
Comparing the Use of Amazon
DynamoDB and Apache HBase for

NoSQL
Wangechi Doble

September 2014

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 2 of 32

Contents
Contents 2

Abstract 3

Introduction 3

Overview 4

Amazon DynamoDB Overview 4

Apache HBase Overview 5

Feature Summary 7

Use Cases 9

Data Models 9

Data Types 13

Indexing 15

Data Processing 18

Throughput Model 18

Consistency Model 19

Transaction Model 20

Table Operations 21

Architecture 22

Amazon DynamoDB Architecture Overview 22

Apache HBase Architecture Overview 22

Apache HBase on Amazon EMR Architecture Overview 24

Partitioning 24

Performance Optimizations 25

Amazon DynamoDB Performance Considerations 25

Apache HBase Performance Considerations 27

Apache HBase on Amazon EMR 29

Conclusion 31

Further Reading 31

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 3 of 32

Abstract
One challenge that architects and developers face today is how to process large

volumes of data in a timely, cost effective, and reliable manner. There are several

NoSQL solutions in the market today, and choosing the right one for your use case can

be difficult. This paper compares two popular NoSQL data stores, Amazon DynamoDB,

a fully managed NoSQL cloud database service,1 and Apache HBase, an open-source,

column-oriented, distributed big data store.2 Both Amazon DynamoDB and Apache

HBase are available in the Amazon Web Services (AWS) cloud.3

Introduction
The Amazon Web Services (AWS) cloud accelerates big data analytics. With access to

instant scalability and elasticity on AWS, you can focus on analytics instead of

infrastructure. Whether you are indexing large data sets, analyzing massive amounts of

scientific data, or processing clickstream logs, AWS provides a range of big data

products and services that you can leverage for virtually any data-intensive project.

There is a wide adoption of NoSQL databases in the growing industry of big data and

real-time web applications. Amazon DynamoDB and Apache HBase are examples of

NoSQL databases, which are highly optimized to yield significant performance benefits

over a traditional relational database management system (RDBMS). Both Amazon

DynamoDB and Apache HBase can process large volumes of data with high

performance and throughput.

Amazon DynamoDB provides a fast, fully managed NoSQL database service. It lets you

offload operating and scaling a highly available, distributed database cluster. Apache

HBase is an open-source, column-oriented, distributed big data store that runs on the

Apache Hadoop framework.4

In the AWS cloud, you can choose to deploy Apache HBase on Amazon Elastic

Compute Cloud (Amazon EC2) and manage it yourself.5 Alternatively, you can leverage

Apache HBase as a managed service on Amazon Elastic MapReduce (Amazon EMR), a

fully managed, hosted6 Hadoop framework on top of Amazon EC2. The following figure

1 http://aws.amazon.com/dynamodb/

2 http://hadoop.apache.org/

3 http://aws.amazon.com/

4 http://hadoop.apache.org/

5 http://aws.amazon.com/ec2/

6 http://aws.amazon.com/elasticmapreduce/

http://aws.amazon.com/dynamodb/
http://hbase.apache.org/
http://aws.amazon.com/
http://hadoop.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/dynamodb/
http://hadoop.apache.org/
http://aws.amazon.com/
http://hadoop.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 4 of 32

shows the relationship of AWS, Amazon DynamoDB, Amazon EC2, Amazon EMR, and

Apache HBase.

Figure 1: Relation of AWS, Amazon DynamoDB, Amazon EC2,

 Amazon EMR, and Apache HBase

Overview
This section summarizes the main benefits, features, and use cases of Amazon

DynamoDB and Apache HBase.

Amazon DynamoDB Overview
Amazon DynamoDB is a fully managed NoSQL database service that provides fast and

predictable performance with seamless scalability. Amazon DynamoDB offers the

following benefits:

 No administrative overhead—Amazon DynamoDB manages the burdens of

hardware provisioning, setup and configuration, replication, cluster scaling, hardware

and software updates, and monitoring and handling of hardware failures.

 Virtually unlimited throughput and scale—The provisioned throughput model of

Amazon DynamoDB allows you to specify throughput capacity to serve nearly any

level of request traffic. With Amazon DynamoDB, there is virtually no limit to the

amount of data that can be stored and retrieved.

 Elasticity and flexibility—Amazon DynamoDB can handle unpredictable workloads

with predictable performance and still maintain a stable latency profile that shows no

latency increase or throughput decrease as the data volume rises with increased

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 5 of 32

usage. Amazon DynamoDB lets you dial up and down capacity as needed to handle

variable workloads. These qualities render Amazon DynamoDB a suitable choice for

online applications with the potential to go viral anytime.

 Integration with other AWS services—Amazon DynamoDB integrates seamlessly

with other AWS services such as Amazon Identity and Access Management

(Amazon IAM) to control access7 to Amazon DynamoDB resources, Amazon

CloudWatch to monitor8 a variety of Amazon DynamoDB performance metrics,

Amazon Kinesis for real-time data ingestion,9 Amazon Simple Storage Service

(Amazon S3) for Internet storage,10 Amazon EMR to provide enhanced advanced

analytics capabilities, Amazon Redshift to provide business intelligence11

capabilities, and AWS Data Pipeline to automate data-driven workflows.12

Apache HBase Overview
Apache HBase, a Hadoop database, offers the following benefits:

 Efficient storage of sparse data—Apache HBase provides fault-tolerant storage for

large quantities of sparse data using column-based compression. Apache HBase is

capable of storing and processing billions of rows and millions of columns per row.

 Store for high frequency counters—Apache HBase is suitable for tasks such as

high-speed counter aggregation because of its consistent reads and writes.

 High write throughput and update rates—Apache HBase supports low latency

lookups and range scans, efficient updates and deletions of individual records, and

high write throughput.

 Support for multiple Hadoop jobs—The Apache HBase data store allows data to

be used by one or more Hadoop jobs on a single cluster or across multiple Hadoop

clusters.

Two of the most common deployment models for Apache HBase are the self-managed

model and the managed Apache HBase solution hosted on Amazon EMR. The following

sections provide a description of these deployment options.

Self-managed Apache HBase Deployment Model
The Apache HBase self-managed model offers the most flexibility in terms of cluster

management, but also presents the following challenges:

7 http://aws.amazon.com/iam/

8 http://aws.amazon.com/cloudwatch/

9 http://aws.amazon.com/kinesis/

10 http://aws.amazon.com/s3/

11 http://aws.amazon.com/redshift/

12 http://aws.amazon.com/datapipeline/

http://aws.amazon.com/iam/
http://aws.amazon.com/iam/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/redshift/
http://aws.amazon.com/datapipeline/
http://aws.amazon.com/iam/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/s3/
http://aws.amazon.com/redshift/
http://aws.amazon.com/datapipeline/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 6 of 32

 Administrative overhead—You must deal with the administrative burden of

provisioning and managing your Apache HBase clusters.

 Capacity planning—As with any traditional infrastructure, capacity planning is

difficult and often prone to significant costly error. For example, you could over-invest

and end up paying for unused capacity or under-invest and risk performance or

availability issues.

 Memory management—Apache HBase is mainly memory-driven. Memory can

become a limiting factor as the cluster grows. It is important to determine how much

memory is needed to run diverse applications on your Apache HBase cluster to

prevent nodes from swapping data too often to the disk. The number of Apache

HBase nodes and memory requirements should be planned well in advance.

 Compute, storage, and network planning—Other key considerations for effectively

operating an Apache HBase cluster include compute, storage, and network. These

infrastructure components often require dedicated Apache Hadoop/Apache HBase

administrators with specialized skills.

Managed Apache HBase on Amazon EMR
Apache HBase on Amazon EMR is optimized to run on AWS and offers the following

benefits:

 Minimal administrative overhead—Amazon EMR handles provisioning of Amazon

EC2 instances, security settings, Apache HBase configuration, log collection, health

monitoring, and replacement of faulty instances. You still have the flexibility to

access the underlying infrastructure and customize Apache HBase further, if desired.

 Easy and flexible deployment options—You can deploy Apache HBase on

Amazon EMR using the AWS Management Console or leverage the AWS Command

Line Interface (AWS CLI) tools.13 Once launched, resizing an Apache HBase cluster

is easily accomplished with a single API call. Activities such as modifying the Apache

HBase configuration at launch time or installing third-party tools such as Ganglia for

monitoring performance metrics14 are feasible with custom or predefined scripts.

 Unlimited scale—With Apache HBase running on Amazon EMR, you can gain

significant cloud benefits such as easy scaling, low cost, pay only for what you use,

and ease of use as opposed to the self-managed deployment model on Amazon

EC2.

 Integration with other AWS services—Amazon EMR is designed to seamlessly

integrate with other AWS services such as Amazon S3, Amazon DynamoDB,

Amazon EC2, and Amazon CloudWatch.

13 http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html

14 http://ganglia.sourceforge.net/

http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html
http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html
http://ganglia.sourceforge.net/
http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html
http://ganglia.sourceforge.net/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 7 of 32

 Built-in backup feature—A key benefit of Apache HBase running on Amazon EMR

is the built-in mechanism available for backing up Apache HBase data durably in

Amazon S3. Using this feature, you can schedule full or incremental backups, and

rollback or even restore backups to existing or newly launched clusters anytime.

Feature Summary
Amazon DynamoDB and Apache HBase both possess characteristics that are critical for

successfully processing massive amounts of data. The following table provides a

summary of key features of Amazon DynamoDB and Apache HBase that can help you

understand key similarities and differences between the two databases. These features

are discussed in later sections.

Feature Amazon DynamoDB Apache HBase

Description Hosted, scalable database service

by Amazon

Column store based on Apache

Hadoop and on concepts of

BigTable

Website aws.amazon.com/dynamodb hbase.apache.org

Documentation aws.amazon.com/documentation/

dynamodb

hbase.apache.org

Developer Amazon Apache Software Foundation

Initial Release 2012 2008

License N/A Open Source

Implementation

Language

 - Java

Server Operating

Systems

Hosted Linux, Unix, Windows

Database Model Key-value store Wide column store

Data Scheme Schema free Schema free

Typing Yes No

APIs and Other

Access Methods

RESTful HTTP API, .NET,

ColdFusion,

Erlang, Groovy

Java API, RESTful HTTP API,

Thrift, C, C#, C++

Supported

Programming

Languages

Java, JavaScript, Perl, PHP,

Python, Ruby

Groovy, Java, PHP, Python, Scala

Server-side Scripts No Yes

Triggers No Yes

Partitioning

Methods

Sharding Sharding

http://aws.amazon.com/dynamodb
http://hbase.apache.org/
http://aws.amazon.com/documentation/dynamodb/
http://aws.amazon.com/documentation/dynamodb/
file:///C:/Users/wdoble/Documents/documents-transfer-2013/whitepaper/hbase/drafts/2014/drafts/hbase.apache.org
http://db-engines.com/en/article/Key-value+Stores
http://db-engines.com/en/article/Wide+Column+Stores

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 8 of 32

Feature Amazon DynamoDB Apache HBase

Throughput Model User provisions throughput Limited to hardware configuration

Partitioning Automatic partitioning Automatic sharding

Replication Multiple times within a region Multiple times across many

servers

Durability Yes Yes

Administration No administration overhead High administration overhead in

self-managed and minimal on

Amazon EMR

User Concepts Access rights for users and roles

can be defined via AWS Identity

and Access Management (IAM)

Access Control Lists (ACL)

Data Model

Row An item can have any number of

attributes

A row can have any number of

columns that can further be

grouped into column families

Row Size Item size restriction No row size restrictions

Primary Key Hash or composite hash-range

key

Row key

Foreign Key No No

Indexes Optional local secondary indexes

and global secondary indexes can

be created for tables with hash-

range primary keys

No built-in index model, but

indexes can be implemented as

secondary tables or coprocessors

Transactions

Row Transactions Item-level transactions Single-row transactions

Multi-row

Transactions

No No

Cross-table

Transactions

No No

Consistency Model Eventually consistent and strongly

consistent reads

Strongly consistent reads and

writes

Concurrency Yes Yes

Updates Conditional updates Atomic read-modify-write

Table 1: Amazon DynamoDB and Apache HBase Feature Summary

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 9 of 32

Use Cases
Amazon DynamoDB and Apache HBase are optimized to process massive amounts of

data. Popular use cases for Amazon DynamoDB and Apache HBase include the

following:

 High volume special events—Popular events, such as the Super Bowl, Olympics,

and World Cup, or even seasonal events, such as national electoral campaigns, are

of relatively short duration and have variable workloads with the potential to consume

large amounts of resources. Amazon DynamoDB lets you dial up capacity when you

need it and dial back down as needed to handle variable workloads. This quality

renders Amazon DynamoDB a suitable choice for such high volume special events.

 Social media applications—Community-based applications, such as online-

gaming, photo-sharing, location-aware applications, and so on, have unpredictable

usage patterns with the potential to go viral anytime. The elasticity and flexibility of

Amazon DynamoDB make it suitable for such high volume, variable workloads.

 Batch-oriented processing—For large datasets, such as log data, weather data,

product catalogs, and so on, you might already have large amounts of historical data

that you want to maintain for historical trend analysis, but need to ingest and batch

process current data for predictive purposes. For these types of workloads, Apache

HBase is a good choice because of its high read and write throughput and efficient

storage of sparse data.

 Reporting—To process and report on high volume transactional data such as daily

stock market trades, Apache HBase is a good choice. This is because Apache

HBase supports high throughput writes and update rates, which make it suitable for

storage of high frequency counters and complex aggregations.

 Real-time analytics—The payload or message size in event data, such as tweets,

E-commerce, and so on, is relatively small when compared with application logs. If

you want to ingest streaming event data in real-time for sentiment analysis, ad

serving, trending analysis, and so on, Amazon DynamoDB lets you dial up

throughout capacity when you need it, and dial it back down when you are done, with

no downtime. Apache HBase can handle real-time ingestion of data, such as

application logs, with ease due to its high write throughput and efficient storage of

sparse data. Combining this with Hadoop's ability to handle sequential reads and

scans in a highly optimized way renders Apache HBase a powerful tool for real-time

data analytics.

Data Models
Amazon DynamoDB and Apache HBase key/value stores are designed with the goal to

deliver significant performance benefits with low latency and high throughput. To achieve

this goal, key/value stores are designed with simpler and less constrained data models

than traditional relational databases. Although the fundamental data model building-

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 10 of 32

blocks are similar in both Amazon DynamoDB and Apache HBase, each database uses

a distinct terminology to describe its specific data model.

At a high level, a database is a collection of tables, and each table is a collection of

rows. A row can contain one or more columns. In most cases, NoSQL database tables

typically do not require a formal schema except for a mandatory primary key that

uniquely identifies each row. The following table illustrates the high-level concept of a

NoSQL database.

Table

Row Primary Key Column 1 Column 2 Column 3 Column n

Table 2: High Level NoSQL Database Table Representation

Columnar databases are devised to store each column separately so that aggregate

operations for one column of the entire table are significantly quicker than the traditional

row storage model.

From a comparative standpoint, a row in Amazon DynamoDB is referred to as an item,

and each item can have any number of attributes. An attribute has a key and a value,

and is commonly referred to as a name-value pair. An Amazon DynamoDB table can

have unlimited items indexed by primary key, as shown in the following example.

Table

Item 1 Primary Key Attribute 1 Attribute 2 Attribute 3 Attribute …n

Item 2 Primary Key Attribute 1 Attribute 3

Item n Primary Key Attribute 2 Attribute 3

Table 3: High-level Representation of Amazon DynamoDB Table

Amazon DynamoDB defines two types of primary keys: a single hash primary key (Table

4) and a composite hash-range primary key with two attributes (Table 5).

Table

Item Hash Key Attribute 1 Attribute 2 Attribute 3 Attribute …n

Table 4: Amazon DynamoDB Hash Primary Key

Table

Item Hash Key Range Key Attribute 1 Attribute 2 Attribute 3 attribute …n

Table 5: Amazon DynamoDB Hash-Range Primary Key

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 11 of 32

In Amazon DynamoDB, a single attribute hash primary key is useful for quick reads and

writes of data. For example, PersonID serves as the hash primary key in the following

Person table.

Person Table

Item PersonId FirstName LastName Zipcode Gender

Item 1 1001 Fname-1 Lname-1 00000

Item 2 1002 Fname-2 Lname-2 M

Item 3 2002 Fname-3 Lname-3 10000 F

Table 6: Person Amazon DynamoDB Table

A composite hash-range key in Amazon DynamoDB is indexed as a hash key element

and a range key element. This multi-part key maintains a hierarchy between the first and

second element values. Holding the hash key element constant facilitates searches

across the range key element to retrieve items quickly for a given hash key. In the

following GameScores table, the composite hash-range key is a combination of

PersonId (hash) and GameId (range).

GameScores Table

 PersonId

(HashKey)

GameId

RangeKey

TopScore TopScoreDate Wins Losses

item1 1001 Game01 67453 2013-12-09:17:24:31 73 21

item2 1001 Game02 98567 2013-12-11:14:14:37 98 27

Item3 1002 Game01 43876 2013-12-15:19:24:39 12 23

Item4 2002 Game02 65689 2013-10-01:17:14:41 23 54

Table 7: GamesScores DynamoDB Table

Although there is no explicit limit on the number of attributes associated with an

individual item in an Amazon DynamoDB table, there are restrictions on the aggregate

size of an item or payload, including all attribute names and values. A small payload can

potentially improve performance and reduce costs because it requires fewer resources

to process. For information about how to handle items that exceed the maximum item

size, see Guidelines for Working with Items15 in the Amazon DynamoDB Developer

Guide.16

15 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html

16 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 12 of 32

In Apache HBase, the most basic unit is a column. One or more columns form a row.

Each row is addressed uniquely by a primary key referred to as a row key. A row in

Apache HBase can have millions of columns. Each column can have multiple versions

with each distinct value contained in a separate cell.

One fundamental modeling concept in Apache HBase is that of a column family. A

column family is a container for grouping sets of related data together within one table,

as shown in the following example.

Table

 Column Family 1 Column Family 2 Column Family 3

row row key Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Table 8: Apache HBase Row Representation

Apache HBase groups columns with the same general access patterns and size

characteristics into column families to form a basic unit of separation. For example, in

the following Person table, you can group personal data into one column family called

personal_info and the statistical data into a demographic column family. Any other

columns in the table would be grouped accordingly as well, as shown in the following

example.

Person Table

 personal_info demographic

 row key firstname lastname zipcode gender

row 1 1001 Fname-1 Lname-1 00000

row 2 1002 Fname-2 Lname-2 M

row 3 2002 Fname-3 Lname-3 10000 F

Table 9: Person Table in Apache HBase

Columns are addressed as a combination of the column family name and the column

qualifier expressed as family:qualifier. All members of a column family have the same

prefix. In the preceding example, the firstname and lastname column qualifiers can be

referenced as personal_info:firstname and personal_info:lastname, respectively.

Column families allow you to fetch only those columns that are required by a query. All

members of a column family are physically stored together on a disk. This means that

optimization features, such as performance tunings, compression encodings, and so on,

can be scoped at the column-family level.

The row key is a combination of user and game identifiers in the following Apache

HBase GameScores table. A row key can consist of multiple parts concatenated to

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 13 of 32

provide an immutable way of referring to entities. From an Apache HBase modeling

perspective, the resulting table is tall-narrow. This is because the table has few columns

relative to the number of rows, as shown in the following example.

GameScores Table

 top_scores metrics

 row key score date wins loses

row 1 1001-game01 67453 2013-12-09:17:24:31 73 21

row 2 1001-game02 98567 2013-12-11:14:14:37 98 27

row 3 1002-game01 43876 2013-12-15:19:24:39 12 23

row 4 2002-game02 65689 2013-10-01:17:14:41 23 54

Table 10: Tall-Narrow GameScores Apache HBase Table

Alternatively, you can model the game identifier as a column qualifier in Apache HBase.

This approach facilitates precise column lookups and supports usage of filters to read

data. The result is a flat-wide table with few rows relative to the number of columns. This

concept of a flat-wide Apache HBase table is shown in the following table.

GameScores Table

 top_scores metrics

 row key gameId score top_score_date gameId wins loses

row 1 1001 game01 98567 2013-12-11:14:14:37 game01 98 27

game02 43876 2013-12-15:19:24:39 game02 12 23
row 2 1002 game01 67453 2013-12-09:17:24:31 game01 73 21

row 3 2002 game02 65689 2013-10-01:17:14:41 game02 23 54
Table 11: Flat-Wide GameScores Apache HBase Table

For performance reasons, it is important to keep the number of column families in your

Apache HBase schema low. Anything above three-column families can potentially

degrade performance. The recommended best practice is to maintain a one-column

family in your schemas and introduce a second-column family and third-column family

only if data access is limited to a one-column family at a time. Note that Apache HBase

does not impose any restrictions on row size.

Data Types
Both Amazon DynamoDB and Apache HBase support unstructured datasets with a wide

range of data types.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 14 of 32

Amazon DynamoDB supports the data types shown in the following table.

 Type Description Example (JSON Format)

Scalar

Scalar

 String Unicode with UTF8 binary

encoding

{"S": "Game01"}

 Number Positive or negative exact-

value decimals and integers

{"N": "67453"}

 Binary Encoded sequence of bytes {"B":

"dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbm

NvZGVk"}

Multi-valued String Set Unique set of strings {"SS": ["Black","Green] }

 Number Set Unique set of numbers {"NS": ["42.2","-19.87"] }

 Binary Set Unique set of binary values {"BS": ["U3Vubnk=","UmFpbnk=] }

Table 12: Amazon DynamoDB Data Types

Each Amazon DynamoDB attribute is a name-value pair that is either a single-valued,

scalar data type or a multi-valued set. Primary key attributes can be any scalar types,

but not multi-valued types. Individual items in an Amazon DynamoDB table can have

any number of attributes. Binary type attributes can store any binary data, for example,

compressed data, encrypted data, or even images.

To recap, Apache HBase defines the following concepts:

 Row—An atomic byte array or key/value container.

 Column—A key within the key/value container inside a row.

 Column Family—Divides columns into related subsets of data that are stored

together on disk.

 Timestamp—Apache HBase adds the concept of a fourth dimension column that is

expressed as an explicit or implicit timestamp. A timestamp is usually represented as

a long integer in milliseconds.

 Value—A time-versioned value in the key/value container. This means that a cell can

contain multiple versions of a value that can change over time. Versions are stored in

decreasing timestamp, with the most recent first.

Apache HBase defines its key/value pairs as arbitrary arrays of bytes. Because row keys

and column qualifiers are also arbitrary arrays of bytes, almost anything can serve as a

row key or column qualifier, from strings to binary representations of longs or even

serialized data structures.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 15 of 32

Column family names must be composed of printable characters in human-readable

format. This is because column family names are used as part of the directory name in

the file system. Furthermore, column families must be declared up front at schema

definition time. Column qualifiers are not subjected to this restriction and can be

composed of any arbitrary binary characters and created at runtime.

Indexing
In general, data is indexed by primary key for fast retrieval in both Amazon DynamoDB

and Apache HBase. Secondary indexes extend the basic indexing functionality and

provide an alternate query path in addition to queries against the primary key.

Amazon DynamoDB supports two kinds of secondary indexes on a table that already

implements a hash-and-range key:

 Local secondary index—An index that has the same hash key as the table, but a

different range key.

 Global secondary index—An index with a hash and range key that can be different

from those on the table.

You can define one or more local secondary indexes and one or more global secondary

indexes per table.

A local secondary index organizes data by the index range key, rather than by the range

key for the source table. Every local secondary index automatically contains the hash

and range attributes from its parent table. A local secondary index can copy or project

some or all of the attributes from the source table and provide an alternate query path for

efficiently accessing data.

In the example GameScores table introduced in the preceding section, you can define

PersonTopScoresIndex as a local secondary index for that table. This index contains the

same hash key, PersonId, as the source table and also defines TopScoreDate as its

range key. The range key value from the source table (in this example, GameId) is

automatically projected or copied into the index, but it is not a part of the index key, as

shown in the following table.

PersonTopScoresIndex

 Index Key Attribute1 Attribute2

PersonId

(HashKey)

TopScoreDate

(RangeKey)

GameId TopScore

1001 2013-12-09:17:24:31 Game01 67453

1001 2013-12-11:14:14:37 Game02 98567

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 16 of 32

PersonTopScoresIndex

1002 2013-12-15:19:24:39 Game01 43876

2002 2013-10-01:17:14:41 Game02 65689

 Table 13: Local Secondary Index in Amazon DynamoDB

You can decide whether to copy or project additional non-key attributes from the source

table into the index. For example, PersonTopScoresIndex includes a copy of the non-

key attribute TopScore as part of its definition, whereas the following

PersonTopScoresIndex_1 excludes the same attribute from its definition.

PersonTopScoresIndex_1

 Index Key Attribute1

PersonId

(HashKey)

TopScoreDate

(RangeKey)

GameId

1001 2013-12-09:17:24:31 Game01

1001 2013-12-11:14:14:37 Game02

1002 2013-12-15:19:24:39 Game01

2002 2013-10-01:17:14:41 Game02

 Table 14: Local Secondary Index in Amazon DynamoDB without Non-Key Attribute

Projection

The main difference between a global secondary index and a local secondary index is

that a global secondary index defines a completely new hash/range index on a table.

You can define any attribute as the hash key for the global secondary index as long as

its data type is scalar rather than a multi-value set.

When you work with global secondary indexes, keep in mind the following points:

 Unlike associated tables, key values in a global secondary index do not need to be

unique.

 Any table attribute can be a key, including attributes that are not present in all items,

as long as the data types are scalar rather than multi-value sets.

 Every global secondary index must have a hash key and an optional range key.

 The source table’s primary key attributes are automatically projected into the index,

as is the case with local secondary indexes.

 Unlike local secondary indexes that consume read and write capacity units from the

table, every global secondary index has its own provisioned throughput settings for

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 17 of 32

read and write activity. For more information about provisioned throughput, see the

Throughput Model section in this whitepaper.

The following LeaderBoardIndex example shows a global secondary index for the

GameScores table, as discussed in preceding sections.

LeaderBoardIndex

 Index Key Attribute1
GameId

(HashKey)
TopScore

(RangeKey)
PersonId

Game01 98567 1001

Game02 43876 1001

Game01 65689 1002

Game02 67453 2002
Table 15: Global Secondary Index for a GameScores Table in Amazon DynamoDB

The preceding LeaderBoardIndex global secondary index defines GameId as its hash

key and TopScore as its range key. The index key does not need to have any of the key

attributes from the source table. However, the table’s primary key attributes are always

present in the global secondary index. In this example, PersonId is automatically

projected or copied into the index.

The LeaderBoardIndex, in this example, allows you to easily obtain a list of top scores

for a specific game by querying the index. The results are ordered by TopScore, the

range key. You can choose to project additional attributes from the source table into the

index.

All rows in Apache HBase are always sorted lexicographically by row key. The sort is

byte-ordered. This means that each row key is compared on a binary level, byte by byte,

from left to right. Row keys are always unique and act as the primary index in Apache

HBase.

Although Apache HBase does not have native support for built-in indexing models such

as Amazon DynamoDB, you can implement custom secondary indexes to serve as

alternate query paths by using these techniques:

 Create an index in another table—You can maintain a secondary table that is

periodically updated. However, depending on the load strategy, the risk with this

method is that the secondary index can potentially become out of sync with the main

table. You can mitigate this risk if you build the secondary index while publishing

data to the cluster, and perform concurrent writes into the index table.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 18 of 32

 Use the coprocessor framework—You can leverage the coprocessor framework to

implement custom secondary indexes. Coprocessors act like triggers that are similar

to stored procedures in RDBMS.

In summary, both Amazon DynamoDB and Apache HBase define data models that allow

efficient storage of data to optimize query performance. Amazon DynamoDB imposes a

restriction on its item size to allow efficient processing and reduce costs. Apache HBase

uses the concept of column families to provide data locality for more efficient read

operations.

Amazon DynamoDB supports both scalar and multi-valued sets to accommodate a wide

range of unstructured datasets. Similarly, Apache HBase stores its key/value pairs as

arbitrary arrays of bytes, giving it the flexibility to store any data type.

Amazon DynamoDB supports built-in secondary indexes and automatically updates and

synchronizes all indexes with their parent tables. With Apache HBase, you can

implement and manage custom secondary indexes yourself.

From a data model perspective, you can choose Amazon DynamoDB if your item size is

relatively small. Although Amazon DynamoDB provides a number of options to

overcome row size restrictions, Apache HBase is better equipped to handle large

complex payloads with minimal restrictions.

Data Processing
This section highlights foundational elements for processing and querying data within

Amazon DynamoDB and Apache HBase.

Throughput Model
Amazon DynamoDB uses a provisioned throughput model to process data. With this

model, you can specify your read and write capacity needs in terms of number of input

operations per second that a table is expected to achieve. During table creation time,

Amazon DynamoDB automatically partitions and reserves the appropriate amount of

resources to meet your specified throughput requirements.

To decide on the required read and write throughput values for a table, consider the

following factors:

 Item size—The read and write capacity units that you specify are based on a

predefined data item size per read or per write operation. For more information about

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 19 of 32

provisioned throughput data item size restrictions, see Provisioned Throughput in

Amazon DynamoDB17 in the Amazon DynamoDB Developer Guide.16

 Expected read and write request rates—You must also determine the expected

number of read and write operations your application will perform against the table,

per second.

 Consistency—Whether your application requires strongly consistent or eventually

consistent reads is a factor in determining how many read capacity units you need to

provision for your table. For more information about consistency and Amazon

DynamoDB, see the Consistency Model section in this whitepaper.

 Local secondary indexes—Queries against indexes consume provisioned read

throughput. For more information, see Provisioned Throughput Considerations for

Local Secondary Indexes18 in the Amazon DynamoDB Developer Guide.16

 Global secondary indexes—The provisioned throughput settings of a global

secondary index are separate from those of its parent table. Therefore, the expected

workload on the global secondary index also needs to be taken into consideration

when specifying the read and write capacity at index creation time.

Although read and write requirements are specified at table creation time, Amazon

DynamoDB lets you increase or decrease the provisioned throughput to accommodate

load with no downtime.

In Apache HBase, the number of nodes in a cluster can be driven by the required

throughput for reads and/or writes. The available throughput on a given node can vary

depending on the data, specifically:

 Key/value sizes

 Data access patterns

 Cache hit rates

 Node and system configuration

You should plan for peak load if load will likely be the primary factor that increases node

count within an Apache HBase cluster..

Consistency Model
A database consistency model determines the manner and timing in which a successful

17 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

18 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 20 of 32

write or update is reflected in a subsequent read operation of that same value.

Amazon DynamoDB lets you specify the desired consistency characteristics for each

read request within an application. You can specify whether a read is eventually

consistent or strongly consistent.

The eventual consistency option is the default in Amazon DynamoDB and maximizes the

read throughput. However, an eventually consistent read might not always reflect the

results of a recently completed write. Consistency across all copies of data is usually

reached within a second.

A strongly consistent read in Amazon DynamoDB returns a result that reflects all writes

that received a successful response prior to the read. To get a strongly consistent read

result, you can specify optional parameters in a request. It takes more resources to

process a strongly consistent read than an eventually consistent read. For more

information about read consistency, see Data Read and Consistency Considerations19 in

the Amazon DynamoDB Developer Guide.16

Apache HBase reads and writes are strongly consistent. This means that all reads and

writes to a single row in Apache HBase are atomic. Each concurrent reader and writer

can make safe assumptions about the state of a row. Multi-versioning and time stamping

in Apache HBase contribute to its strongly consistent model.

Transaction Model
Unlike RDBMS, NoSQL databases typically have no domain-specific language, such as

SQL, to query data. Amazon DynamoDB and Apache HBase provide simple application

programming interfaces (APIs) to perform the standard create, read, update, and delete

(CRUD) operations.

Neither Amazon DynamoDB nor Apache HBase support multi-item/cross-row or cross-

table transactions due to performance considerations. However, both databases provide

batch operations for reading and writing multiple items/rows across multiple tables with

no transaction guarantees.

Amazon DynamoDB provides atomic item and attribute operations for adding, updating,

or deleting data. Further, item-level transactions can specify a condition that must be

satisfied before that transaction is fulfilled. For example, you can choose to update an

item only if it already has a certain value.

19 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html#DataReadConsistency

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html#DataReadConsistency
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html#DataReadConsistency

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 21 of 32

Conditional operations allow you to implement optimistic concurrency control systems20

on Amazon DynamoDB. For conditional updates, Amazon DynamoDB allows atomic

increment and decrement operations on existing scalar values without interfering with

other write requests.

Apache HBase also supports atomic high update rates (the classic read-modify-write)

within a single row key, enabling storage for high frequency counters. Unlike Amazon

DynamoDB, Apache HBase uses multi-version concurrency control to implement

updates. This means that an existing piece of data is not overwritten with a new one;

instead, it becomes obsolete when a newer version is added.

Row data access in Apache HBase is atomic and includes any number of columns, but

there are no further guarantees or transactional features spanning multiple rows. Similar

to Amazon DynamoDB, Apache HBase supports only single-row transactions.

Table Operations
Amazon DynamoDB and Apache HBase provide scan operations to support large-scale

analytical processing. A scan operation is similar to cursors in RDBMS.21 By taking

advantage of the underlying sequential, sorted storage layout, a scan operation can

easily iterate over wide ranges of records or entire tables. Applying filters to a scan

operation can effectively narrow the result set and optimize performance.

Amazon DynamoDB uses parallel scanning to improve performance of a scan operation.

A parallel scan logically sub-divides an Amazon DynamoDB table into multiple

segments, and then processes each segment in parallel. Rather than using the default

scan operation in Apache HBase, you can implement a custom parallel scan by means

of the API to read rows in parallel.

Amazon DynamoDB provides a Query API for complex query processing in addition to

its scan operation. The Query API is accessible only in tables that define a composite

primary key. A query request retrieves items from an Amazon DynamoDB table or index

using the hash-and-range primary key.

In summary, Amazon DynamoDB and Apache HBase have similar data processing

models in that they both support only atomic single-row transactions. Both databases

also provide batch operations for bulk data processing across multiple rows and tables.

20 http://en.wikipedia.org/wiki/Optimistic_concurrency_control

21 http://en.wikipedia.org/wiki/Cursor_%28databases%29

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Cursor_%28databases%29
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Cursor_%28databases%29

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 22 of 32

One key difference between the two databases is the flexible provisioned throughput

model of Amazon DynamoDB. The ability to dial up capacity when you need it and dial it

back down when you are done is useful for processing variable workloads with

unpredictable peaks.

For workloads that need high update rates to perform data aggregations or maintain

counters, Apache HBase is a good choice. This is because Apache HBase supports a

multi-version concurrency control mechanism, which contributes to its strongly

consistent reads and writes. Amazon DynamoDB gives you the flexibility to specify

whether you want your read request to be eventually consistent or strongly consistent

depending on your specific workload.

Architecture
This section summarizes key architectural components of Amazon DynamoDB and

Apache HBase.

Amazon DynamoDB Architecture Overview
The origins of Amazon DynamoDB architecture can be traced to the genesis of Dynamo,

a NoSQL database described in a paper by DeCandia, et al.22 At a high level, Amazon

DynamoDB is designed for high availability, durability, and consistently low latency

(typically in the single digit milliseconds) performance.

Amazon DynamoDB runs on a fleet of AWS managed servers that leverage solid state

drives (SSDs) to create an optimized, high-density storage platform. This platform

decouples performance from table size, and eliminates the need for the working set of

data to fit in memory while still returning consistent, low latency responses to queries. As

a managed service, Amazon DynamoDB abstracts its underlying architectural details

from the user.

Apache HBase Architecture Overview
Apache HBase is typically deployed on top of the Hadoop Distributed File System

(HDFS), which provides a scalable, persistent, storage layer.23 Apache ZooKeeper is a

critical component for maintaining configuration information24 and managing the entire

Apache HBase cluster.

22 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.

23 http://wiki.apache.org/hadoop/HDFS

24 http://zookeeper.apache.org/

http://wiki.apache.org/hadoop/HDFS
http://wiki.apache.org/hadoop/HDFS
http://zookeeper.apache.org/
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://wiki.apache.org/hadoop/HDFS
http://zookeeper.apache.org/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 23 of 32

The three major Apache HBase components are the following:

 Client API

 Master server

 Region servers

Apache HBase stores data in indexed store files called HFiles on HDFS. The store files

are sequences of blocks with a block index stored at the end for fast lookups. The store

files provide an API to access specific values as well as to scan ranges of values, given

a start and end key.

During a write operation, data is first written to a commit log called a write-ahead-log

(WAL) and then moved into memory in a structure called Memstore. When the size of

the Memstore exceeds a given maximum value, it is flushed as an HFile to disk. Each

time data is flushed from Memstores to disk, new HFiles must be created. As the

number of HFiles builds up, a compaction process merges the files into fewer, larger

files.

A read operation essentially is a merge of data stored in the Memstores and in the

HFiles. The WAL is never used in the read operation. It is meant only for recovery

purposes if a server crashes before writing the in-memory data to disk.

A region in Apache HBase acts as a store per column family. Each region contains

contiguous ranges of rows stored together. Regions can be merged to reduce the

number of store files. A large store file that exceeds the configured maximum store file

size can trigger a region split.

A region server can serve multiple regions. Each region is mapped to exactly one region

server. Region servers handle reads and writes, as well as keep data in-memory until

enough is collected to warrant a flush. Clients communicate directly with region servers

to handle all data-related operations.

The master server is responsible for monitoring and assigning regions to region servers

and uses Apache ZooKeeper to facilitate this task. Apache ZooKeeper also serves as a

registry for region servers and a bootstrap location for region discovery.

The master server is also responsible for handling critical functions such as load

balancing of regions across region servers, region server failover, and completing region

splits, but it is not part of the actual data storage or retrieval path.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 24 of 32

You can run Apache HBase in a multi-master environment. All masters compete to run

the cluster in a multi-master mode. However, if the active master shuts down, then the

remaining masters contend to take over the Master role.

Apache HBase on Amazon EMR Architecture
Overview
Amazon EMR defines the concept of instance groups, which are collections of Amazon

EC2 instances. The Amazon EC2 virtual servers perform roles analogous to the master

and slave nodes of Hadoop. For best performance, Apache HBase clusters should run

on at least two Amazon EC2 instances. There are three types of instance groups in an

Amazon EMR cluster:

 Master—Contains one master node that manages the cluster. You can use the

Secure Shell (SSH) protocol to access the master node if you want to view logs or

administer the cluster yourself. The master node runs the Apache HBase master

server and Apache Zookeeper.

 Core—Contains one or more core nodes that run HDFS and store data. The core

nodes run the Apache HBase region servers.

 Task—(Optional). Contains any number of task nodes.

Partitioning
Amazon DynamoDB stores three geographically distributed replicas of each table to

enable high availability and data durability within a region. Data is auto-partitioned

primarily using the hash key. As throughput and data size increase, Amazon DynamoDB

will automatically repartition and reallocate data across more nodes.

Partitions in Amazon DynamoDB are fully independent, resulting in a shared nothing

cluster. However, provisioned throughput is divided evenly across the partitions.

A region is the basic unit of scalability and load balancing in Apache HBase. Region

splitting and subsequent load-balancing follow this sequence of events:

1. Initially there is only one region for a table, and as more data is added to it, the

system monitors the load to ensure that the configured maximum size is not

exceeded.

2. If the region size exceeds the configured limit, the system dynamically splits the

region into two at the row key in the middle of the region, creating two roughly equal

halves.

3. The master then schedules the new regions to be moved off to other servers for load

balancing, if required.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 25 of 32

Behind the scenes, Apache Zookeeper tracks all activities that take place during a

region split and maintains the state of the region in case of server failure. Apache HBase

regions are equivalent to range partitions that are used in RDBMS sharding.25 Regions

can be spread across many physical servers that consequently distribute the load,

resulting in scalability.

In summary, as a managed service the architectural details of Amazon DynamoDB are

abstracted from you to let you focus on your application details. With the self-managed

Apache HBase deployment model, it is crucial to understand the underlying architectural

details to maximize scalability and performance. AWS gives you the option to offload

Apache HBase administrative overhead, if you opt to launch your cluster on Amazon

EMR.

Performance Optimizations
Amazon DynamoDB and Apache HBase are inherently optimized to process large

volumes of data with high performance. NoSQL databases typically use an on-disk,

column-oriented storage format for fast data access and reduced I/O when fulfilling

queries. This performance characteristic is evident in both Amazon DynamoDB and

Apache HBase.

Amazon DynamoDB stores items with the same hash key contiguously on disk to

optimize fast data retrieval. Similarly, Apache HBase regions contain contiguous ranges

of rows stored together to improve read operations. You can enhance performance even

further if you apply techniques that maximize throughput at reduced costs, both at the

infrastructure and application tiers.

Tip: A recommended best practice is to monitor Amazon DynamoDB and Apache

HBase performance metrics to proactively detect and diagnose performance

bottlenecks.

The following section focuses on several common performance optimizations that are

specific to each database or deployment model.

Amazon DynamoDB Performance Considerations
Performance considerations for Amazon DynamoDB focus on how to define an

appropriate read and write throughput and how to design a suitable schema for an

application. These performance considerations span both infrastructure level and

application tiers.

25 http://en.wikipedia.org/wiki/Partition_%28database%29

http://en.wikipedia.org/wiki/Partition_%28database%29
http://en.wikipedia.org/wiki/Shard_%28database_architecture%29
http://en.wikipedia.org/wiki/Partition_%28database%29

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 26 of 32

Provisioned Throughput Considerations
Factors that must be taken into consideration when determining the appropriate

throughput requirements for an application are item size, expected read and write rates,

consistency, and secondary indexes, as discussed in the Throughput Model section of

this whitepaper.

If an application performs more reads per second or writes per second than a table’s

provisioned throughput capacity allows, requests above the provisioned capacity will be

throttled. For instance, if a table’s write capacity is 1,000 units and an application

performs 1,500 writes per second for the maximum data item size, Amazon DynamoDB

will allow only 1,000 writes per second to go through, and the extra requests will be

throttled.

Tip: A recommended best practice is to provision throughput capacity sufficiently far in

advance to ensure that it is there when needed, and to monitor performance with

Amazon CloudWatch configuring notification alarms for alerting purposes when a certain

threshold of consumed capacity units is reached. In addition, Amazon DynamoDB lets

you adjust throughput capacity up and down without any downtime.

Primary Key Design Considerations
Primary key design is critical to the performance of Amazon DynamoDB. When storing

data, Amazon DynamoDB divides a table's items into multiple partitions, and distributes

the data primarily based on the hash key element. The provisioned throughput

associated with a table is also divided evenly among the partitions with no sharing of

provisioned throughput across partitions.

Tip: To efficiently utilize the overall provisioned throughput, spread the workload across

hash key values.

For example, if a table has a very small number of heavily accessed hash key elements,

possibly even a single very heavily used hash key element, traffic can become

concentrated on a single partition and create "hot spots" of read and write activity within

a single item collection. Amazon DynamoDB will throttle unbalanced workloads in such

situations.

To get the most out of Amazon DynamoDB throughput, you can build tables where the

hash key element has a large number of distinct values. Ensure that values are

requested fairly uniformly and as randomly as possible. The same guidance applies to

global secondary indexes. Choose hash and range keys that provide uniform workloads

to achieve the overall provisioned throughput.

Local Secondary Index Considerations
When querying a local secondary index, the number of read capacity units consumed

depends on how the data is accessed. For example, when you create a local secondary

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 27 of 32

index and project non-key attributes into the index from the parent table, Amazon

DynamoDB can retrieve these projected attributes efficiently.

In addition, when you query a local secondary index, the query can also retrieve

attributes that are not projected into the index. Avoid these types of index queries that

read attributes that are not projected into the local secondary index. Fetching attributes

from the parent table that are not specified in the local secondary index causes

additional latency in query responses and incurs a higher provisioned throughput cost.

Tip: Project frequently accessed non-key attributes into a local secondary index to avoid

fetches and improve query performance.

Maintain multiple local secondary indexes in tables that are updated infrequently but are

queried using many different criteria to improve query performance. This guidance does

not apply to tables that experience heavy write activity.

If very high write activity to the table is expected, one option to consider is to minimize

interference from reads by not reading from the table at all. Instead, create a global

secondary index with a structure that is identical to that of the table, and then direct all

queries to the index rather than to the table.

Global Secondary Index Considerations
If a query exceeds the provisioned read capacity of a global secondary index, that

request will be throttled. Similarly, if a request performs heavy write activity on the table,

but a global secondary index on that table has insufficient write capacity, then the write

activity on the table will be throttled.

Tip: For a table write to succeed, the provisioned throughput settings for the table and

global secondary indexes must have enough write capacity to accommodate the write;

otherwise, the write will be throttled.

Global secondary indexes support eventually consistent reads, each of which consume

one half of a read capacity unit. The number of read capacity units is the sum of all

projected attribute sizes across all of the items returned in the index query results. With

write activities, the total provisioned throughput cost for a write consists of the sum of

write capacity units consumed by writing to the table and those consumed by updating

the global secondary indexes.

Apache HBase Performance Considerations
Apache HBase performance tuning spans hardware, network, Apache HBase

configurations, Hadoop configurations, and the Java Virtual Machine Garbage Collection

settings. It also includes applying best practices when using the client API. To optimize

performance, it is worthwhile to monitor Apache HBase workloads with tools such as

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 28 of 32

Ganglia to identify performance problems early and apply recommended best practices

based on observed performance metrics.

Memory Considerations
Memory is the most restrictive element in Apache HBase. Performance-tuning

techniques are focused on optimizing memory consumption.

From a schema design perspective, it is important to bear in mind that every cell stores

its value as fully qualified with its full row key, column family, column name, and

timestamp on disk. If row and column names are long, the cell value coordinates might

become very large and take up more of Apache HBase allotted memory. This can cause

severe performance implications, especially if the dataset is large.

Tip: Keep the number of column families small to improve performance and reduce the

costs associated with maintaining HFiles on disk.

Apache HBase Configurations
Apache HBase supports built-in mechanisms to handle region splits and compactions.

Split/compaction storms can occur when multiple regions grow at roughly the same rate,

and eventually split at about the same time. This can cause a large spike in disk I/O

because of the compactions needed to rewrite the split regions.

Tip: Rather than relying on Apache HBase to automatically split and compact the

growing regions, you can perform these tasks manually.

If you handle the splits and compactions manually, you can perform them in a time-

controlled manner and stagger them across all regions to spread the I/O load as much

as possible to avoid potential split/compaction storms. With the manual option, you can

further alleviate any problematic split/compaction storms and gain additional

performance.

Schema Design
A region can run hot when dealing with a write pattern that does not distribute load

across all servers evenly. This is a common scenario when dealing with streams

processing events with time series data. The gradually increasing nature of time series

data can cause all incoming data to be written to the same region.

This concentrated write activity on a single server can slow down the overall

performance of the cluster. This is because inserting data is now bound to the

performance of a single machine. This problem is easily overcome by employing key

design strategies such as the following:

 Applying salting prefixes to keys; in other words, prepending a random number to a

row.

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 29 of 32

 Randomizing the key with a hash function.

 Promoting another field to prefix the row key.

These techniques can achieve a more evenly distributed load across all servers.

Client API Considerations
There are a number of optimizations to take into consideration when reading or writing

data from a client using the Apache HBase API. For example, when performing a large

number of PUT operations, you can disable the auto-flush feature. Otherwise, the PUT

operations will be sent one at a time to the region server.

Whenever you use a scan operation to process large numbers of rows, use filters to limit

the scan scope. Using filters can potentially improve performance. This is because

column over-selection can incur a nontrivial performance penalty, especially over large

data sets.

Tip: As a recommended best practice, set the scanner-caching to a value greater than

the default of 1, especially if Apache HBase serves as an input source for a MapReduce

job.26

Setting the scanner-caching value to 500, for example, will transfer 500 rows at a time to

the client to be processed, but this might potentially cost more in memory consumption.

Compression Techniques
Data compression is an important consideration in Apache HBase production workloads.

Apache HBase natively supports a number of compression algorithms that you can

enable at the column family level.

Tip: Enabling compression yields better performance.

In general, compute resources for performing compression and decompression tasks

are typically less than the overheard for reading more data from disk.

Apache HBase on Amazon EMR
Apache HBase on Amazon EMR is optimized to run on AWS with minimal administration

overhead. You still can access the underlying infrastructure and manually configure

Apache HBase settings, if desired.

Cluster Considerations
You can resize an Amazon EMR cluster using core and task nodes. You can add more

core nodes, if desired. Task nodes are useful for managing the Amazon EC2 instance

26 http://en.wikipedia.org/wiki/MapReduce

http://en.wikipedia.org/wiki/MapReduce

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 30 of 32

capacity of a cluster. You can increase capacity to handle peak loads and decrease it

later during demand lulls.

Tip: As a recommended best practice, in production workloads you can launch Apache

HBase on one cluster and any analysis tools, such as Apache Hive, on a separate

cluster to improve performance. Managing two separate clusters ensures that Apache

HBase has ready access to the infrastructure resources it requires.

Amazon EMR provides a feature to backup Apache HBase data to Amazon S3. You can

perform either manual or automated backups with options to perform full or incremental

backups as needed.

Tip: As a best practice, every production cluster should always take advantage of the

backup feature available on Amazon EMR.

Hadoop and Apache HBase Configurations
You can use a bootstrap action to install additional software27 or change Apache HBase

or Apache Hadoop configuration settings on Amazon EMR. Bootstrap actions are scripts

that are run on the cluster nodes when Amazon EMR launches the cluster. The scripts

run before Hadoop starts and before the node begins processing data.

You can write custom bootstrap actions or use predefined bootstrap actions provided by

Amazon EMR. For example, you can install Ganglia to monitor Apache HBase

performance metrics using a predefined bootstrap action on Amazon EMR.

In summary, whether you are running a managed NoSQL database such as Amazon

DynamoDB or Apache HBase on Amazon EMR, or managing your Apache HBase

cluster yourself on Amazon EC2 or on-premises, you should take performance

optimizations into consideration if you want to maximize performance at reduced costs.

The key difference between a hosted NoSQL solution and managing it yourself is that a

managed solution such as Amazon DynamoDB or Apache HBase on Amazon EMR lets

you offload the bulk of the administration overhead so that you can focus on optimizing

your application.

If you are a developer who is getting started with NoSQL, Amazon DynamoDB or the

hosted Apache HBase on the Amazon EMR solution are suitable options, depending on

your use case. For developers with in-depth Apache Hadoop/Apache HBase knowledge

who need full control of their Apache HBase clusters, the self-managed Apache HBase

deployment model offers the most flexibility from a cluster management standpoint.

27 http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 31 of 32

Conclusion
Amazon DynamoDB lets you offload operating and scaling a highly available distributed

database cluster, making it a suitable choice for today’s real-time, web-based

applications. As a managed service, Apache HBase on EMR is optimized to run on AWS

with minimal administration overhead. For advanced users who want to retain full control

of their Apache HBase clusters, the self-managed Apache HBase deployment model is a

good fit.

Amazon DynamoDB and Apache HBase exhibit inherent characteristics that are critical

for successfully processing massive amounts of data. With use cases ranging from

batch-oriented processing to real-time data-serving, Amazon DynamoDB and Apache

HBase are both optimized to handle large datasets. However, knowing your dataset and

access patterns are key to choosing the right NoSQL database for your workload.

Further Reading
For additional information, consult the following sources:

 Amazon DynamoDB28

 Apache HBase29

 Apache Hadoop30

 Amazon Elastic Compute Cloud (Amazon EC2)31

 Amazon Elastic MapReduce (Amazon EMR)32

 Amazon Kinesis33

 Amazon Redshift34

 AWS Data Pipeline35

 Amazon CloudWatch36

28 http://aws.amazon.com/dynamodb/

29 http://hbase.apache.org/

30 http://hadoop.apache.org/

31 http://aws.amazon.com/ec2/

32 http://aws.amazon.com/elasticmapreduce/

33 http://aws.amazon.com/kinesis/

34 http://aws.amazon.com/redshift/

35 http://aws.amazon.com/datapipeline/

36 http://aws.amazon.com/cloudwatch/

http://aws.amazon.com/dynamodb/
http://hbase.apache.org/
http://hadoop.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/redshift/
http://aws.amazon.com/datapipeline/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/dynamodb/
http://hbase.apache.org/
http://hadoop.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/redshift/
http://aws.amazon.com/datapipeline/
http://aws.amazon.com/cloudwatch/

Amazon Web Services – Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL September 2014

Page 32 of 32

 Amazon Identity and Access Management (Amazon IAM)37

 Amazon Simple Storage Service (Amazon S3)38

 AWS Command Line Interface (Amazon CLI)39

 Ganglia40

 Dynamo: Amazon’s Highly Available Key-value Store41

 Amazon DynamoDB Developer Guide42

 Amazon EC2 User Guide43

 Amazon Elastic MapReduce Developer Guide44

 Amazon S3 Developer Guide45

 HBase: The Definitive Guide, by Lars George46

 The Apache HBase™ Reference Guide47

37 http://aws.amazon.com/iam/

38 http://aws.amazon.com/s3/

39 http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html

40 http://ganglia.sourceforge.net/

41 http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf

42 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

43 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

44 http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html

45 http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

46 http://www.hbasebook.com/

47 http://hbase.apache.org/book.html

http://aws.amazon.com/iam/
http://aws.amazon.com/s3/
http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html
http://ganglia.sourceforge.net/
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://www.hbasebook.com/
http://hbase.apache.org/book.html
http://aws.amazon.com/iam/
http://aws.amazon.com/s3/
http://docs.aws.amazon.com/general/latest/gr/GetTheTools.html
http://ganglia.sourceforge.net/
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://www.hbasebook.com/
http://hbase.apache.org/book.html

