
Best Practices for Leveraging
Amazon Redshift and dbt™

Notices
Customers are responsible for making their own independent assessment of the information in this

document. This document: (a) is for informational purposes only, (b) represents current AWS product

offerings and practices, which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services

are provided “as is” without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,

and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents
Introduction

Amazon Redshift Deployment Options

Redshift Serverless

Provisioned Clusters

Use cases for Amazon Redshift

Typical data warehouse flow for Amazon Redshift

Key Concepts for Understanding dbt™

dbt Architecture and Benefits

dbt Cloud

Documentation and Dependency Handling

Making Code Modular Using Macros

Jumpstarting dbt development with Packages

Documentation as you code with dbt

Resources for Learning More

Optimizing an Amazon Redshift Architecture with dbt

Connecting dbt to Amazon Redshift

dbt + Redshift Best Practices

Choose A Redshift Cluster or Serverless Endpoint

Plan for Quality Assurance

Configure your Data Warehouse Environment (Multiple Redshift Clusters)

Configure your Data Warehouse Environment (Single Redshift Cluster or endpoint)

Define your Environments as Targets in dbt

Set up Role Based Access Controls (RBAC), if necessary

Use Redshift’s Late Binding Views for Downstream Consolidation

Performance Tuning your dbt - Amazon Redshift Environment

Using Sort and Distribution Keys

Storing Data Efficiently

Configuring Amazon Redshift Workload Management (WLM)

Choosing Appropriate Model Materializations

Materialized Views in Redshift

Limiting data used in development

Using dbt packages to keep projects DRY

Leveraging Redshift Spectrum and External Tables

Data-Driven Code Optimization in dbt™ and Amazon Redshift

Analyzing dbt Metadata

Using Redshift’s EXPLAIN and Query Summary

Conclusion

Appendix: Recommendations for Setting Permissions and Access Controls in Redshift

Setting Up Group Permissions

Authentication Methods

Username and Password Authentication

Authentication with IAM

SSH Tunnel Connection

Protecting PII: Dynamic Data Masking with dbt

Document revisions

Abstract
Data has become an essential part of every business, and its volume, velocity, and variety continue to

increase. More and more organizations have found it challenging to meet their needs with traditional

on-premises data analytics solutions, and are looking at modernizing their data and analytics

infrastructure by moving to the cloud.

To best leverage their investment in a cloud data infrastructure, companies need to work in a way that

enables collaboration with business users and automation of key workflows. For this reason, many data

teams use dbt™ to manage data transformations in Amazon Redshift. This allows teams to create trusted

data pipelines that are version controlled, tested, and documented, thus increasing stakeholder trust

and removing common technical barriers that limit time to production. This whitepaper outlines the

benefits and best practices of using the scale of Amazon Redshift data warehouse and the agility of dbt™

to build trusted data pipelines.

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 1

Introduction

Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform,

offering over 200 fully-featured services from data centers worldwide. Millions of customers—including

the fastest-growing startups, largest enterprises, and leading government agencies—trust AWS to

power their infrastructure, improve their agility, and lower their costs.

Amazon Redshift is a fast, easy and widely used cloud data warehouse that makes it simple and cost-

effective to analyze data efficiently using existing business intelligence tools. It is optimized for data sets

ranging from a few hundred gigabytes to petabytes or more, and is designed to cost less than other data

warehousing solutions.

dbt helps to manage data transformation on the data platform by enabling teams to deploy analytics

code following software engineering best practices such as modularity, continuous integration and

continuous deployment (CI/CD), and embedded documentation. dbt is completely pushdown, utilizing

the database engine compute capabilities for execution. More specifically, dbt allows data teams to

implement business logic in SQL in dbt data models, create and automate code-based tests, and version-

control their code. At its core, dbt will:

● Compile your project’s code into Amazon Redshift DML, and DDL SQL statements

● Infer dependencies to run transformations (in the form of dbt models) in the correct order and

generate a project DAG (Directed Acyclic Graph) automatically

● Facilitate reusable code with macros and ref statements.

To get started with dbt and Amazon Redshift, follow the getting started guide. dbt Labs also offers a

variety of on-demand training courses to help data teams understand the power and functionality of

dbt.

Amazon Redshift Deployment Options
Amazon Redshift is a fast, simple, cost-effective data warehousing solution that enables customers to

scale their data analytics. Tens of thousands of customers rely on Amazon Redshift to analyze exabytes

of data and run complex analytical queries, making it one of the most widely used cloud data

warehouses today. Amazon Redshift is a fully managed service and offers both provisioned and

serverless options.

http://aws.amazon.com/redshift
https://www.getdbt.com/
https://docs.getdbt.com/guides/getting-started
https://courses.getdbt.com/courses/fundamentals

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 2

Redshift Serverless

Amazon Redshift Serverless makes it easy to run and scale analytics in seconds without the need to set

up and manage data warehouse infrastructure. With Redshift Serverless, your data warehouse service

can auto pause, auto resume, and auto scale up and down. You simply set the base data warehouse

Redshift Processing Units (RPU) capacity, based on your price and performance requirements. You can

create multiple workgroups, and namespaces in Redshift Serverless to allow you for workload isolation

or segregate workload based on data domains.

Spinning up Amazon Redshift Service takes minutes, with instructions for the two options provided

below. Find instructions on setting up Redshift Serverless data warehouse here and Redshift Provisioned

Data warehouse here. Follow instructions provided here to Connect to Serverless and here to connect to

Provisioned to start querying Amazon Redshift.

Provisioned Clusters

When using the provisioned deployment option, your Amazon Redshift environment consists of a cluster

of nodes of a certain node type. While creating your data warehouse, you can choose the right node

type and quantity to meet your requirements. A provisioned cluster is most suited for workloads where

you need granular control over the configuration, deployment, and management. You can scale your

cluster as needed using the resize option, and leave administrative tasks like back-up, node or drive

failure management, and query tuning to Amazon Redshift service. With Redshift, any user—including

data analysts, developers, business professionals, and data scientists—can get insights from data by

simply loading and querying data in the data warehouse.

How Amazon Redshift works
Amazon Redshift uses SQL to analyze structured and semi-structured data across data warehouses,

operational databases, and data lakes, using AWS-designed hardware and machine learning to deliver

the best price performance at any scale.

Amazon Redshift achieves efficient storage and optimum query performance through a combination of

massively parallel processing, columnar data storage, and efficient, targeted data compression encoding

schemes.

Use cases for Amazon Redshift

Popular use cases for Amazon Redshift include:

Business Intelligence

Analyze terabytes to petabytes of structured and semi-structured data using SQL and power queries,

reports, and dashboards.

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-getting-started.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-sample-data-load-create-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html
https://docs.aws.amazon.com/redshift/latest/gsg/connection.html

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 3

Innovation through machine learning

Drive faster decision-making across your business, with predictive insights to inform new products and

services using Amazon Redshift ML.

Data sharing and collaboration

Query, share, and analyze live data among organizations and partners with Amazon Redshift Data

Sharing and AWS Data Exchange.

Real-time operational insights

Process high volumes of data from multiple sources including streaming sources simultaneously, with

unlimited concurrent users and queries, all with consistent high performance.

Typical data warehouse flow for Amazon Redshift

An Amazon Redshift data warehouse is an enterprise-class relational database management system

(RDBMS).

At the data ingestion layer, different types of data sources continuously upload structured, semi-

structured, or unstructured data to the data storage layer. This data storage area serves as a staging

area that stores data in different states of consumption readiness. An example of storage might be an

Amazon Simple Storage Service (Amazon S3) bucket.

At the optional data processing layer, the source data goes through preprocessing, validation, and

transformation using extract, transform, load (ETL). These raw datasets are then refined by using ETL

operations. This layer can also read sources and write to Amazon Redshift Service directly. An example

of an ETL engine is AWS Glue.

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 4

At the data consumption layer, data is loaded into your Amazon Redshift cluster, where you can run

analytical workloads. BI tools like Amazon QuickSight are used to build Reporting and Dashboards on top

of Amazon Redshift Data warehouse to provide insights to the business community.

Amazon Redshift can also consume data for analytical workloads from many sources:

• Amazon Redshift data sharing can be used to access datashares from other Amazon Redshift

environments, either provisioned or serverless, for read purposes securely and easily. You can

share data at different levels, such as databases, schemas, tables, views (including regular, late-

binding, and materialized views), and SQL user-defined functions (UDFs). For more information

about data sharing, see Getting started accessing data in other Amazon Redshift clusters.

• Amazon Redshift Spectrum can be used to query data in Amazon S3 files without having to load

the data into Amazon Redshift tables. Amazon Redshift provides SQL capability designed for fast

online analytical processing (OLAP) of very large datasets that are stored in both Amazon

Redshift clusters and Amazon S3 data lakes. When accessing your S3 data lake via Amazon

Redshift Serverless, you do not pay for Amazon Redshift Spectrum separately. You have a unified

serverless experience and pay for data lake queries also in RPU-seconds. For more information

about Redshift Spectrum, see Getting started querying your data lake.

• Amazon Redshift federated query can be used to join data from relational databases, such as

Amazon Relational Database Service (Amazon RDS) and Amazon Aurora, or Amazon S3, with

data in your Amazon Redshift database. You can use Amazon Redshift to query operational data

directly (without moving it), apply transformations, and insert data into your Amazon Redshift

tables. For more information about federated queries, see Getting started querying data on

remote data sources.

Key Concepts for Understanding dbt™

dbt Architecture and Benefits
dbt is a transformation workflow that lets teams quickly and collaboratively deploy analytics code

following software engineering best practices such as modularity, CI/CD, and documentation.

Users will write their business logic with just one SQL select statement or Python DataFrame (not

available on Redshift) as a dbt model. At time of execution, dbt compiles the model and takes care of

materialization and writing the DML/DDL needed to manage transactions, dropping tables, and

managing schema changes. Code is reusable and modular and can be referenced in subsequent dbt

models, especially with the use of macros, hooks, and package management.

By having dbt take care of the DML/DDL, environment management is as simple as running the dbt

model in the desired environment, thus removing common errors that happen from copy and pasting

SQL. Version control allows for mature source control processes like branching, pull requests, and code

https://docs.aws.amazon.com/redshift/latest/gsg/datasharing.html
https://docs.aws.amazon.com/redshift/latest/gsg/datasharing.html
https://docs.aws.amazon.com/redshift/latest/dg/c-getting-started-using-spectrum.html
https://docs.aws.amazon.com/redshift/latest/gsg/data-lake.html
https://docs.aws.amazon.com/redshift/latest/gsg/data-lake.html
https://docs.aws.amazon.com/redshift/latest/gsg/federated-query.html
https://docs.aws.amazon.com/redshift/latest/gsg/federated-query.html
https://docs.aws.amazon.com/redshift/latest/gsg/federated-query.html
https://docs.getdbt.com/docs/build/jinja-macros
https://docs.getdbt.com/docs/build/hooks-operations
https://docs.getdbt.com/docs/build/packages

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 5

reviews. To increase stakeholder trust, data quality tests can be written and applied on the underlying

data, catching any edge cases that might apply in development, testing, and deployment.

dbt Cloud

dbt Cloud is a hosted service that helps data teams productionize dbt deployments. dbt Cloud offers

turnkey support for job scheduling, CI/CD integrations, serving documentation, native git integrations,

monitoring and alerting, and an Integrated Developer Environment (IDE) all within a web-based user

interface (UI).

To get started with dbt and Redshift, you can install the Redshift adapter for local development on the

command line or create a free trial dbt Cloud account to leverage the in-platform IDE and scheduler.

Documentation and Dependency Handling

A keystone of dbt’s functionality is the ref function. The ref function in dbt automatically establishes a

lineage from the dbt model being referenced to the model declared in the reference. By using the ref

function, dbt is able to (1) infer dependencies and (2) ensure that the correct upstream tables and views

are selected based on your environment. Always use the ref function when selecting from another

model, rather than using the direct relation reference (e.g. my_schema.my_table).

When ref() is paired with the use of threads, dbt executes models following an optimal path without

requiring manual input. As you increase the number of threads for a run, dbt increases the number of

paths in the graph that it can work on at the same time, thus reducing the run time of your project.

In dbt, Models, sources, tests, and snapshots are all examples of nodes in dbt projects. Pairing threads

with dbt’s node selection, you can optimize your dbt run by only running what you need without

explicitly declaring the model build order. This means you can run based on what models have changed

from the last run or restart from failure alongside running models in parallel.

https://docs.getdbt.com/dbt-cli/install/overview
https://www.getdbt.com/signup/
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/dbt-cli/configure-your-profile#understanding-threads
https://docs.getdbt.com/reference/node-selection/syntax

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 6

A sample dbt DAG: In this example, the user has declared in model dim_suppliers a reference to

stg_tpch_nations, stg_tpch_regions, and stg_tpch_suppliers. At time of a dbt run, if a user has declared

3 threads, dbt would know to execute the first three staging models prior to running dim_suppliers. By

specifying 3 threads, dbt will work on up to 3 models at once without violating dependencies – the actual

number of models it can work on is constrained by the available paths through the dependency graph.

Sources work similarly to refs, with the key difference being that rather than telling dbt how a model

relates to another model, sources tell dbt how a model relates to a source object. Declaring a

dependency from a model to a source in this way enables a couple of important things: it allows you to

select from source tables in your models, and opens the door to more extensive project testing and

documentation involving your source data.

https://docs.getdbt.com/docs/building-a-dbt-project/using-sources

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 7

A sample dbt DAG including a source node: The green node here represents the source table that

stg_tpch_nation has a dependency on.

Making Code Modular Using Macros

In dbt, alongside SQL, you can also use Jinja, a Pythonic templating language that can expand on SQL’s

capabilities. Jinja gives you the ability to use control structures and apply environment variables.

Pieces of code written with Jinja that can be reused throughout the dbt project are called macros. They

are analogous to functions in other programming languages, allowing you to define code in one central

location and re-use it in other places. The ref and source functions mentioned above are examples of

Jinja. In addition to being helpful for environmental logic, macros can help operationalize Redshift

administrative tasks like grant statements, or systemically remove deprecated objects. Basically any

code you find yourself writing/executing over and over, you should consider putting it into a macro.

Jumpstarting dbt development with Packages

dbt packages are libraries of open source models and/or macros for a particular purpose or data source.

Instead of having to rewrite the same code that the community have perfected, use packages so you can

focus on implementing your organization’s custom models and business logic.

Common package functionality includes:

● Modeling methods for common data sources, like Facebook Ads or Netsuite

● Useful tests that fall outside of dbt’s standard tests

● Innovative work on pushing dbt transformations to new realms, like dbt_ml

● And more!

dbt Labs currently supports a Redshift package for a provisioned cluster that provides a number of

models for Redshift system tables, as well as some useful macros that help you compress tables, unload

tables, and even vacuum and analyze tables. These are incredibly helpful if you want to access and

analyze Redshift query and permissions data without having to explicitly model it out yourself.

Users can add hub packages to their dbt projects by adding the package name and version they want in

their dbt project’s packages.yml file. After users add them there and run dbt deps, they can

access the macros and models throughout their project using the normal ref and macro syntax. For

private, local, or git packages not in the dbt package hub, you can learn more about installing packages

to your dbt project here.

Add the dbt_utils package to any dbt project and utilizing the macros there to help stick to DRY (Don’t

Repeat Yourself) principles in data modeling. dbt_utils contains a series of macros and tests that

help alleviate common pain points in data modeling, such as the ability to quickly create a date spine (a

https://docs.getdbt.com/docs/building-a-dbt-project/jinja-macros
https://docs.getdbt.com/docs/build/jinja-macros#macros
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://hub.getdbt.com/fivetran/facebook_ads/latest/
https://hub.getdbt.com/fivetran/netsuite/latest/
https://hub.getdbt.com/calogica/dbt_expectations/latest
https://hub.getdbt.com/kristeligt-dagblad/dbt_ml/latest
https://hub.getdbt.com/dbt-labs/redshift/latest/
https://hub.getdbt.com/
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://github.com/dbt-labs/dbt-utils
https://github.com/dbt-labs/dbt-utils/blob/main/macros/sql/date_spine.sql
https://github.com/dbt-labs/dbt-utils/blob/main/macros/sql/date_spine.sql

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 8

table with the relevant time period that has one record for each date in the period), unpivot columns

easily, and more.

The dbt_utils package also supports an insert_by_period materialization type for Redshift,

where dbt can insert records into a table one period (i.e. day, week) at a time. This materialization is

most helpful for event data that can be processed in discrete periods or when you have incredibly large

data loads that fail at specific sections.

As your team and data grows, it is not uncommon for teams to create and share internal packages

where they can standardize logic and definitions across multiple dbt repositories. This can help ensure

metrics have the same definition, business logic is written consistently, and limit WET (write every time)

code.

Documentation as you code with dbt

dbt allows data teams to create robust documentation for their data sources, models, tests, and

downstream exposures. At the source and model-level, you can add documentation around models

themselves and the fields they contain. dbt docs help everyone in your organization, including

business users to answer everyday questions about datasets, and transformation logic.

Documenting sources and models locally via the command line. Alternatively, generating documentation

through dbt Cloud is a great way to promote data transparency with end business users.

dbt also recommends leveraging meta fields for sources, models, tests, and macros to help establish

clear ownership for dbt project objects. The meta fields are a great way to clearly identify model owner,

maturity, and flags if it contains sensitive data like PII. There are several data governance tools, that

integrate with dbt by using the meta field to implement policies.

Exposures can be used to represent downstream BI dashboards, applications, or data science pipelines

in your dbt project. Documenting exposures in dbt is a great way to clearly identify ownership,

dependencies, and descriptions for downstream applications.

All of this dbt documentation is available through a local host after running two CLI commands (dbt

docs generate && dbt docs serve) or through the “Documentation” section in dbt Cloud.

You can also use the dbt Cloud Metadata API to send over the information over to our partner data

catalogs.

Resources for Learning More

There is a wide variety of resources publicly available for learning more. If you’re new to dbt, start with

the Guide tailored for Redshift users. It will guide through the process of setting up a dbt Redshift

project and trying out key dbt features. If you want to jump start using dbt CLI with Amazon Redshift

you can use this Guide. Next, try the more in-depth dbt Fundamental course, and use the essential dbt

project checklist to reference a list of best practices.

https://github.com/dbt-labs/dbt-utils/blob/main/macros/sql/unpivot.sql
https://github.com/dbt-labs/dbt-utils/blob/main/macros/sql/unpivot.sql
https://docs.getdbt.com/docs/building-a-dbt-project/exposures
https://docs.getdbt.com/reference/commands/cmd-docs
https://docs.getdbt.com/reference/resource-configs/meta
https://docs.getdbt.com/docs/build/exposures
https://docs.getdbt.com/docs/get-started/getting-started/getting-set-up/setting-up-redshift
https://catalog.workshops.aws/dbt-cli-and-amazon-redshift/en-US
https://courses.getdbt.com/courses/fundamentals
https://docs.getdbt.com/blog/essential-dbt-project-checklist
https://docs.getdbt.com/blog/essential-dbt-project-checklist

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 9

Optimizing an Amazon Redshift Architecture with

dbt

By introducing dbt to an Amazon Redshift architecture, the data team can move data processing inside

Redshift, using an ELT (Extract-Transform-Load) framework instead of an ETL (Extract-Load-Transform)

framework. In an ELT framework, data is loaded into the data warehouse with little to no pre-

processing, and data can be transformed within Redshift. With a shift to an ELT framework, a wider

range of people within the organization can contribute data transformations—including practitioners

who may have deep business context but no programming skills beyond SQL.

Connecting dbt to Amazon Redshift

The dbt framework uses adapters to “adapt” dbt’s functionality to a given data platform. The dbt-

Redshift adapter allows dbt to connect to Redshift. After a connection is established, dbt is able to issue

Redshift-compliant SQL to Redshift for execution, and conversion of model files into persisted objects.

To use dbt Core with Redshift, the setup process starts with installing the dbt-redshift adapter locally.

Once configured with your preferred set of tooling (including text editor, command line interface, etc),

you are ready to use dbt with Redshift.

In dbt Cloud, there is no need for installation. Simply create an account, set up a Redshift connection,

and you're ready to develop. dbt Cloud is a completely browser-based interface, saving you time on

maintaining environments and software updates.

https://docs.getdbt.com/dbt-cli/install/overview
https://docs.getdbt.com/docs/dbt-cloud/cloud-overview
https://docs.getdbt.com/docs/dbt-cloud/cloud-overview

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 10

dbt + Redshift Best Practices

Choose A Redshift Cluster or Serverless Endpoint

In Redshift, teams can choose from either an Amazon Redshift provisioned cluster or serverless

endpoint. If leveraging a provisioned cluster, we recommend choosing the RA3 node type. Redshift RA3

node types and serverless endpoints separate compute from storage by leveraging Redshift Managed

Storage (RMS). They provide superior performance along with features like data sharing, scalable

compute and storage, AWS Data Exchange, and cross-database queries. Amazon Redshift serverless has

the added benefit where users do not have to worry about sizing aspects and the data warehouse

endpoint will automatically pause and resume allowing users to enjoy a pay-as-you-go model. If a

customer expects a near zero-administrative cloud data warehouse, then Redshift Serverless is the right

choice.

In addition, Amazon Redshift provides a dense compute (DC2) node type, however, we do not

recommend them due to their limitations with cross-database querying, and the impact they have on

environment configurations and performance.

The correct Redshift set-up and workflow can look different from team to team, however, we have a

series of recommendations to build a strong foundation, regardless of organization size. We ultimately

recommend implementing this basic structure and then customizing it to work for you and your team.

Plan for Quality Assurance

It is critical to set up distinct production and development environments in dbt and Redshift. This

reduces the risk of exposing untested data to business intelligence (BI) platforms, and limits the need for

costly rebuilds.

It is also important to create a QA framework. For teams who can access the same raw data in

development and production, because the data is the same, you might execute QA-related tasks in your

development environment prior to promoting to production. For other teams who might be accessing

different versions of the raw data based on if they’re in development vs the production environment, a

separate QA environment from dev and prod might make sense. This especially makes sense when you

are introducing new approvers in the QA environment as opposed to the dev environment.

We always recommend a QA workflow in order to promote code from development to production,

irrespective of where you actually execute those checks. For the purpose of this writeup, we will have

the simpler approach of managing QA workflows inside of the development environment.

https://aws.amazon.com/redshift/pricing/#Amazon_Redshift_node_types
https://aws.amazon.com/redshift/pricing/#Amazon_Redshift_node_types

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 11

Configure your Data Warehouse Environment (Multiple

Redshift Clusters)

To begin, create three Redshift clusters or serverless endpoints named raw, dev and prod. If you choose

to create them in separate Redshift clusters, you will need to enable data sharing (available only on

Redshift RA3 and Serverless). Data sharing enables one cluster to share a dataset with another cluster

without copying or moving data. As an alternative, you can utilize cross-database querying to create all

three databases in one cluster or endpoint using RA3 instances or serverless.

Raw Database

To avoid duplicating the raw data used by your dbt models, we recommend housing raw data in a

separate database accessible to both development and production environments. The exception to this

is if you have PHI or PII data that cannot be exposed to development environments. If you come across

this need, we recommend placing the cleaned version of the raw data in your dev database while having

PHI/PII data in prod. The goal here is to minimize how much duplicate data you have while still meeting

data security requirements.

Once the raw database is created and data is ready to be loaded, create raw schemas for the

unmodeled data from each data source. For raw source data, we suggest naming schema objects with a

prefix of the ELT tool that loaded that data (ex. airbyte_facebook_ads).

Dev Database

In the dev database, we suggest that dbt developers have their own sandbox/development schema,

prefixed with their name (ex. dbt_amyc), for development. In this space, dbt developers can create,

update, and delete models without the risk of impacting others’ development spaces.

Prod Database

In the prod database, we suggest organizing your production data objects by functional or verticals. To

do this, you can put your dbt models into different production schemas. We recommend using custom

databases/schemas. For example, you would call the schema that holds your production marketing

models marketing. If it’s a core model needed by multiple teams, you can name the schema core.

https://docs.aws.amazon.com/redshift/latest/dg/cross-database_example.html
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 12

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 13

Configure your Data Warehouse Environment (Single Redshift

Cluster or endpoint)

Alternatively, you can choose to deploy only one Redshift Cluster or endpoint, made up of Redshift DC2

with three schemas or RA3 nodes with multiple databases or a serverless endpoint with multiple

databases, and use it to host all your environments. To do this, for dc2 create one database with

schemas as your organizational dividers between environments, for example,

raw_<data_source_name> for raw schemas, dbt_<developer_name> for development

schemas. Prefix your production schemas based on the function with a prod_ statement to indicate

that they are production schemas. For example, you would call the schema that holds your production

marketing models prod_marketing.

Environments in data transformation are not as siloed as those in general software development. When

building data pipelines, there may be a need to reference objects from a prod environment during

development or while conducting quality assurance checks. For example, if you are deferring to an

existing object in a prod environment during a dbt Cloud Slim CI run, you will execute what has changed

rather than rebuild the entire project to save on warehouse costs. By deferring, you will select from the

https://docs.getdbt.com/reference/node-selection/defer
https://docs.getdbt.com/docs/dbt-cloud/using-dbt-cloud/cloud-enabling-continuous-integration#understanding-dbt-cloud-slim-ci

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 14

existing object rather than create the object again. A Slim CI run is a dbt Cloud job that allows you to use

the state:modified node selector to compare the manifest of the last successful production run to the CI

run being executed to see what has changed in the CI run.

Define your Environments as Targets in dbt

To declare environments in dbt, you can use different connection details in targets. Targets are a dbt

property that contain information about your connection to your data warehouse. You can connect your

dbt project to Redshift in multiple ways which we will cover later in this paper.t its core, a database

name, hostname, username, and port are required to establish a target.

Set up Role Based Access Controls (RBAC), if necessary

By using role-based access control (RBAC) to manage database privileges in Amazon Redshift, you can

assign different privileges to different roles and assign these roles to different users to have more

granular control of user access. RBAC supports row level, and column level security. dbt Cloud offers

RBAC for the dbt experience on the enterprise tier, allowing administrators to control who has access to

develop the dbt project and alter job orchestration.

Use Redshift’s Late Binding Views for Downstream

Consolidation

In Redshift, you can create views that are unbounded from their dependencies.This means that if an

upstream view or table is dropped with a cascade, the late binding view will not be dropped. Late

binding views are useful when a table needs to be dropped and replaced. We recommend using late

binding views to build views on external tables.

To physicalize or materialize a late binding view in your project, specify the configuration for dbt at the

model or project-level. In a model file, you can explicitly set the materialization for a late-binding view

using a config block like this:

{{ config(materialized=’view’, bind=False) }}

You may also want to set the configuration at a project or subfolder-level. To do this, add (and modify

the hierarchy) a bind variable to your dbt_project.yml file. Please see the example below for how

to do this.

name:

‘my_dbt_project’

version: 1.0

…

https://docs.getdbt.com/reference/dbt-jinja-functions/target
https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
https://docs.getdbt.com/docs/dbt-cloud/access-control/enterprise-permissions
https://docs.getdbt.com/docs/dbt-cloud/access-control/enterprise-permissions
https://docs.getdbt.com/reference/dbt-jinja-functions/config

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 15

#This will make all view models in your project use the late-binding

#modifier. The `bind` configuration can be specified anywhere in the

#configuration hierarchy

models:

bind: false

Performance Tuning your dbt - Amazon Redshift

Environment
dbt and Redshift have multiple strategies to make your models more performant and therefore more

cost-efficient. These include:

● Using sort and distribution keys on large tables

● Storing data in an efficient manner

● Configuring Amazon Redshift workload management (WLM)

● Choosing appropriate model materializations

● Limiting the amount of data used during development periods

● Implementing dbt packages to stick to DRY practices; and

● Leveraging Redshift Spectrum for large datasets.

Reference to Amazon Redshift best practices for performance tuning: Blog. We discuss each of these

strategies below.

Using Sort and Distribution Keys

As your dbt project and datasets expand, your build times will also start to increase. Luckily, Redshift has

sort and distribution (dist) keys to optimize performance. When used correctly, you can dramatically

improve build times and cost. Paired with dbt’s modular modeling mentality and accessible

configuration, using sort and dist keys is a matter of adding a few lines to a model config block.

Sort keys determine the order in which rows in a table are stored. You can declare any one or more

columns on your table as sort keys and Redshift will sort the table accordingly. During processing,

metadata like the minimum and maximum values is generated which then Redshift can access these

values without iterating over the data during query execution. Using the right sort key can help Redshift

determine how many rows it has to scan and provide a faster query. If your queries contain range

restricted predicates, defining sort key on predicate columns can make queries more efficient. You can

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-techniques-for-amazon-redshift/

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 16

define compound or interleaved sort keys. Compound sort key is more efficient when query predicates

use a prefix which is a subset of the sort key columns in order. Interleaved sort key gives equal weight to

each column in the sort key.

Distribution keys determine how the rows of a table are stored in relation to the available compute

nodes. The rows are distributed to compute nodes according to the values in one column. If you

distribute a pair of tables on the joining keys, Redshift collocates the rows on the compute nodes

according to the values in the joining columns. This way, matching values from the common columns are

physically stored together. There are four types of distribution styles: auto, all, even, and key.

When you do not specify a distribution style, Amazon Redshift uses auto, which means Redshift will

assign the style based on table size.

Automatic Table Optimization (ATO) is Redshift's self-tuning capability to optimize table design by

applying sort and distribution styles without administrator intervention. ATO continuously observes how

queries interact with tables, and uses advanced artificial intelligence methods to choose sort and

distribution styles to optimize performance. To enable ATO, create a new table with Diststyle set to Auto

and Sort key set to AUTO. You can also alter an existing table with an alter table command and change

distribution style and sort key to auto.

We recommend keeping to an auto style for Diststyle and Sort key until you have a need for more

manual distribution configuration. That time may come when you are starting to seek performance

improvements and areas to finetune. Before starting, look at data around your model performance to

develop a clear understanding of your dbt project’s DAG (directed acyclic graph) and the

transformations happening. Answer the following questions:

● What are your largest models?

● What kind of joins are you doing? And between which models? On what key?

dbt has several features to help you answer these questions in a scalable and automated way:

● In dbt Cloud, leverage the Metadata API and Model Timing Tab to collect data on your jobs and

models

● Parse out dbt artifacts generated from model runs

● To get artifacts from model runs in Redshift, put the generated manifest.json into an S3 bucket,

use the external tables package to stage it, and model the data using inspiration from the dbt

artifacts package

The Redshift query optimizer is also a great tool to unpack model performance opportunities. Use the

EXPLAIN plan to break down the CTEs of long running models and check if logic can be cleaned up or

extracted out to another model. Ultimately, you want to reduce the joins that are most problematic and

benchmark by adjusting the sort and dist key.

https://docs.getdbt.com/terms/dag
https://docs.getdbt.com/reference/artifacts/manifest-json
https://hub.getdbt.com/dbt-labs/dbt_external_tables/latest/
https://hub.getdbt.com/brooklyn-data/dbt_artifacts/latest/
https://hub.getdbt.com/brooklyn-data/dbt_artifacts/latest/

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 17

For the most part, we recommend using dist keys on columns with high cardinality in your largest tables,

outside of the automated method. You will likely use them in large fact and dimension tables that are

eventually exposed downstream in your BI platform. This can minimize duplicated storage, keep your

data on the same node, and improve performance. If you’re not able to distribute by one key, we

recommend taking a look at our comprehensive blog post about this topic.

Storing Data Efficiently

We recommend the following table design practices, to store data more efficiently, minimize memory

usage and disk spill, and improve query performance:

● Use compression, a column-level operation that reduces the size of data when it is stored, and

improves query performance by reducing disk I/O. You can specify compression encodings when

you create a table, but automatic compression usually produces the best results. ENCODE AUTO

is the default for tables. Amazon Redshift automatically manages compression encoding for all

columns in the table and balances overall performance when choosing compression encodings.

● Minimize column width, Consider the largest values you are likely to store in a VARCHAR

column

● Use the appropriate data type, Store numeric and date/time values as corresponding data

types.

Configuring Amazon Redshift Workload Management (WLM)

For the provisioned clusters, while setting up loader, transformer, and reporter groups, take advantage

of Redshift's automatic workload management (Auto WLM) capability by creating separate WLM queues

for each type of workload. Auto WLM optimizes resource use by adapting the concurrency level based

on the runtime of each workload. This can help ensure that short, fast-running queries won't get stuck in

queues behind long-running queries.

Having separate WLM queues also enables the use of WLM query monitoring rules (QMR) to control

query priorities at a finer grain. Once configured, the rules will promote or demote queries at runtime

based on metrics like queue wait, execution time, and CPU usage.

Choosing Appropriate Model Materializations

You may need to adapt your materialization strategy in dbt, if performance starts to lag with increasing

project size and data volume.

dbt currently supports four materialization strategies out of the box: view, table, ephemeral, and

incremental. By default, dbt will materialize models as views unless otherwise defined in

dbt_project.yml or in a model config block.

https://docs.getdbt.com/blog/redshift-configurations-dbt-model-optimizations
https://docs.aws.amazon.com/redshift/latest/dg/automatic-wlm.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-query-monitoring-rules.html

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 18

We often recommend starting with views and tables to establish a strong foundation for a dbt project,

and turning to more complex approaches (like incremental models) to improve efficiency as needed.

An incremental model is built like a normal table on its first run. On subsequent runs, it will process just

the data matching the incremental filter criteria -- typically data that has been added or updated in the

source table since the last run -- and insert the changes into the base table built in the first run. By

limiting the amount of data transformed per run, incremental models can reduce the runtime and costs

of those transformations. We often see incremental materializations applied to large-volume datasets,

such as website event data or email CRM platform data.

Advanced users may also be interested in creating their own custom materializations. Custom

materializations can be referenced like any other materialization throughout your dbt project.

Materialized Views in Redshift

Materialized views contain precomputed result sets, and can be used to speed up complex queries such

as those involving multiple joins and aggregations. To create materialized views in Redshift, use the

necessary data definition language (DDL) in a materialization macro.

You can refresh materialized views on a schedule, or configure autorefresh to account for potential

changes in the underlying base table components (row-level data). As Amazon Redshift prioritizes user

workload, it might stop autorefresh to preserve performance.

Amazon Redshift uses one of two approaches to refresh a materialized view:

● In an incremental refresh (not to be confused with incremental materializations in dbt), Amazon

Redshift identifies new records and updates materialized views with only those records. This

approach is supported if the underlying SQL for the view contains arithmetic SQL operations

such as SUM and AVG.

● Amazon Redshift will perform a full refresh, which replaces all of the data in the materialized

view, in cases where an incremental refresh isn't supported.

To update a materialized view when its underlying SQL logic has changed, you will need to drop the

existing view and rerun the model manually. For more information on Redshift’s materialized views,

check out the documentation here.

Limiting data used in development

When developing models, you often need to finetune logic before it is ready to apply to an entire

dataset. Conditional logic can help you limit data usage and reduce costs during this phase of work,

without needing to manually write and remove LIMIT or WHERE clauses. To apply conditional logic in a

DRY (don't repeat yourself) fashion, use a macro that can be called across models throughout your

project. The sample code below adds the WHERE clause when the target is set to dev:

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models
https://docs.getdbt.com/docs/guides/creating-new-materializations
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.getdbt.com/reference/dbt-jinja-functions/target#use-targetname-to-limit-data-in-dev

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 19

Using dbt packages to keep projects DRY

Use the dbt_utils package to apply DRY (don't repeat yourself) principles to your data models. This

package contains macros and tests that can address common data modeling pain points and expedite

tasks like creating a date spine, unpivoting columns, and more.

dbt_utils supports an insert_by_period materialization type, in which dbt can insert records

into a table one period (e.g. day, week) at a time. This materialization is most helpful for event data that

can be processed in discrete periods or large data loads that fail at specific sections.

As your team and data grow, you may want to create and share internal packages to standardize logic

and definitions across multiple dbt repositories. This can help limit redundant code, and keep business

logic and metric definition consistent.

Leveraging Redshift Spectrum and External Tables

Using Redshift Spectrum, dbt developers can directly query data stored in Amazon S3. If your team is on

DC2 instances, storage and compute costs are coupled. When you need more storage but not more

compute, you can reduce costs by offloading infrequently-queried data in Amazon Redshift into Amazon

S3, and using Redshift Spectrum.

If your team uses a Serverless or RA3 instance, on the other hand, you can add storage without adding

compute. Using Redshift Spectrum is still beneficial as you can directly query open data formats

including Parquet, Avro, and more in Amazon S3.

Redshift Spectrum is a good fit for large datasets with billions of rows per day, such as web or email

event data that need to be aggregated to produce more meaningful insights. Before using dbt with such

data, follow these best practices:

https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
https://docs.aws.amazon.com/redshift/latest/dg/c-getting-started-using-spectrum.html

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 20

1. Partition the data in Amazon S3 by defining the S3 prefix based on the columns (ie event_date)

frequently used in SQL predicate - Multilevel partitioning is encouraged if you frequently use

more than one predicate.

2. Set the table statistics (numRows).

Reference to Amazon Redshift Spectrum performance tuning: blog

To create and manage external tables in Amazon Redshift, use dbt’s external tables package. This

functionality allows you to create a YAML-defined source from S3-stored files or an external data source,

then execute a dbt run-operation command to create, refresh, and/or drop the source.

To use dbt’s external tables package with Redshift Spectrum, you must have:

● An existing S3 bucket

● Permissions set to create table

● An AWS Glue Data Catalog external database and Redshift external schema in which dbt will

populate the external table in Redshift

This approach cuts complexity, and allows you to create and maintain the external table inside of dbt

with downstream dependencies taken into account.

As an alternative, use crawlers on AWS Glue to create and manage external tables in Amazon Redshift.

Crawlers will create external tables after extracting required information from your specified Amazon S3

path.

To use crawlers with Redshift Spectrum:

1. Create an external schema referencing an AWS Glue Data Catalog database

2. Create and run crawlers that creates external tables in the Data Catalog database

To make dbt aware of dependencies on an external table created by a crawler, define the external table

as a source in your dbt project.

This approach may be preferred when you have little to no information about the external tables, and

want to rely on crawlers to extract the information including columns, data types, and partitions. To

update external tables with new partitions added over time, rerun the crawlers. You can rerun a crawler

manually or on a schedule.

https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html#c-spectrum-external-tables-partitioning
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://hub.getdbt.com/dbt-labs/dbt_external_tables/latest/
https://docs.getdbt.com/reference/commands/run-operation
https://docs.aws.amazon.com/glue/latest/dg/console-crawlers.html

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 21

Data-Driven Code Optimization in dbt™ and

Amazon Redshift
You can debug and optimize code and models systematically by leveraging dbt-generated metadata and

Redshift’s EXPLAIN command.

Analyzing dbt Metadata

With each job run, dbt Cloud generates metadata on the timing, configuration, and freshness of models

in your dbt project. The dbt Metadata API is a GraphQL service which supports queries on this metadata,

via the graphical explorer or the endpoint itself. Teams can pipe this data into their data warehouse and

analyze it like any other data source in a business intelligence platform. dbt Cloud users can also use the

data via the Model Timing tab to visually identify models that take the most time and may require

refactoring.

Querying the Metadata API: Using the dbt Cloud Metadata API, you access your dbt metadata including

information about lineage, execution time, and documentation.

https://docs.getdbt.com/docs/dbt-cloud/dbt-cloud-api/metadata/metadata-overview
https://metadata.cloud.getdbt.com/graphiql
https://docs.getdbt.com/docs/dbt-cloud/using-dbt-cloud/cloud-model-timing-tab

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 22

Using the Model Timing tab, this tab is a visual representation of your dbt job run, allowing you identity

long running models.

Using Redshift’s EXPLAIN and Query Summary

dbt users can also run Redshift’s EXPLAIN command to see how a model will run in the query optimizer.

By looking at the full query plan for a given model, you can get information on:

● Operations performed by the execution engine

● Tables and fields used per operation

● Volume of data processed in each step

● Operation cost

Note that the EXPLAIN command does not actually compute the query.

You can use this table to help connect the query plan and the query summary. You can execute thie

explain plan in the dbt Cloud IDE or in the Redshift Query Explorer. Once you have identified a potential

performance improvement, follow the usual dbt workflow by creating a new git branch and update any

necessary changes (like materialization, sql command, etc), and test the improvement.

Conclusion
In summary, Amazon Redshift and dbt™ work together to power your data warehousing, and

transformation operations. Amazon Redshift offers advanced features like Serverless, Data Sharing,

Redshift Spectrum, and Federated query for optimized data ingestion and querying. Meanwhile, dbt™

https://docs.aws.amazon.com/redshift/latest/dg/r_EXPLAIN.html
https://docs.aws.amazon.com/redshift/latest/dg/c-the-query-plan.html
https://docs.aws.amazon.com/redshift/latest/dg/query-plan-summary-map.html

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 23

enables efficient data transformation through Software engineering best practices such as modularity,

CI/CD, and SQL-based logic. When combined, Amazon Redshift and dbt™ allows you to be seamless

trusted data pipelines that facilitate you to derive quicks insights from your data.

Contributors

Contributors to this document include:

• Amy Chen, Engineering Manager-Partnerships, dbtlabs

• Kira Furuichi, Technical Writer, dbtlabs

• Maneesh Sharma, Sr. Database Engineer Redshift, Amazon Web Services

• Bhanu Pittampally, Sr Analytics Specialist SA, Amazon Web Services

• Jason Pedreza, Analytics Specialist SA, Amazon Web Services

• Harshida Patel, Principal Analytics Specialist SA, Amazon Web Services

• Randy Chng, Analytics Acceleration Lab SA, Amazon Web Services

Appendix: Recommendations for Setting

Permissions and Access Controls in Redshift

Given the setup for Redshift we walked through earlier in this paper, we'll outline recommendations to

set up permissions and groups for the long-term. The setup we suggest here will not necessarily work

for every team, but will provide a starting point to adjust to your internal and regulatory requirements.

Setting Up Group Permissions

Set up Groups

First, set up groups. In Redshift, a group is a collection of users who share the same permissions. We

recommend starting off with three primary groups: a loader, transformer, and reporter.

● The loading group needs to load data into your database. Extract and load (EL) tools, such as

Fivetran or Airbyte, would fall into this group.

● The transformer group needs to transform the data. The members in this group may include

dbt developers and applications like dbt Cloud.

● The reporter group needs to read data in the database. This group may include any ML tools

that need to query models in your warehouse.

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 24

To establish each group, execute this command: create group group_name.

Create Users and Allocate to Groups

Next, create users and assign them into groups.

You will need to create a database user account for each human, as well as each application (such as an

EL tool, BI platform, or dbt Cloud), that needs to load, transform, or read data in your warehouse.

ETL tools are generally classified as loaders, whereas dbt Cloud will need transformer permissions

to run scheduled production jobs from your dbt project.

The code example below creates and assigns users to groups:

create user your_data_loader

 password '_generate_this_'

 in group loader;

create user your_user_1

 password '_generate_this_'

 in group transformer;

create user dbt_cloud

 password '_generate_this_'

 in group transformer;

create user your_bi_tool

 password '_generate_this_'

 in group reporter;

Next, we need to explicitly grant the appropriate permissions to each group.

Loader Group Permissions

The loader group will need the ability to create schemas and schema objects. With permission to

create a schema, the group will also be able to create tables and views in that raw schema. If your

loader group includes an ELT tool, make sure the group has some privileges on information schemas.

A note: If you are on a DC2 instance and only have one database, your loader group would load into

your one database (the analytics database in the example below). If you are on a Serverless or RA3

https://docs.getdbt.com/docs/dbt-cloud/cloud-overview#schedule-and-run-dbt-jobs-in-production

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 25

instance and have multiple databases (e.g. raw and analytics), your loader group would need

create access only on the raw database.

Run the following lines below to grant the loader group the correct permissions:

grant create on database analytics to group loader;

grant select on all tables in schema information_schema to group

loader;

grant select on all tables in schema pg_catalog to group loader;

Transformer Group Permissions

To enable transformer group users to create dbt models, generate dbt docs, and conduct analysis,

you'll need to grant them:

● access to schema usage

● select privileges on schema objects

● select privileges for future schema objects

● select privileges on information schemas

To grant access to schema usage, run the following commands for each schema:

grant usage on schema my_schema to group transformer;

grant select on all tables in schema my_schema to group transformer;

alter default privileges for user my_user in schema my_user

 grant select on tables to group transformer;

You will need to rerun these commands whenever you add a new schema to your database via an ELT

tool like Fivetran or Airbyte.

To grant access to create objects in the database, run:

grant create on database analytics to group transformer;

To grant select privileges on information schemas, run:

grant select on all tables in schema information_schema to group

transformer;

grant select on all tables in schema pg_catalog to group transformer;

https://docs.getdbt.com/docs/building-a-dbt-project/documentation

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 26

Reporter Group Permissions

After tables and views are created via the transformer roles, you can grant read access to the

reporter group, which might include the tools that need to query those objects downstream, such as

BI or ML tools.

The best way to manage access to tables and views is to use dbt's grants configuration to set those

permissions directly in dbt. You can apply the configuration on the models config block in a YAML file, or

on the config Jinja macro on the model's SQL file.

In dbt_project.yml, the configuration will look like this:

models:

 +grants:

 select: ['reporter']

On the model file, it will look like this:

{{ config(grants = {'select': ['reporter']}) }}

Note: If you have configured grants in multiple places (dbt_project.yml,

resources.yml,and/or the model's SQL file), dbt will honor more-specific grantees over less-

specific ones. For example: if you have different grants configured for a model in its YAML and model

SQL files, dbt will only apply the grants applied on the SQL file. You can apply the + (addition) side to

signal that you want to apply the new group in addition to the existing group.

This would look like:

{{ config(grants = {'+select': ['reporter']}) }}

For more information, check out the documentation.

Authentication Methods

dbt supports several authentication methods for Redshift users, including simple password-based

authentication, IAM authentication, and connection via an SSH tunnel in dbt Cloud.

Username and Password Authentication

If you are developing locally, adjust your local profiles.yml to explicitly set the connection for a

target using a username and password:

company-name:

 target: dev

 outputs:

https://docs.getdbt.com/reference/resource-configs/grants#configuring-grants
https://docs.getdbt.com/reference/resource-configs/grants#configuring-grants

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 27

 dev:

 type: redshift

 host: hostname.region.redshift.amazonaws.com

 user: username

 password: password1

 port: 5439

 dbname: analytics

 schema: analytics

 threads: 4

 keepalives_idle: 240 # default 240 seconds

 connect_timeout: 10 # default 10 seconds

 sslmode: [optional, set the sslmode used to connect to the

database (in case this parameter is set, will look for ca in

~/.postgresql/root.crt)]

If you’re using a secrets manager, rather than providing your password directly, use an environment

variable, which will look like the below:

Password: "{{ env_var('DBT_USER_PASSWORD') }}"

Authentication with IAM

To set up a Redshift profile using IAM Authentication for local development, set the method parameter

to iam in your local profiles.yml file. Note that a password is not required when using IAM

Authentication.

Your local profiles.yml would look a something like this:

my-redshift-db:

 target: dev

 outputs:

 dev:

 type: redshift

 method: iam

 cluster_id: [cluster_id]

 host: hostname.region.redshift.amazonaws.com

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 28

 user: username

 iam_profile: data_engineer # optional

 iam_duration_seconds: 900 # optional

 autocreate: true # optional

 db_groups: ['analysts'] # optional

 # Other Redshift configs:

 port: 5439

 dbname: analytics

 schema: analytics

 threads: 4

 keepalives_idle: 240 # default 240 seconds

 sslmode: [optional, set the sslmode used to connect to the

database (in case this parameter is set, will look for ca in

~/.postgresql/root.crt)]

 ra3_node: true # enables cross-database sources

For all potential profiles.yml configurations, check out this document.

** IAM Authentication is not supported for Redshift Serverless as of the time of publication.

SSH Tunnel Connection

If you are using dbt Cloud, you can use an SSH tunnel to connect your dbt project to Redshift. Navigate

to the “Projects” section in dbt Cloud, and follow the steps below:

1. Add your hostname, port (usually 5439 for Redshift), and username

2. Save the connection and a public key will be generated and displayed under the “Public

Key” section

3. Copy this key to the bastion server which will authorize dbt Cloud to connect to Redshift

Protecting PII: Dynamic Data Masking with dbt

Oftentimes, you will want true column-values to be viewed by only a certain subset of users in our data

warehouse. Columns that you may want to hide often contain sensitive PII that only admin users should

https://docs.getdbt.com/reference/warehouse-profiles/redshift-profile
https://docs.getdbt.com/reference/warehouse-profiles/redshift-profile
https://github.com/dbt-labs/docs.getdbt.com/pull/1693

Amazon Web Services Best Practices for Leveraging Amazon Redshift and dbt™

 29

be able to view and access. To hide or contort this data for certain users, you can create a dbt macro to

establish data masking logic that can be used across data models. At its core, this macro uses Redshift’s

current_user() value to determine whether the true column value or a hashed value of the column

is shown. A deeper-dive into implementing this type of data masking in Redshift can be found in this

discourse and in this Github repository. Amazon Redshift now natively supports dynamic data masking.

Document revisions

Date Description

March 2023 First Publication

https://docs.getdbt.com/docs/building-a-dbt-project/jinja-macros
https://discourse.getdbt.com/t/how-to-implement-dynamic-data-masking-on-redshift/2043
https://discourse.getdbt.com/t/how-to-implement-dynamic-data-masking-on-redshift/2043
https://github.com/dbt-labs/dbt-labs-experimental-features/tree/main/dynamic-data-masking-redshift
https://aws.amazon.com/blogs/big-data/how-dynamic-data-masking-support-in-amazon-redshift-helps-achieve-data-privacy-and-compliance/

