT_AGENT_Init() from SYSTEM_Init(), which is located in
$AFR_HOME/lib/utils/aws_system_init.c. Make sure the call to SOCKETS_init() is
uncommented.

Test Setup
1. The Secure Sockets tests require an echo server to be present on the network. For your

convenience, the AFQP tests distribution contains a suitable echo server, written in Go, in the
$AFR_HOME/tests/common/utils directory.

To start the echo server:

a) Ensure the latest version of Go is installed on the computer that will run the echo server (the
server host). Go can be installed from https://golang.org/dl/

b) Copy $AFR_HOME/tests/common/utils/echo_server.go onto the server host.

c) Start the server by typing: “go run echo_server.go”

d) In $AFR_HOME/tests/common/tests/common/include/aws_test_tcp.h, set the parameters
shown in the table below to the IP address of the server host. The value 192.168.0.200 is an
example only.

Echo Server IP address Example value if address is 192.168.0.200
tcptestECHO_SERVER_ADDR0 192
tcptestECHO_SERVER_ADDR1 168
tcptestECHO_SERVER_ADDR2 0
tcptestECHO_SERVER_ADDR3 200

To test that the echo server is working, open a command prompt on a computer on the same

network and type “telnet 192.168.0.200 9001” from a Windows host, or “nc 192.168.0.200 9001”

from a Linux host. Again, use the correct IP address for the server host – 192.168.0.200 is used as an

example only.

It may be necessary to adjust the firewall settings on the server host to enable the MCU to connect.

2. Set the tcptestTCP_ECHO_CLIENT_PORT macro in
$AFR_HOME/tests/common/tests/common/include/aws_test_tcp.h to the port on which the
echo server is listening. The provided echo server listens on port 9001. If you have problems
connecting to port 9001 due to corporate network security policies, you can change the listening
port in the echo server code to a port that is not restricted by your company’s security policy.

3. Set the tcptestSECURE_SERVER macro to 0 in
$AFR_HOME/tests/common/secure_sockets_test_tcp.h to run the socket tests without TLS.

4. Set the testrunnerFULL_TCP_ENABLED macro to 1 in
$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner.config.h to
enable the sockets tests.

5. Enable the testing task in
$AFR_HOME/tests/[vendor]/[board]/common/application_code/main.c by deleting the #if 0

https://golang.org/dl/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 35

and #endif compiler directives, in vApplicationIPNetworkEventHook (void). This change is
required for all the remaining libraries to be ported in this document.

Dependency on TLS

The test set for this library (Secure Sockets) includes some tests that require TLS which is

described later in this document. The functionality verified by these tests is exercised when

tcptestSECURE_SERVER macro is set to 1. You MUST come back to run this subset of the Secure Socket

tests after TLS library porting is completed. A TLS capable echo server should be setup before running

these tests (Appendix L: TLS Server Setup).

Qualification Test
1. Build and execute the test project.
2. View the test results in the UART console. If all the tests pass, then testing is complete. Save the

test results by cutting and pasting them from the UART console into a text file, and move to the next

section.

Example test results output:

…

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 36

Appendix F: PKCS #11

Description
Amazon FreeRTOS uses the open standard PKCS #11 “CryptoKi” API as the abstraction layer for

cryptographic operations, including:

 Encryption and decryption.

 Storage and enumeration of X.509 certificates.

 Storage and management of cryptographic keys.

See the open standard PKCS #11 Cryptographic Token Interface Base Specification:

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Storing private keys in general purpose flash memory can be convenient in evaluation and rapid

prototyping scenarios. However, when it comes to production scenarios, we recommend the use of

dedicated cryptographic hardware in order to reduce the threats of data theft and device duplication.

Cryptographic hardware includes components with features that prevent cryptographic secret keys from

being exported. In order to use such hardware with Amazon FreeRTOS, the PKCS #11 API must be ported

to it.

Pre-requisites
1. A test project that was created in accordance with the instructions provided in the body of this

document, and that is building vendor-supplied storage drivers that are suitable for sensitive data.

2. An implementation of configPRINT_STRING() that was created and tested as described in Appendix A.
3. A validated FreeRTOS kernel configuration, as described in Appendix B: FreeRTOS kernel.

Preparing the IDE Project
In all steps below, add source files to the IDE project from their existing location on the disk (by

reference) – do not create duplicate copies of source files on the disk:

1. Add $AFR_HOME/lib/pkcs11/portable/[vendor]/[board]/aws_pkcs11_pal.c to the
[project_top_level]/lib/aws/pkcs11 folder of the test project.

2. Add the PKCS #11 library header files from $AFR_HOME/lib/third_party/pkcs11 to the
[project_top_level]/lib/third_party/pkcs11 folder of the test project._RB_

3. Add the PKCS #11 tests from $AFR_HOME/tests/common/pkcs11/aws_test_pkcs11.c to the
[project_top_level]/application_code/common_tests/pkcs11 folder folder of the test
project.

4. Add the implementation of PKCS #11 for mbedTLS
$AFR_HOME/lib/pkcs11/mbedtls/aws_pkcs11_mbedtls.c to the
[project_top_level]/lib/pkcs11 folder of the test project

5. Import the CRYPTO abstraction wrapper file for mbedTLS $AFR_HOME/lib/crypto/aws_crypto.c
to the [project_top_level]/lib/crypto folder of the test project.

6. Add the mbedTLS library itself from $AFR_HOME/lib/third_party/mbedtls/library into the
[project_top_level]/lib/third_party/mbedtls/source folder of the test project.

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 37

7. Add the mbedTLS library header file from $AFR_HOME/lib/third_party/mbedtls/include into
the [project_top_level]/lib/third_party/mbedtls/include folder of the test project.

8. Add both $AFR_HOME/lib/third_party/mbedtls/include and

$AFR_HOME/lib/third_party/pkcs11 to the compiler’s include path.

Porting
1. Porting the PKCS #11 API functions

The PKCS #11 API is dependent on the implementation of cryptographic primitives such as SHA256
hashing and ECDSA signing. The Amazon FreeRTOS implementation of PKCS #11 uses the
cryptographic primitives implemented in the mbedTLS library, for which a port is already provided.
Modifying the existing PKCS #11 port is required if you wish to use a different software
implementation of the cryptographic primitives (i.e., other than mbedTLS), or if your target
hardware offloads crypto to a separate module.

2. Porting the PKCS #11 Platform Abstraction Layer (PAL) for device specific certificate and key storage

If you decide to use the Amazon FreeRTOS implementation of PKCS #11, there is a relatively small

amount of customization required in order to read and write cryptographic objects to storage (for

example, onboard flash memory).

$AFR_HOME/lib/pkcs11/portable/[vendor][board]/aws_pkcs11_pal.c contains stubs for the

PAL functions, of which you must provide ports for at least the functions listed in the table below:

Function Description

PKCS11_PAL_SaveFile Write information to local storage

PKCS11_PAL_ReadFile Read information from local storage

PKCS11_ReleaseFileDate Cleanup after PKCS #11_PAL_ReadFile. Cleanup buffer used.

3. Implement mbedtls_hardware_poll()

You only need to port this function if you plan to use Amazon FreeRTOS’ PKCS#11

implementation and the mbedTLS library for underlying cryptographic and TLS support.

TCP/IP and TLS require cryptographic pseudo-random number generation (PRNG) for sequence

number and key generation, respectively. A hardware entropy source is important for seeding the

PRNG. For the mbedTLS library to work, you MUST implement mbedtls_hardware_poll() which

allows the mbedTLS library to seed its PRNG using your board’s entropy source. This function is

located in $AFR_HOME/lib/pkcs11/portable/[vendor][board]/aws_pkcs11_pal.c

For more information see, https://docs.mbed.com/docs/mbed-os-

handbook/en/5.2/advanced/tls_porting.

https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/advanced/tls_porting/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/advanced/tls_porting/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 38

Since the MQTT library is not used for running PKCS11 tests, comment out the lines that call
BUFFERPOOL_Init(), MQTT_AGENT_Init()in function SYSTEM_Init()in file

$AFR_HOME/lib/utils/aws_system_init.c. Bufferpool and mqtt_agent are used in MQTT library. If
you have not ported the SOCKETS library (Appendix E), comment out the line that calls
SOCKETS_Init()in function SYSTEM_Init(), in file $AFR_HOME/lib/utils/aws_system_init.c.

Test Setup
1. Enable the PKCS 11 test by setting the testrunnerFULL_PKCS11_ENABLED macro to 1 in

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h.

Qualification Test
Build and execute the project. The UART output indicates how many tests have run and completed

successfully. Copy the results from the terminal and save it to a text file.

Example of the test results output:

…

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 39

Appendix G: TLS

Description
The AWS IoT Core MQTT broker only accepts mutually authenticated TLS connections. Amazon

FreeRTOS can use either mbedTLS, in which case no porting is necessary, or an off-chip TLS

implementation, such as those found on some network co-processors. To allow both options the TLS

library is not accessed directly, but through a TLS abstraction layer.

In all cases, the TLS tests must be executed and pass. Preparing the tests requires IoT device

configuration in the AWS cloud and certificate and key provisioning on the target hardware.

Pre-requisites
1. A port of the Secure Sockets library, as described in Appendix E: Secure Sockets.

2. A port of the PKCS #11 library, as described in Appendix F: PKCS #11.
3. An AWS account.

Preparing the IDE Project
1. Add the TLS abstraction implementation $AFR_HOME/lib/tls/aws_tls.c or

$AFR_HOME/lib/tls/portable/[vendor]/[board]/aws_tls.c (if your target hardware offloads
TLS to a separate processor) to the [project_top_leve]/lib/aws/tls folder of the test project.

2. Add the TLS tests file $AFR_HOME/tests/common/tls/aws_test_tls.c to the
[project_top_level]/application_code/common_tests/tls folder of the test project.

3. Enable the tests by setting the testrunnerFULL_TLS_ENABLED macro to 1 in

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h.

Porting
If your target hardware offloads TLS functionality to a separate network chip then it is necessary to

implement all the TLS abstraction layer functions in the table below.

$AFR_HOME/lib/include/aws_tls.h contains the information necessary to create the

implementations. Save the created file as
$AFR_HOME/lib/tls/portable/[vendor]/[board]/aws_tls.c

Function Description

TLS_Init Initialize the TLS context

TLS_Connect Negotiate TLS and connect to the server

TLS_Recv Read the requested number of bytes from the TLS connection

TLS_Send Write the requested number of bytes to the TLS connection

TLS_Cleanup Free resources consumed by the TLS context

 Since the MQTT library is not used for running Wi-Fi tests, comment out the calls to
BUFFERPOOL_Init() and MQTT_AGENT_Init() from SYSTEM_Init(), which is located

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 40

in $AFR_HOME/lib/utils/aws_system_init.c. Make sure the call to SOCKETS_init() is
uncommented.

Test Setup
The tests in this section require use of the online AWS console, where your target hardware will be

represented as a ‘thing’, and communicate with AWS via a custom MQTT endpoint that is tied to your

AWS account.

The steps below create the certificates and keys necessary to complete qualification tests.

The tests require the created certificates and keys to be built into the target hardware’s

executable image. That is convenient in this test scenario, but is not recommended for

production scenarios, where the keys should be kept in hardened storage.

Certificate Formatting Tool: It is necessary to convert the certificates and keys to C strings before

building them into the executable image. The AFQP tests include a tool for that purpose. To convert

certificate and key pairs into C strings:

a. Open
$AFR_HOME/tests/common/utils/CertificateConfigurationTool/PEMfileToCString.htm

l in a web browser.
b. Follow the instructions on the opened web page to load the certificate and private key.
c. Once loaded, follow the instruction in the opened web page to convert the opened certificate

and private key to a formatted C string.

1. Set the clientcredentialMQTT_BROKER_ENDPOINT[] variable in
$AFR_HOME/tests/common/include/aws_clientcredential.h to the custom end point of your
AWS account – this is the URL the TLS tests connect to.

To find your custom end point, use the URL https://aws.amazon.com/iot/ to log into your AWS
account, then click the “Settings” link in the bottom left corner of the screen to open the settings
window – the customer end point is displayed at the top of the settings window.

2. Noting the information below about the information you need to record during the process, follow
the steps in the AWS IoT Getting Started tutorial to create the resources in AWS IoT that will
represent your target hardware (Thing, Certificate and Policies).

a. Start here: https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-
signin.html, and continue through each of the steps of the tutorial until
you complete “Attach your Certificate to a Thing”. See notes below for
additional guidance about these steps.

b. During this process,

 Set the clientcredentialIOT_THING_NAME variable in
$AFR_HOME/tests/common/include/aws_clientcredential.h to the name you
assigned your ‘thing’ (the thing name).

 The steps on the link above include the creation of a certificate. Download and save all
three files that are generated during that process.

https://aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-signin.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-signin.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 41

 The steps on the link above include creating a policy. Use the following policy to attach
to the certificate:

This policy will allow all IoT actions on all resources. That is convenient in a test

and evaluation scenario but is not recommended for production scenarios.

3. Prepare certificate/key pairs for various tests for the TLS library.

AWS IoT can use AWS IoT-generated certificates or certificates signed by a CA certificate for device

authentication. In order to run the various tests, you will need to create multiple credentials as

listed below:

a. Generate a certificate by AWS IoT. (RSA Certificate)
b. Generate a certificate from a CSR (Certificate Signing Request). (ECDSA cert, Malformed

cert)
c. Generate a certificate from a registered CA. (Untrusted, BYOC certificate)

The credentials for the types listed above are described in detail in following table. All of the testing

client certificates and private keys listed above must be stored in:

$AFR_HOME/tests/common/aws_clientcredential_keys.h

$AFR_HOME/tests/common/aws_test_tls.h

Cert/Key Variables Description

clientcredentialCLIENT_CERTIFICATE_PEM Device certificate used for AWS cloud communication. It
is also used in TLS_ConnectRSA() test. You can set this up
using AWS Console.

clientcredentialCLIENT_PRIVATE_KEY_PEM Device private key used for AWS cloud communication. It
is also used in TLS_ConnectRSA() test. You can set this up
using AWS Console.

tlstestCLIENT_CERTIFICATE_PEM_EC Certificate for P-256 elliptic curve key. It is used in
TLS_ConnectEC() test.

tlstestCLIENT_PRIVATE_KEY_PEM_EC A p-256 elliptic curve key. It is used in TLS_ConnectEC()
test.

{

 "Effect": "Allow",

 "Action": "iot:*",

 "Resource": "*"

}

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 42

tlstestCLIENT_CERTIFICATE_PEM_MALFORMED A RSA or ECDSA certificate that has a field modified.
Used in TLS_ConnectMalformedCert() test.

tlstestCLIENT_UNTRUSTED_CERTIFICATE_PEM A certificate is not trusted (not registered) by AWS IoT.
Used in TLS_ConnectUntrustedCert().

tlstestCLIENT_UNTRUSTED_PRIVATE_KEY_PEM The private key correspond to the untrusted certificate.

tlstestCLIENT_BYOC_CERTIFICATE_PEM A certificate created by a CA (registered to AWS IoT).
Used in TLS_ConnectBYOCCredentials().

tlstestCLIENT_BYOC_PRIVATE_KEY_PEM The private key corresponding to the BYOC certificate.

Setup for RSA certificate/private used in TLS_ConnectRSA() :

This pair of certificate/key is generated in Test Setup Step 2. The three files you downloaded

during that “Thing” creation process will be used here.

Format the certificate and the private key with the formatting tool and copy and assign them to

variables

clientcredentialCLIENT_CERTIFICATE_PEM

clientcredentialCLIENT_PRIVATE_KEY_PEM

in file $AFR_HOME/tests/common/aws_clientcredential_keys.h.

Setup for ECDSA certificate/private key used in TLS_ConnectEC():

OpenSSL is an open source toolkit for TLS protocol. (https://www.openssl.org/). We

will use openssl in examples of generating certificates below. Please use TLS V1.2.

You can download it here: https://www.openssl.org/source/

1) Create a CSR with openssl:
a) openssl ecparam -name prime256v1 -genkey -noout -out p256_privatekey.pem
b) openssl req –new –key p256_privatekey.pem –out csr.csr

2) Create a certificate with the AWS IoT console:
a) On the AWS IoT / Security / Certificate page, click “Create” in upper right-hand corner
b) Click “Create with CSR” and upload the .csr file created in step 1.
c) Download the cert .pem file, activate it and attach the same policy you used when

setting up the RSA certificate.
d) Attach the certificate to the IoT thing created when you set up the “Thing”.

3) Format the certificate and the private key using the formatting tool.
4) Copy the created cert and private key to the following variables in

$AFR_HOME/tests/common/aws_test_tls.h:
a) tlstestCLIENT_CERTIFICATE_PEM_EC
b) tlstestCLIENT_PRIVATE_KEY_PEM_EC

https://www.openssl.org/
https://www.openssl.org/source/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 43

5) In $AFR_HOME/tests/common/tls/aws_test_tls.c, set the
tlstestMQTT_BROKER_ENDPOINT_EC variable to the same AWS IoT message broker
endpoint address in TLS Test Setup Step 1.

Setup for Malformed certificate used in TLS_ConnectMalformedCert():

The purpose of the test is to be able to use a malformed certificate to authenticate with the

server. Random modification of a certificate will most likely be rejected by x509 certificate

verification before the connection request is sent out. We have a suggestion to setup this

malformed certificate: modifying the issuer of the certificate.

See Appendix R: Modify issuer in a certificate for process details.

Setup for BYOC (Bring You Own Certificate) certificate used in TLS_ConnectBYOCCredentials():

1) Create your own certificate with a valid rootCA/CA chain. See example in Appendix P:
Instructions to Create a BYOC (ECDSA).

2) Register CAs and your own certificate in the AWS IoT console: IoT Core / Secure /
Certificates / Create / Get started.

3) Format the certificate and the private key using the formatting tool.
4) Copy the certificate and private key strings to the following variables in

$AFR_HOME/tests/common/aws_test_tls.h:
a) tlstestCLIENT_BYOC_CERTIFICATE_PEM
b) tlstestCLIENT_BYOC_PRIVATE_KEY_PEM

Setup for Untrusted certificate used in TLS_ConnectUntrustedCert():

1) Create your own certificate with valid rootCA/CA chain. See example in Appendix P:
Instructions to Create a BYOC (ECDSA).

2) Do not register them in AWS IoT console.
3) Format the certificate and the private key using the formatting tool.
4) Copy the cert and private key strings to the following variables in

$AFR_HOME/tests/common/aws_test_tls.h:
a) tlstestCLIENT_UNTRUSTED_CERTIFICATE_PEM
b) tlstestCLIENT_UNTRUSTED_PRIVATE_KEY_PEM

Qualification Test
1. Build and execute the test project.
2. View the test results in the UART console. If all the tests pass, then testing is complete. Save the

test results by cutting and pasting them from the UART console into a text file, and move to the next

section.

Example of the test results output:

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 44

Once TLS porting and verification is completed, note that you must go back to run a subset of

the Secure Socket tests which depend on this functionality i.e. when tcptestSECURE_SERVER

macro is set to 1. See Dependency on TLS in the Secure Sockets porting section.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 45

Appendix H: MQTT

Description
Communication between IoT devices and AWS IoT Core (the MQTT broker) uses the MQTT protocol.

The MQTT library that implements the protocol does not need to be ported, but does need to pass all

the MQTT tests.

The MQTT library has a dependency on the Buffer Pool library, which is used to allocate the memory

necessary to hold MQTT packets.

Pre-requisites
1. A port of the Secure Sockets library, as described in Appendix E: Secure Sockets.

2. A port of the PKCS #11 library, as described in Appendix F: PKCS #11.
3. A port of the TLS library, as described in Appendix G: TLS.
4. An AWS account.

5. An IoT thing created in AWS cloud and its associated credential information. (Refer to
TLS_Test_Setup_Step_1, TLS_Test_Setup_Step_2 and RSA_Certificate_Setup)

Preparing the IDE Project
In all steps below, add source files to the IDE project from their existing location on the disk (by

reference) – do not create duplicate copies of source files on the disk:

1. Add the MQTT library source files from $AFR_HOME/lib/mqtt into the
[project_top_level]/lib/aws/mqtt folder of the test project.

2. Add the Bufferpool source files from $AFR_HOME/lib/bufferpool into the
[project_top_level]/lib/bufferpool folder of the test project.

3. Add the MQTT test source files from $AFR_HOME/tests/common/mqtt/ to
[project_top_level]/application_code/common_tests/mqtt folder of the test project.

4. Uncomment all the initialization functions called from SYSTEM_Init() within

$AFR_HOME/lib/utils/aws_system_init.c.

Porting
 In order to enable MQTT functionality, uncomment the calls to BUFFERPOOL_Init() and
MQTT_AGENT_Init() from SYSTEM_Init(), which is located in

$AFR_HOME/lib/utils/aws_system_init.c. Make sure the call to SOCKETS_init() is also still
uncommented.

There is no additional porting required for this library.

Test Setup
These tests require the certificates and keys that were created prior to testing the TLS library.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 46

1. Enable the MQTT tests by setting testrunnerFULL_MQTT_ENABLED to 1 in
$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h

Qualification Test
1. Build and execute the test project.

2. View the test results in the UART console. If all the tests pass, then testing is complete. Save the

test results by cutting and pasting them from the UART console into a text file.

Example of the test results output:

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 47

Appendix I: OTA Updates

Description

The Amazon FreeRTOS over-the-air (OTA) update feature enables you to:

 Deploy new firmware images to a single device, a group of devices, or your entire fleet.
 Deploy firmware to devices as they are added to groups, are reset, or are re-provisioned.
 Verify the authenticity and integrity of new firmware after it has been deployed to devices.
 Monitor the progress of a deployment.
 Debug a failed deployment.
 Digitally sign firmware using the AWS Signer service.

Amazon FreeRTOS devices must enforce cryptographic code-sign verification of the OTA firmware
images they receive. Regarding algorithm selection, we recommend the use of the Elliptic-Curve Digital
Signature Algorithm (ECDSA), the NIST P256 curve, and a SHA-256 hash

Pre-requisites
1. A Bootloader that can support OTA update as described in Appendix J: Bootloader.

2. A port of the PKCS #11 library, as described in Appendix F: PKCS #11.
3. A port of the TLS library, as described in Appendix G: TLS.

Preparing the IDE Project
1. Add the OTA library files from $AFR_HOME/lib/ota into the IDE project under the

[project_top_level]/lib/aws/ota virtual folder.
2. Import the OTA library PAL files,

$AFR_HOME/lib/ota/portable/[vendor]/[board]/aws_ota_pal.c into the IDE project under the

[project_top_level]/lib/aws/ota virtual folder.

3. Import the OTA tests,
o $AFR_HOME/tests/common/ota/aws_test_cbor.c
o $AFR_HOME/tests/common/ota/aws_test_ota_agent.c
o $AFR_HOME/tests/common/aws_test_pal.c

into the IDE project under the [project_top_level]/application_code/common_tests/ota

virtual folder.

4. Add the OTA Update demo from $AFR_HOME/demos/common/ota/aws_ota_update_demo.c into
the IDE project under the [project_top_level]/application_code/common_tests/ota virtual
folder.

Porting

Amazon FreeRTOS defines an OTA platform abstraction layer (PAL) in order to ensure that the OTA
library can be used on a wide variety of hardware. The OTA PAL interface is listed below.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 48

Function Description

prvAbort Aborts an OTA update.

prvCreateFileForRx Creates a new file to store the data chunks as they are received.

prvCloseFile Closes the specified file. This may authenticate the file if storage that
implements cryptographic protection is being used.

prvWriteBlock

Writes a block of data to the specified file at the given offset. Returns
the number of bytes written on success or negative error code.

prvActivateNewImage

Activates or launches the new firmware image. For some ports, if the
device is programmatically reset synchronously, this function may not
return.

prvSetImageState

Does what is required by the platform to accept or reject the most
recent OTA firmware image (or bundle). Refer to your respective
board (platform) details and architecture to determine how to
implement this function.

prvGetImageState Gets the state of the OTA update image.

The following two functions are optional if a device has built-in support for them. If not then they need

to be implemented in the PAL.

Function Description

prvCheckFileSignature Verifies the signature of the specified file.

prvReadAndAssumeCertificate Reads the specified signer certificate from the file system and
returns it to the caller.

Test Setup
The OTA AFQP tests are split into the following two categories: Agent and PAL module tests, and end-

to-end functional tests.

1. Agent/PAL tests

a. Enable the OTA Agent/PAL tests by setting the following macros to 1 in

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h:
 testrunnerFULL_OTA_AGENT_ENABLED

 testrunnerFULL_OTA_PAL_ENABLED

b. Select a signing certificate that is appropriate for your device from
$AFR_HOME/tests/common/ota/test_files.
Each board has its specific way to provision a device. The certificate will be used for verification
in OTA tests.
Three types of signing certificates are available in the test code. These include RSA/SHA1,
RSA/SHA256 and ECDSA/SHA256. Out of the three, the use of ECDSA/SHA256 is recommended
for OTA updates. The other two are available for existing platforms only. If you have a different
scheme that is not included in the aforementioned three schemes, then please contact your
Qual-Rep.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 49

2. End-to-end OTA tests
These tests will be conducted by manually running python scripts located in
$AFR_HOME/tools/ota_e2e_test/
a. Enable the OTA end-to-end tests by setting the following macros to 1 in

$AFR_HOME/tests/[vendor]/[board]/common/config_files/aws_test_runner_config.h:
 testrunner_OTA_END_TO_END_ENABLED

b. Follow the instructions in $AFR_HOME/tools/ota_e2e_test/README.md

Qualification Test
1. Agent/PAL tests

a. Build and execute the test project.

b. View the test results in the UART console. If all the tests pass, then testing is complete. Save

the test results by cutting and pasting them from the UART console into a text file.

Example of the test results output:

…

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 50

2. End-to-end OTA Tests
a. Make sure there are no changes to aws_demo_runner.c, aws_clientcredential.h,

aws_clientcredential_keys.h, aws_application_version.h, and
aws_ota_codesigner_certificate.h from what was used to run the agent/PAL tests.

b. Follow the example listed in $AFR_HOME/tools/ota_e2e_test/README.md to run the ota end-
to-end test script.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 51

Appendix J: Bootloader

Amazon FreeRTOS provides a demo bootloader as an example for the Microchip Curiosity PIC32MZEF
platform. It may be ported to other platforms where applicable. However there is the option for users to
provide their own bootloader. In order for such a bootloader to work with the OTA functionality, the
following requirements must be adhered to:

1. The bootloader shall be stored in non-volatile memory so it cannot be overwritten.
2. The bootloader shall verify the cryptographic signature of the downloaded application image.

Signature verification must be consistent with the OTA image signer. See Appendix I: OTA
Updates for supported signatures.

3. The bootloader shall not allow rolling back to a previously installed application image.
4. The bootloader shall maintain at least one image that can be booted.
5. If the MCU contains more than one image then the image that is executed shall be the latest

(newest). The newest version can be determined based on implementation, for example a user
defined sequence number, application version etc. As per other requirements, this can only be
the case until a newer version has been verified and proven functional.

6. If the MCU cannot verify any images then it shall place itself into a controlled benign state. In
this state it prevents itself from being taken over by ensuring no actions are performed.

7. These requirements shall not be breached even in the presence of an accidental or malicious
write to any MCU memory location (key store, program memory, RAM, etc.)

8. The bootloader shall support self-test of a new OTA image. If test execution fails, the bootloader
shall roll back to the previous valid image. If test execution succeeds, the image shall be marked
valid and the previous version erased.

The state of the application must be set by the OTA PAL as described in the user documentation at

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 52

Appendix K: Test List
The tests listed here are the current tests we provide. It is subject to change.

Library Tests Notes

Wi-Fi WiFiOnOff

WiFiMode

WiFiConnectionLoop

WiFiIsConnected

WiFiNetworkAddGetDelete

WiFiPowerManagementMode

WiFiGetIP

WiFiGetMAC

WiFiGetHostIP

WiFiScan

WiFiReset

WiFiPing

WiFiConnectMultipleAP

WiFiSeperateTasksConnectingAndDisconnectingAtOnce

WiFiOnOffLoop

WIFI_GetMode_NullParameters

WIFI_GetIP_NullParameters

WIFI_GetMAC_NullParameters

WIFI_GetHostIP_NullParameters

WIFI_Scan_NullParameters

WIFI_NetworkAdd_NullParameters

WIFI_NetworkGet_NullParameters

WIFI_SetPMMode_NullParameters

WIFI_GetPMMode_NullParameters

WIFI_Ping_NullParameters

WIFI_ConnectAP_NullParameters

WIFI_SetMode_InvalidMode

WIFI_GetHostIP_InvalidDomainName

WIFI_GetHostIP_DomainNameLengthExceeded

WIFI_NetworkDelete_DeleteNonExistingNetwork

WIFI_NetworkGetNonExistingNetwork

WIFI_SetPMMode_InvalidPMMode

WIFI_Ping_ZeroParameters

WIFI_ConnectAP_InvalidSSID

WIFI_ConnectAP_InvalidPassword

WIFI_ConnectAP_InvalidSecurityTypes

WIFI_ConnectAP_MaxSSIDLengthExceeded

WIFI_ConnectAP_MaxPasswordLengthExceeded

WIFI_ConnectAP_ZeroLengthSSID

WIFI_ConnectAP_ZeroLengthPassword

WIFI_ConnectAP_PasswordLengthLess

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 53

Library Tests Notes

WIFI_Scan_ZeroScanNumber

WIFI_NetworkGet_GetManyNetworks

WIFI_NetworkAdd_AddManyNetworks

WIFI_NetworkDelete_DeleteManyNetworks

WIFI_ConnectAP_ConnectAllChannels

Secure
Sockets

SOCKETS_Threadsafe_SameSocketDifferentTasks

SOCKETS_Threadsafe_DifferentSocketsDifferentTasks

SOCKETS_Connect_InvalidAddressLength

SOCKETS_Connect_InvalidParams

SOCKETS_Socket_TCP

SOCKETS_SetSockOpt_RCVTIMEO

SOCKETS_SetSockOpt_InvalidParams

SOCKETS_Shutdown

SOCKETS_ShutdownInvalidParams

SOCKETS_ShutdownWithoutReceiving

SOCKETS_Close

SOCKETS_CloseInvalidParams

SOCKETS_CloseWithoutReceiving

SOCKETS_Recv_ByteByByte

SOCKETS_Recv_On_Unconnected_socket

SOCKETS_SendRecv_VaryLength

SOCKETS_Socket_InvalidTooManySockets

SOCKETS_Socket_InvalidInputParams

SOCKETS_Send_Invalid

SOCKETS_Recv_Invalid

SOCKETS_htos_HappyCase

SOCKETS_inet_addr_quick_HappyCase

SOCKETS_NonBlocking_Test

SECURE_SOCKETS_Threadsafe_DifferentSocketsDifferentTasks

SECURE_SOCKETS_Threadsafe_SameSocketDifferentTasks

SECURE_SOCKETS_Connect_InvalidAddressLength

SECURE_SOCKETS_Connect_InvalidParams

SECURE_SOCKETS_NonBlockingConnect

SECURE_SOCKETS_NonBlocking_Test

SECURE_SOCKETS_SetSockOpt_SERVER_NAME_INDICATION

SECURE_SOCKETS_SetSockOpt_TRUSTED_SERVER_CERTIFICATE

SECURE_SOCKETS_SetSockOpt_RCVTIMEO

SECURE_SOCKETS_SetSockOpt_InvalidParams

SECURE_SOCKETS_Shutdown

SECURE_SOCKETS_ShutdownInvalidParams

SECURE_SOCKETS_ShutdownWithoutReceiving

SECURE_SOCKETS_Close

SECURE_SOCKETS_CloseInvalidParams

SECURE_SOCKETS_CloseWithoutReceiving

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 54

Library Tests Notes

SECURE_SOCKETS_Recv_ByteByByte

SECURE_SOCKETS_Recv_On_Unconnected_socket

SECURE_SOCKETS_SendRecv_VaryLength

SECURE_SOCKETS_SockEventHandler

SECURE_SOCKETS_Send_Invalid

SECURE_SOCKETS_SetSecureOptionsAfterConnect

SECURE_SOCKETS_TwoSecureConnections

SECURE_SOCKETS_Recv_Invalid

TLS TLS_ConnectEC

TLS_ConnectRSA

TLS_ConnectMalformedCert

TLS_ConnectUntrustedCert

TLS_ConnectBYOCCredentials

PKCS #11 GetFunctionListInvalidParams

InitializeFinalizeInvalidParams

GetSlotListInvalidParams

OpenCloseSessionInvalidParams

C_PKCSHappyTestVerify

C_PKCSC_VerifyInvalidParams

C_PKCSC_VerifyInitInvalidParams

C_PKCSHappyTestSign

C_PKCSSignInvalidParams

C_PKCSSignInitInvalidParams

C_PKCSHappyTestObject

C_PKCSCreateObjectInvalidParameters

C_PKCSFindObjectsFinalInvalidParams

C_PKCSFindObjectsInvalidParams

C_PKCSFindObjectsInitInvalidParams

C_PKCSGetAttributeValueInvalidParams

C_PKCSGenerateRandomInvalidParameters

C_PKCSGenerateRandomTestHappyTest

SignVerifyCryptoApiInteropRSA

SignVerifyRoundTripRSANoPubKey

SignVerifyRoundTripWithCorrectRSAPublicKey

SignVerifyRoundTripWithWrongRSAPublickKey

SignVerifyRoundTripECNoPubKey

SignVerifyRoundTripWithCorrectECPublicKey

SignVerifyRoundTripWithWrongECPublicKey

TestRSAParse

TestECDSAParse

TestRSAExport

TestECDSAExport

SignVerifyRoundTrip_MultitaskLoop

GetFunctionListInvalidParams

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 55

Library Tests Notes

InitializeFinalizeInvalidParams

GetSlotListInvalidParams

OpenCloseSessionInvalidParams

MQTT MQTT_Init_HappyCase

MQTT_Init_NULLParams

MQTT_Connect_HappyCase

MQTT_Connect_BrokerRejectsConnection

MQTT_Connect_ConnACKWithoutConnect

MQTT_Connect_ReservedReturnCodeFromBroker

MQTT_Connect_ShorterConnACK

MQTT_Connect_LongerConnACK

MQTT_Connect_NULLParams

MQTT_Connect_SecondConnectWhileAlreadyConnected

MQTT_Connect_SecondConnectWhileWaitingForConnACK

MQTT_Connect_NetworkSendFailed

prvGetTopicFilterType_HappyCases

prvGetTopicFilterType_ErrorCases

prvDoesTopicMatchTopicFilter_MatchCases

prvDoesTopicMatchTopicFilter_NotMatchCases

OTA OTA_SetImageState_InvalidParams

prvParseJobDocFromJSONandPrvOTA_Close

prvParseJSONbyModel_Errors

prvPAL_CloseFile_ValidSignature

prvPAL_CloseFile_InvalidSignatureBlockWritten

prvPAL_CloseFile_InvalidSignatureNoBlockWritten

prvPAL_CloseFile_NonexistingCodeSignerCertificate

prvPAL_CreateFileForRx_CreateAnyFile

prvPAL_Abort_OpenFile

prvPAL_Abort_FileWithBlockWritten

prvPAL_Abort_NullFileHandle

prvPAL_Abort_NonExistentFile

prvPAL_WriteBlock_WriteSingleByte

prvPAL_WriteBlock_WriteManyBlocks

prvPAL_SetPlatformImageState_SelfTestImageState

prvPAL_SetPlatformImageState_InvalidImageState

prvPAL_SetPlatformImageState_UnknownImageState

prvPAL_SetPlatformImageState_RejectImageState

prvPAL_GetPlatformImageState_InvalidImageStateFromFileCloseFai
lure

prvPAL_ReadAndAssumeCertificate_ExistingFile

prvPAL_CheckFileSignature_ValidSignature

prvPAL_CheckFileSignature_InvalidSignatureBlockWritten

prvPAL_CheckFileSignature_InvalidSignatureNoBlockWritten

prvPAL_CheckFileSignature_NonexistingCodeSignerCertificate

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 56

Library Tests Notes

OtaTestGreaterVersion

OtaTestUnsignedImage

OtaTestSameVersion

OtaTestUntrustedCertificate

OtaTestCorruptImageBeforeSigning

OtaTestPreviousVersion

OtaTestCorruptImageAfterSigning

OtaTestCorruptSignature

OtaTestSingleByteImage

OtaTestMissingFilename

OtaTestIncorrectPlatform

OtaTestBackToBackDownloads

OtaTestIncorrectWifiPassword

Total 185

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 57

Appendix L: TLS Server Setup

A simple TLS echo server is provided with Amazon FreeRTOS code. It is located in

$AFR_HOME/tests/common/utils/tls_echo_server.go.

Instructions:

1. Install the latest version of GO on your server host: https://golang.org/dl/
2. Install openssl on your server host:

a. Linux --- https://www.openssl.org/source/
b. Windows --- https://slproweb.com/products/Win32OpenSSL.html

3. Copy tls_echo_server.go to a directory you choose.
4. Generate a TLS server self-signed certificate and private key. See

$AFR_HOME/tests/common/utils/readme-gencert.txt for the openssl commands to generate a
self-signed server certificate and private key.

5. Copy the certificate and private key .pem files into a subdirectory called “certs”. The “certs”
directory should be a subdirectory of the directory where the server code will run.

6. Start the TLS server by running: go run tls_echo_server.go
7. The server will listen on port 9000. The IP address and the port must be set in

$AFR_HOME/tests/common/tests/common/include/aws_test_tcp.h. For example if your server’s
IP address is 192.168.2.6, set the following macros:

Macro definition for TLS server Example value if address is 192.168.0.200
tcptestECHO_SERVER_TLS_ADDR0 192
tcptestECHO_SERVER_TLS_ADDR1 168
tcptestECHO_SERVER_TLS_ADDR2 2
tcptestECHO_SERVER_TLS_ADDR3 6
tcptestECHO_PORT_TLS (9000)

8. The tests will check the server certificate. In

$AFR_HOME/tests/common/tests/common/include/aws_test_tcp.h, set
tcptestECHO_HOST_ROOT_CA to your formatted server certificate.
You can use the formatting tool to format your server certificate.

9. The AFQP secure sockets tests require TLS mutual authentication to be configured. The readme-
gencert.txt file also describes how to generate a client certificate and private key that is signed by
the server key. This will allow the custom echo server to trust the client certificate presented by
your device during TLS authentication. The client certificate and private key must be PEM formatted
and copied into aws_clientcredential_keys.h before building and running the test project on the
device.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 58

Appendix M: “Hello World” Demo Project Set Up

Amazon FreeRTOS Directory Structure
All qualified Amazon FreeRTOS ports use the same directory structure, so all new files, including IDE
project files, must be created in the correct folder locations. The directory structure is explained below.

The three root level folders under $AFR_HOME are:

$AFR_HOME
├───demos Contains projects that build demo applications
├───lib Contains Amazon FreeRTOS and third-party libraries
└───tests Contains projects that build qualification tests

Your project is to be created within the demos folder, which is structured as follows:

$AFR_HOME
└───demos
 ├───common Contains files built by all demo projects
 ├───pc Contains a demo project for the FreeRTOS Windows port
 └───vendor Contains your vendor specific code
 └───board Contains your board specific code

The $AFR_HOME/demos/[vendor]/[board] folder is a template provided to simplify the creation of a
new test project and ensures all test projects have a consistent organization. It has the following
structure:

$AFR_HOME
└───demos
 └───[vendor]
 └───[board]
 ├───common
 │ ├───application_code Contains main.c
 │ │ └───vendor_code Contains vendor supplied board specific files
 │ └───config_files Contains Amazon FreeRTOS config files
 └───ide Contains an IDE specific project

Your demo projects always require vendor-supplied driver libraries. Some vendor-supplied libraries,
such as a header file that maps a GPIO output to an LED, are specific to the target development board.
Other vendor-supplied libraries, such as the GPIO library itself, are specific to the target MCU family. Do
not save vendor-supplied libraries that are specific to the MCU anywhere within either the
$AFR_HOME/tests or $AFR_HOME/demos folders.

Preparing Your Project Directories:
1. Rename the $AFR_HOME/demos/vendor folder to the name of the company that manufactures the

MCU – from here on the folder is referred to as [vendor].

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 59

2. Rename the $AFR_HOME/demos/[vendor]/board folder to the name of the development board

being qualified – from here on the folder is referred to as [board].

3. Copy your main.c and main.h in

$AFR_HOME/demos/[vendor]/[board]/common/application_code folder. You can re-use the
main.c in your aws_tests project.

4. Save any required vendor-supplied libraries that are specific to the board in the

$AFR_HOME/demos/[vendor]/[board]/common/application_code/vendor_code folder.
5. Rename the $AFR_HOME/demos/[vendor]/[board]/ide folder to the name of the IDE that will be

used to build the test project – from here on the folder is referenced as [ide].

Create the “Hello World” Demo Project

If your IDE does not use relative paths, define a variable in the project for relative folder locations

before importing Amazon FreeRTOS source files.

1. Create an IDE project aws_demos in the $AFR_HOME/demos/[vendor]/[board]/[ide] directory.
2. Create the project structure in the IDE
3. Create three top level virtual folders:

a. application_code
b. config_files
c. lib

4. Import the $AFR_HOME/demos/[vendor]/[board]/common/application_code directory and its
contents into the application_code virtual folder.

5. Import the files in $AFR_HOME/demos/[vendor]/[board]/common/config_files into the
config_files virtual folder.

6. Create a virtual folder under application_code and call it common_demos.
7. Create a source folder under common_demos.
8. Import the files in each of the following directories into the source folder:

a. $AFR_HOME/demos/common/demo_runner

b. $AFR_HOME/demos/common/devmode_key_provisioning (only the .c file)
c. $AFR_HOME/demos/common/mqtt
d. $AFR_HOME/demos/common/logging

9. Import the following directories and its contents into common_demos folder.
a. $AFR_HOME/demos/common/include

10. Create two virtual folders aws and third_party under virtual folder lib

11. Import each of the following directories and their contents into the aws folder:
a. $AFR_HOME/lib/bufferpool
b. $AFR_HOME/lib/FreeRTOS
c. $AFR_HOME/lib/FreeRTOS/portable/MemMang/heap_4.c
d. $AFR_HOME/lib/FreeRTOS/portable/[compiler your IDE uses]

e. $AFR_HOME/lib/FreeRTOS-Plus-TCP (if you have ported this library, please refer to
Appendix D on what files should be included in this project)

f. $AFR_HOME/lib/include

g. $AFR_HOME/lib/include/private (only .h files)
h. $AFR_HOME/lib/mqtt

i. $AFR_HOME/lib/pkcs11/portable/[vendor]/[board]/pkcs11.c (under pkcs11 folder)

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 60

$AFR_HOME/lib/secure_sockets/portable/[vendor]/[board]/aws_secure_sockets.c

(under secure_sockets folder)
j. $AFR_HOME/lib/tls (if you have ported TLS library)
k. $AFR_HOME/lib/wifi/portable/[vendor]/[board]/aws_wifi.c (under wifi folder,

if you have ported WI-FI library)
12. Import each of the following directories and their contents into third_party:

a. $AFR_HOME/lib/third_party/mcu_vendor/[vendor]/[board]/[driver_library]/[dri

ver_library_version] (under mcu_vendor folder)
b. $AFR_HOME/lib/third_party/mbedtls (rename ../mbedtls/library to

../mbedtls/source)
c. $AFR_HOME/lib/third_party/pkcs11

13. Make sure the following compiler include paths are set in the project property:
a. $AFR_HOME/demos/common/include
b. $AFR_HOME/lib/include
c. $AFR_HOME/lib/include/private
d. $AFR_HOME/lib/FreeRTOS/portable/[compiler]/[architecture]
e. $AFR_HOME/demos/vendor/board/common/config_files
f. $AFR_HOME/lib/third_party/mbedtls/include

g. Any paths required by vendor-supplied driver libraries

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 61

Appendix N: Checklist for Qualification

 Register with Amazon Partner Network (APN).

 Agree on the Shared Work Plan with AWS.

 “Test” project passed all tests in AFQP tests version ______________.

 Ported configPRINT_STRING() macro.

 Configured FreeRTOS kernel according to your target MCU.

 Ported Wi-Fi Management library (Optional if your board does not support Wi-Fi) and

passed Wi-Fi Management library tests.

 Ported OTA library (Optional if your board does not support Wi-Fi) and passed OTA library

tests.

 Bootloader following the Amazon FreeRTOS guidelines in Appendix J: Bootloader

 Ported FreeRTOS TCP/IP stack (Optional if you use off-chip TCP/IP stack).

 Ported CYPTO library and passed CYPTO library tests.

 Ported PKCS #11 library and passed tests for this library.

 Ported TLS library (Optional if you use Amazon FreeRTOS TLS support) and passed tests for

this library.

 Ported Secure Sockets library and passed the associated tests.

 Passed tests for MQTT library.

 Prepare a “Demo” project for an IDE you choose that can send “Hello World” to AWS IoT Console

and receive reply through MQTT protocol.

 Put the appropriate open source license text in your code. Please refer to

https://opensource.org/licenses for license text information.

 Configure your board name in

$AFR_HOME/demos/[vendor]/[board]/common/config_files/FreeRTOSConfig.h

#define mqttconfigMETRIC_PLATFORM "Platform=Your board name"

 Information required for Appendix U: Hardware Information filled

 Prepare a “Getting Started Guide” for your board to help users run your “Demo” project. You can

use the Getting Started Guide template to start and look at the guide for the Window Simulator for

reference.

https://opensource.org/licenses
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_windows.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 62

Appendix O: Troubleshooting Porting Setup

1. Can I reach the “echo server” from two different networks (for example, from two subnets across
2 different access points)?
An echo server is required for successful completion of the TCP/IP and TLS tests. The echo server

must be reachable from the network that the boards are connected to. Please consult your IT

support to enable routing across subnets if you need devices on different subnets to communicate

to a single echo server.

2. Can I use openssl in a Windows environment?
Yes. Even though only a Linux distribution of openssl is provided on https://www.openssl.org/, you
can find openssl distributions for Windows on the internet.

https://www.openssl.org/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 63

Appendix P: Instructions to Create a BYOC (ECDSA)

Prerequisite:

To follow the instructions below, you need to have openssl and the AWS CLI installed.

 OpenSSL is an open source toolkit for the TLS protocol. (https://www.openssl.org/). We
will use openssl in examples for generating certificates below. Please use TLS V1.2. You
can download it here:

Linux --- https://www.openssl.org/source/

 AWS CLI installation guide:
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

o MUST DO: Configure AWS CLI before use.
Please follow the instruction here to configure AWS CLI:
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Note: during the CA certificate creation process, please consider fill in valid information. You may see

errors if the organization or other fields don’t align in later signing steps.

Generate a Root CA

1. Generate a root CA private key
a. openssl ecparam -name prime256v1 -genkey -noout -out rootCA.key

2. Generate a root CA certificate
a. openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out

rootCA.crt

Generate Intermediate CA

1. Create necessary files
a. touch index.txt

b. echo 1000 > serial

2. Paste the ca.config file in Appendix Q: Source for ca.config in the directory

3. Generate intermediate CA’s private key:
a. openssl ecparam -name prime256v1 -genkey -noout -out intermediateCA.key

4. Generate intermediate CA’s CSR [Make sure to fill Common Name to some value]
a. openssl req -new -sha256 -key intermediateCA.key -out intermediateCA.csr

5. Sign the intermediate CA’s CSR with root CA
b. openssl ca -config ca.config -notext -cert rootCA.crt -keyfile rootCA.key -

days 500 -in intermediateCA.csr -out intermediateCA.crt

Generate Device Certificate (ECDSA certificate as an example)

1. Generate private key
a. openssl ecparam -name prime256v1 -genkey -noout -out deviceCert.key

2. Generate CSR for device certificate
a. openssl req -new -key deviceCert.key -out deviceCert.csr

3. Sign the device certificate with the intermediate CA
a. openssl x509 -req -in deviceCert.csr -CA intermediateCA.crt -CAkey

intermediateCA.key -CAcreateserial -out deviceCert.crt -days 500 -sha256

https://www.openssl.org/
https://www.openssl.org/source/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 64

Register both CA certificates

1. Get registration code
a. aws iot get-registration-code

2. Generate private key for verification certificates
a. openssl ecparam -name prime256v1 -genkey -noout -out verificationCert.key

3. Create CSR for verification certificates. Set the Common Name field to your registration code

obtained in the first step.
a. openssl req -new -key verificationCert.key -out verificationCert.csr

4. Sign a verification certificate using root CA and another one using intermediate CA
a. openssl x509 -req -in verificationCert.csr -CA rootCA.crt -CAkey rootCA.key

-CAcreateserial -out rootCAverificationCert.crt -days 500 -sha256

b. openssl x509 -req -in verificationCert.csr -CA intermediateCA.crt -CAkey
intermediateCA.key -CAcreateserial -out intermediateCAverificationCert.crt
-days 500 -sha256

5. Register both CA certificates with AWS IoT
a. aws iot register-ca-certificate --ca-certificate file://rootCA.crt --

verification-cert file://rootCAverificationCert.crt

b. aws iot register-ca-certificate --ca-certificate file://intermediateCA.crt
--verification-cert file://intermediateCAverificationCert.crt

6. Activate both CA certificates
a. aws iot update-ca-certificate --certificate-id xxxxxxxxxxxxxxxx --new-

status ACTIVE

Register Device Certificate

1. Register the device certificate with AWS IoT
a. aws iot register-certificate --certificate-pem file://deviceCert.crt --ca-

certificate-pem file://intermediateCA.crt

2. Activate the device certificate
a. aws iot update-certificate --certificate-id xxxxxxxxxxxxxx --new-status

ACTIVE

deviceCert.crt is device certificate and deviceCert.key is device private key.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 65

Appendix Q: Source for ca.config

OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policy1 = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = . # Where everything is kept
certs = $dir # Where the issued certs are kept
crl_dir = $dir # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of
 # several ctificates with same subject.
new_certs_dir = $dir # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
 # must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 66

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crlnumber must also be commented out to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = default # use public key default MD
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 2048
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
countryName_min = 2

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 67

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
#organizationalUnitName_default =

commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:TRUE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 68

Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This is required for TSA certificates.
extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 69

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.
dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 70

crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate
 # (optional)
certs = $dir/cacert.pem # Certificate chain to include in reply
 # (optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

default_policy = tsa_policy1 # Policy if request did not specify it
 # (optional)
other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, sha1 # Acceptable message digests (mandatory)
accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?
 # (optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?
 # (optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?
 # (optional, default: no)

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 71

Appendix R: Modify issuer in a certificate

1. Take the valid client certificate that you have been using as a base. In this example is it

81909ac548-certificate.pem.crt

2. Convert the certificate from PEM to DER (openssl x509 -outform der -in 81909ac548-

certificate.pem.crt -out 81909ac548-certificate.der.crt)

3. Open the .der certificate. “Amazon Web Services” in hex is 41 6d 61 7a 6f 6e 20 57 65

62 20 53 65 72 76 69 63 65 73. Search for this sequence in your DER output:

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 72

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 73

4. Modify the sequence to say ‘Amazon Web Cervices’, switching out the 53 to be a

43. Save the file. To verify your change, you can check out the modified cert in the

windows certificate manager. See that it now says Issued by: Amazon Web Cervices

5. Convert your newly modified certificate back to PEM. openssl x509 -inform der -in

81909ac548-certificate.der.crt -out 81909ac548-cert-modified.pem.crt

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 74

Again, viewing this in the certificate viewer should show the modified certificate.

6. Put this certificate into the Certificate Configuration Tool

(demos\common\devmode_key_provisioning\CertificateConfigurationTool) and copy

the formatted output.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 75

Appendix S: Shared Work Plan for Partnership
The Shared Work Plan proposes certain tactical aspects of our partnership on how to qualify Amazon

FreeRTOS on your IoT microcontrollers, jointly go to market and support customers.

Objective

The objective of the partnership is to provide embedded developers a platform to easily build and deploy

connected microcontroller solutions securely, quickly and economically. To that end, you and AWS will

work in partnership to qualify Amazon FreeRTOS on your IoT microcontrollers, drive joint marketing/PR

activities, and support service requests. The near term goal is to qualify at least one of your IoT

microcontrollers under the Amazon FreeRTOS Qualification Program and have the infrastructure for joint

marketing, PR and customer service ready by a mutually agreed upon launch date and event (referred to

from here on as the “Launch Date” and “Launch Event”.)

Details

The terms below and in the subsequent sections outline the high-level agreement between you and AWS.

This is not meant as a replacement for a legal agreement but instead allows the companies to move

forward with a common understanding of the joint operating agreement and a definition of roles,

responsibilities, and commitments.

Under this partnership, you will be responsible for qualifying software that allows Amazon FreeRTOS to

run on your IoT microcontroller (including board specific libraries and device drivers,) and AWS will be

responsible for running final verification tests to confirm qualification. The public announcement of

Amazon FreeRTOS support of your IoT microcontroller will be at the Launch Event, to be held on the

Launch Date.

Development

Corporate Code Submissions: You can download Amazon FreeRTOS source code and test code from the

Amazon FreeRTOS GitHub repository, and can then update your board specific libraries to make them

compatible with the Amazon FreeRTOS software libraries. You can then share the code with AWS by

uploading these updated libraries to your private GitHub repository and providing AWS access. These

libraries will then be tested, code-reviewed and then distributed along with Amazon FreeRTOS source-

code under the terms of MIT license. Prior to the Launch Event, AWS will work with select OEMs who will

be our launch customers and share with them Amazon FreeRTOS and your libraries. AWS will keep the

distribution of your libraries restricted to these OEMs under a license that prohibits them from distributing

your libraries further.

Source-code Releases: AWS will continually update and release Amazon FreeRTOS source-code as major,

minor or point releases. These updates could range from major feature additions to minor optimizations.

For a minor version change (e.g., 9.1.0 to 9.2.0) or point release (e.g., 9.1.1 to 9.1.2,) AWS will make best

efforts to inform you 4 weeks before a new Amazon FreeRTOS source-code is released. While you will not

need to requalify because these minor and point versions will be backward compatible, AWS recommends

that you retest your libraries for performance with the new Amazon FreeRTOS source-code and inform

AWS in case of concerns. For a major version change (e.g. 9.3.0 to 10.0.0,) AWS will make best efforts to

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 76

inform you 8 weeks before a new Amazon FreeRTOS source-code is released. You should make best efforts

to provide feedback, test and successfully pass the Amazon FreeRTOS Qualification Program tests within

the 8 weeks. Only major version changes would require an Amazon FreeRTOS re-qualification, and you

would have an opportunity to evaluate which microcontrollers you want to qualify for the major release.

During the transition, AWS will continue to support the previous release, unless a bug severely affects the

security or operation of the end application. At the time of release of the new version, AWS should already

have your IoT microcontroller Amazon FreeRTOS-qualified with the new Amazon FreeRTOS source-code.

Amazon FreeRTOS Qualification of New Chipsets: All new chipsets that will run Amazon FreeRTOS will

need to pass the Amazon FreeRTOS Qualification Program tests. For qualified chipsets, Amazon FreeRTOS

source-code and your libraries will be available in the Amazon FreeRTOS console for developers to

download. If you decide to distribute Amazon FreeRTOS source-code to customers before the chipset is

Amazon FreeRTOS-qualified, you assumes responsibility for service support until the chipset is Amazon

FreeRTOS-qualified.

Roadmap Alignment: We propose that you and AWS meet at least once a quarter and give updates to

each other on new features, services, chipsets and product changes, so that AWS can enable mutual

customers to benefit from the latest hardware and software technologies.

Code Distribution: AWS will distribute source-code via two channels: AWS and GitHub. Using the Amazon

FreeRTOS console, developers can choose which libraries are relevant to their application and can then

download those libraries along with a working sample. Using GitHub, developers can download the entire

source-code.

Go-to-Market

Launch Event: You and AWS will jointly launch the Amazon FreeRTOS-qualified chipset at the Launch

Event. In addition, AWS would like to share booth space, have joint demo sessions and collaborate on

design contests with you at external events such as CES and Electronica.

PR Activities: AWS will encourage you to have your own press release and AWS will provide support for

the same.

Marketing Activities: You and AWS will jointly work on any specific case studies or use cases that highlight

the capabilities of your IoT chipset and Amazon FreeRTOS. There will be a logo specific to Amazon

FreeRTOS and related products, and both you and AWS will provide a specific logo to be used in this

program.

AWS will have the Amazon FreeRTOS webpage highlighting the partnership and containing details on

Amazon FreeRTOS-qualified chipsets (such as Dev Kits, FAQs, and Getting Started,) with hyperlinks

pointing to your chipsets. AWS will also provide marketing collateral to you so that you can incorporate

Amazon FreeRTOS messaging on your websites.

Sales and FAE Enablement: AWS will participate in information sessions and supply you with any Amazon

FreeRTOS-specific collateral (such as customer and workshop presentation slides) that you might need to

train Sales/FAEs at its training events.

Support

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 77

OEM Support: AWS believes in a shared support model. OEMs will regularly approach both you and AWS

for service requests. We will have mutually agreed upon SLAs in terms of responsiveness and participation

in customer forums. AWS will be responsible for supporting service requests from OEMs and your

engineers. In case the service request is board specific or pertains to the microcontroller, you will provide

support to AWS customer representatives solving the case. Similarly, AWS will field technical questions

from you to support your customers.

Division of Responsibilities (Technical)

Specifically, the work falls into three categories:

1. Board Specific Libraries – You, ported to be Amazon FreeRTOS compatible

2. Amazon FreeRTOS Qualification – You, with support and diagnostics from AWS. It gives developers

confidence that the microcontroller they choose fully supports Amazon FreeRTOS features.

3. Amazon FreeRTOS Verification Tests – AWS, with test reports and hardware from you

Timeline

AWS will have a joint launch with you at the Launch Event, to be held on the Launch Date. You and AWS

will have a chipset Amazon FreeRTOS-qualified by the Launch Event.

Source Code Versioning Scheme

Source Code Version: X.Y.Z

Version X Y Z

Major Release Change - -

Minor Release No Change Change -

Point Release No Change No Change Change

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 78

Appendix T: Getting Started Guide Template

Getting Started with the [board-name]

Provide a brief description of the board(s) that are qualified to run Amazon FreeRTOS with links to more

in-depth information on your company’s website

 What hardware is required?

 What host operating systems are supported?

 What IDEs are supported? (Include links to download IDEs)

 What toolchains will the developer use? (Include links to download toolchains)

 Prerequisite

Prerequisites

List any prerequisites for your board

Setting up the [board-name] Hardware

Provide instructions for setting up the hardware including:

 Jumper settings

 Driver installation (include links to supported driver versions)

 Connecting the board to a computer

Setting Up Your Environment

 Provide instructions to establish a serial connection to your board for each host operating
system.

 Provide instructions and link(s) to set up the toolchain for each host operating system.

 Provide instructions for installing/configuring any board-specific software for each host
operating system (anything listed here should be called out in the prerequisites section).

Download and Build Amazon FreeRTOS

 Provide instructions to download Amazon FreeRTOS from the Amazon FreeRTOS Online
Connection Wizard or GitHub repository.

 Provide instructions for loading/importing the Amazon FreeRTOS sample code into your IDE.

Configure Your Project

Open <BASE_FOLDER>\demos\common\include\aws_clientcredential.h in your IDE or text editor.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 79

To configure your project, you need to know your AWS IoT endpoint.

To find your AWS IoT endpoint

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.
3. Copy your AWS IoT endpoint from the Endpoint text box. It should look like

<1234567890123>.iot.<us-east-1>.amazonaws.com.

4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h and
set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint. Save your changes.

You also need to know your Wi-FI network SSID, password, and security type, and the name of the AWS
IoT thing that represents your device. Valid security types are:

 eWiFiSecurityOpen: Open, no security.
 eWiFiSecurityWEP: WEP security.
 eWiFiSecurityWPA: WPA security.
 eWiFiSecurityWPA2: WPA2 security.

In the [insert your appropriate IDE window or text editor] window, open

aws_demos\application_code\common_demos\include\aws_clientcredential.h.

Specify values for the following #define constants:

 clientcredentialMQTT_BROKER_ENDPOINT: Your AWS IoT endpoint.
 clientcredentialIOT_THING_NAME: The AWS IoT thing for your board.
 clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.
 clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.
 clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network.

Make sure to save your changes.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS demo code. This is for
demo purposes only. Production level applications should store these files in a hardened storage such as
a crypto element. Amazon FreeRTOS is a C language project, and the certificate and private key must be
specially formatted to be added to the project.

To format your certificate and private key

1. In a browser window, open
<BASE_FOLDER>\demos\common\devmode_key_provisioning\CertificateConfigurationToo

l\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 80

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in

<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples

To flash the demo application onto your board

 Provide instructions on how to flash the sample application to your board including:
o How to connect your board to the host computer
o How to use an IDE or other tools to flash the sample application to your board
o How to verify the sample application is running correctly
o Troubleshooting steps for resolving problems

Debugging the samples

 Provide instructions on how to use any on-board debugging interface or external debuggers for
each supported host OS.

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 81

Appendix U: Hardware Information
General Information:

Company Name

Company Name (short, if any) for
Amazon FreeRTOS Console

High Resolution Logo

Link to Landing Page

Company Description (15 words)

Development Board Information:

Board Name

Board Name (20 chars) for Amazon
FreeRTOS Console

High Resolution Board Image

Board Description

Board Description (50 chars) for
Amazon FreeRTOS Console

Microcontroller Family Name

Board Datasheet

Compiler Options (optimization)

IDE with Version Number

Link to Board Landing Page

Getting Started Guide

Link to Purchase Board

Amazon FreeRTOS Qualification Program Developer Guide – V 1.1.0

Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. 82

Appendix V: Glossary
$AFR_HOME The path where Amazon FreeRTOS is installed/extracted.

