
Comparing the Use of Amazon
DynamoDB and Apache HBase

for NoSQL

January 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Amazon DynamoDB Overview.. 2

Apache HBase Overview .. 3

Apache HBase Deployment Options .. 3

Managed Apache HBase on Amazon EMR (Amazon S3 Storage Mode) 4

Managed Apache HBase on Amazon EMR (HDFS Storage Mode) 4

Self-Managed Apache HBase Deployment Model on Amazon EC2 5

Feature Summary .. 6

Use Cases ... 8

Data Models ... 9

Data Types ... 15

Indexing .. 17

Data Processing .. 21

Throughput Model .. 21

Consistency Model ... 23

Transaction Model .. 23

Table Operations .. 24

Architecture .. 25

Amazon DynamoDB Architecture Overview ... 25

Apache HBase Architecture Overview .. 26

Partitioning .. 28

Performance Optimizations ... 29

Amazon DynamoDB Performance Considerations ... 29

Apache HBase Performance Considerations .. 33

Conclusion ... 37

Contributors ... 38

Further Reading ... 38

Document Revisions.. 38

Abstract

One challenge that architects and developers face today is how to process large

volumes of data in a timely, cost effective, and reliable manner. There are several

NoSQL solutions in the market and choosing the most appropriate one for your

particular use case can be difficult. This paper compares two popular NoSQL data

stores—Amazon DynamoDB, a fully managed NoSQL cloud database service, and

Apache HBase, an open-source, column-oriented, distributed big data store. Both

Amazon DynamoDB and Apache HBase are available in the Amazon Web Services

(AWS) Cloud.

http://aws.amazon.com/dynamodb/
http://hbase.apache.org/
http://aws.amazon.com/
http://aws.amazon.com/

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 1

Introduction

The AWS Cloud accelerates big data analytics. With access to instant scalability and

elasticity on AWS, you can focus on analytics instead of infrastructure. Whether you are

indexing large data sets, analyzing massive amounts of scientific data, or processing

clickstream logs, AWS provides a range of big data products and services that you can

leverage for virtually any data-intensive project.

There is a wide adoption of NoSQL databases in the growing industry of big data and

real-time web applications. Amazon DynamoDB and Apache HBase are examples of

NoSQL databases, which are highly optimized to yield significant performance benefits

over a traditional relational database management system (RDBMS). Both Amazon

DynamoDB and Apache HBase can process large volumes of data with high

performance and throughput.

Amazon DynamoDB provides a fast, fully managed NoSQL database service. It lets you

offload operating and scaling a highly available, distributed database cluster. Apache

HBase is an open-source, column-oriented, distributed big data store that runs on the

Apache Hadoop framework and is typically deployed on top of the Hadoop Distributed

File System (HDFS), which provides a scalable, persistent, storage layer.

In the AWS Cloud, you can choose to deploy Apache HBase on Amazon Elastic

Compute Cloud (Amazon EC2) and manage it yourself. Alternatively, you can leverage

Apache HBase as a managed service on Amazon EMR, a fully managed, hosted

Hadoop framework on top of Amazon EC2.

With Apache HBase on Amazon EMR, you can use Amazon Simple
Storage Service (Amazon S3) as a data store using the EMR File System
(EMRFS), an implementation of HDFS that all Amazon EMR clusters use
for reading and writing regular files from Amazon EMR directly to Amazon
S3.

The following figure shows the relationship between Amazon DynamoDB, Amazon EC2,

Amazon EMR, Amazon S3, and Apache HBase in the AWS Cloud. Both Amazon

DynamoDB and Apache HBase have tight integration with popular open source

processing frameworks like Apache Hive and Apache Spark to enhance querying

capabilities as illustrated in the diagram.

http://hadoop.apache.org/
https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 2

Figure 1: Relation between Amazon DynamoDB, Amazon EC2, Amazon EMR, and Apache

HBase in the AWS Cloud

Amazon DynamoDB Overview

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and

predictable performance with seamless scalability. Amazon DynamoDB offers the

following benefits:

• Zero administrative overhead—Amazon DynamoDB manages the burdens of

hardware provisioning, setup and configuration, replication, cluster scaling,

hardware and software updates, and monitoring and handling of hardware

failures.

• Virtually unlimited throughput and scale—The provisioned throughput model

of Amazon DynamoDB allows you to specify throughput capacity to serve nearly

any level of request traffic. With Amazon DynamoDB, there is virtually no limit to

the amount of data that can be stored and retrieved.

• Elasticity and flexibility—Amazon DynamoDB can handle unpredictable

workloads with predictable performance and still maintain a stable latency profile

that shows no latency increase or throughput decrease as the data volume rises

with increased usage. Amazon DynamoDB lets you increase or decrease

capacity as needed to handle variable workloads.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 3

• Automatic scaling— Amazon DynamoDB can scale automatically within user-

defined lower and upper bounds for read and write capacity in response to

changes in application traffic. These qualities render Amazon DynamoDB a

suitable choice for online applications with spiky traffic patterns or the potential to

go viral anytime.

• Integration with other AWS services—Amazon DynamoDB integrates

seamlessly with other AWS services for logging and monitoring, security,

analytics, and more. For more information, see the Amazon DynamoDB

Developer Guide.

Apache HBase Overview

Apache HBase, a Hadoop NoSQL database, offers the following benefits:

• Efficient storage of sparse data—Apache HBase provides fault-tolerant

storage for large quantities of sparse data using column-based compression.

Apache HBase is capable of storing and processing billions of rows and millions

of columns per row.

• Store for high frequency counters—Apache HBase is suitable for tasks such

as high-speed counter aggregation because of its consistent reads and writes.

• High write throughput and update rates—Apache HBase supports low latency

lookups and range scans, efficient updates and deletions of individual records,

and high write throughput.

• Support for multiple Hadoop jobs—The Apache HBase data store allows data

to be used by one or more Hadoop jobs on a single cluster or across multiple

Hadoop clusters.

Apache HBase Deployment Options

The following section provides a description of Apache HBase deployment options in

the AWS Cloud.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 4

Managed Apache HBase on Amazon EMR (Amazon S3

Storage Mode)

Amazon EMR enables you to use Amazon S3 as a data store for Apache HBase using

the EMR File System and offers the following benefits:

• Separation of compute from storage— You can size your Amazon EMR

cluster for compute instead of data requirements, allowing you to avoid the need

for the customary 3x replication in HDFS.

• Transient clusters—You can scale compute nodes without impacting your

underlying storage and terminate your cluster to save costs and quickly restore it.

• Built-in availability and durability—You get the availability and durability of

Amazon S3 storage by default.

• Easy to provision read replicas—You can create and configure a read-replica

cluster in another Amazon EC2 Availability Zone that provides read-only access

to the same data as the primary cluster, ensuring uninterrupted access to your

data even if the primary cluster becomes unavailable.

Managed Apache HBase on Amazon EMR (HDFS

Storage Mode)

Apache HBase on Amazon EMR is optimized to run on AWS and offers the following

benefits:

• Minimal administrative overhead—Amazon EMR handles provisioning of

Amazon EC2 instances, security settings, Apache HBase configuration, log

collection, health monitoring, and replacement of faulty instances. You still have

the flexibility to access the underlying infrastructure and customize Apache

HBase further, if desired.

• Easy and flexible deployment options—You can deploy Apache HBase on

Amazon EMR using the AWS Management Console or by using the AWS

Command Line Interface (AWS CLI). Once launched, resizing an Apache HBase

cluster is easily accomplished with a single API call. Activities such as modifying

the Apache HBase configuration at launch time or installing third-party tools such

as Ganglia for monitoring performance metrics are feasible with custom or

predefined scripts.

https://aws.amazon.com/console/
https://aws.amazon.com/cli
https://aws.amazon.com/cli
http://ganglia.sourceforge.net/

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 5

• Unlimited scale—With Apache HBase running on Amazon EMR, you can gain

significant cloud benefits such as easy scaling, low cost, pay only for what you

use, and ease of use as opposed to the self-managed deployment model on

Amazon EC2.

• Integration with other AWS services—Amazon EMR is designed to seamlessly

integrate with other AWS services, such as Amazon S3, Amazon DynamoDB,

Amazon EC2, and Amazon CloudWatch.

• Built-in backup feature—A key benefit of Apache HBase running on Amazon

EMR is the built-in mechanism available for backing up Apache HBase data

durably in Amazon S3. Using this feature, you can schedule full or incremental

backups, and roll back or even restore backups to existing or newly launched

clusters anytime.

Self-Managed Apache HBase Deployment Model on

Amazon EC2

The Apache HBase self-managed model offers the most flexibility in terms of cluster

management, but also presents the following challenges:

• Administrative overhead—You must deal with the administrative burden of

provisioning and managing your Apache HBase clusters.

• Capacity planning—As with any traditional infrastructure, capacity planning is

difficult and often prone to significant costly error. For example, you could over-

invest and end up paying for unused capacity or under-invest and risk

performance or availability issues.

• Memory management—Apache HBase is mainly memory-driven. Memory can

become a limiting factor as the cluster grows. It is important to determine how

much memory is needed to run diverse applications on your Apache HBase

cluster to prevent nodes from swapping data too often to the disk. The number of

Apache HBase nodes and memory requirements should be planned well in

advance.

• Compute, storage, and network planning—Other key considerations for

effectively operating an Apache HBase cluster include compute, storage, and

network. These infrastructure components often require dedicated Apache

Hadoop/Apache HBase administrators with specialized skills.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 6

Feature Summary

Amazon DynamoDB and Apache HBase both possess characteristics that are critical

for successfully processing massive amounts of data. The following table provides a

summary of key features of Amazon DynamoDB and Apache HBase that can help you

understand key similarities and differences between the two databases. These features

are discussed in later sections.

Table 1: Amazon DynamoDB and Apache HBase Feature Summary

Feature Amazon DynamoDB Apache HBase

Description Hosted, scalable database

service by Amazon

Column store based on

Apache Hadoop and on

concepts of BigTable

Implementation Language - Java

Server Operating Systems Hosted Linux, Unix, Windows

Database Model Key-value & Document store Wide column store

Data Scheme Schema free Schema free

Typing Yes No

APIs and Other Access

Methods

Flexible Flexible

Supported Programming

Languages

Multiple Multiple

Server-side Scripts No Yes

Triggers

Yes Yes

Partitioning Methods Sharding Sharding

Throughput Model User provisions throughput Limited to hardware

configuration

Automatic Scaling Yes No

Partitioning Automatic partitioning Automatic sharding

Replication Yes Yes

http://db-engines.com/en/article/Key-value%2BStores
http://db-engines.com/en/article/Wide%2BColumn%2BStores

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 7

Feature Amazon DynamoDB Apache HBase

Durability Yes Yes

Administration No administration overhead High administration

overhead in self-managed

and minimal on Amazon

EMR

User Concepts Yes Yes

Data Model

Row Item – 1 or more attributes Columns/column families

Row Size Item size restriction No row size restrictions

Primary Key Simple/Composite Row key

Foreign Key No No

Indexes Optional No built-in index model

implemented as secondary

tables or coprocessors

Transactions

Row Transactions Item-level transactions Single-row transactions

Multi-row Transactions Yes Yes

Cross-table Transactions Yes Yes

Consistency Model Eventually consistent and

strongly consistent reads

Strongly consistent reads

and writes

Concurrency Yes Yes

Updates Conditional updates Atomic read-modify-write

Integrated Cache Yes Yes

Time-To-Live (TTL) Yes Yes

Encryption at Rest Yes Yes

Backup and Restore Yes Yes

Point-in-time Recovery Yes Yes

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 8

Feature Amazon DynamoDB Apache HBase

Multiregion, Multi-master Yes No

Use Cases

Amazon DynamoDB and Apache HBase are optimized to process massive amounts of

data. Popular use cases for Amazon DynamoDB and Apache HBase include the

following:

• Serverless applications—Amazon DynamoDB provides a durable backend for

storing data at any scale and has become the de facto database for powering

Web and mobile backends for e-commerce/retail, education, and media verticals.

• High volume special events—Special events and seasonal events, such as

national electoral campaigns, are of relatively short duration and have variable

workloads with the potential to consume large amounts of resources. Amazon

DynamoDB lets you increase capacity when you need it and decrease as needed

to handle variable workloads. This quality renders Amazon DynamoDB a suitable

choice for such high volume special events.

• Social media applications—Community-based applications, such as online

gaming, photo sharing, location-aware applications, and so on, have

unpredictable usage patterns with the potential to go viral anytime. The elasticity

and flexibility of Amazon DynamoDB make it suitable for such high volume,

variable workloads.

• Regulatory and compliance requirements—Both Amazon DynamoDB and

Amazon EMR are in scope of the AWS compliance efforts and therefore suitable

for healthcare and financial services workloads as described in AWS Services in

Scope by Compliance Program.

• Batch-oriented processing—For large datasets, such as log data, weather

data, product catalogs, and so on, you may already have large amounts of

historical data that you want to maintain for historical trend analysis but need to

ingest and batch process current data for predictive purposes. For these types of

workloads, Apache HBase is a good choice because of its high read and write

throughput and efficient storage of sparse data.

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 9

• Reporting—To process and report on high volume transactional data, such as

daily stock market trades, Apache HBase is a good choice because it supports

high throughput writes and update rates, which make it suitable for storage of

high frequency counters and complex aggregations.

• Real-time analytics—The payload or message size in event data, such as

tweets, E-commerce, and so on, is relatively small when compared with

application logs. If you want to ingest streaming event data in real-time for

sentiment analysis, ad serving, trending analysis, and so on, Amazon

DynamoDB lets you increase throughout capacity when you need it, and

decrease it when you are done, with no downtime. Apache HBase can handle

real-time ingestion of data, such as application logs, with ease due to its high

write throughput and efficient storage of sparse data. Combining this capability

with Hadoop's ability to handle sequential reads and scans in a highly optimized

way renders Apache HBase a powerful tool for real-time data analytics.

Data Models

Amazon DynamoDB is a key/value as well as a document store and Apache HBase is a

key/value store. For a meaningful comparison of Amazon DynamoDB with Apache

HBase as a NoSQL data store, this document focuses on the key/value data model for

Amazon DynamoDB.

Amazon DynamoDB and Apache HBase are designed with the goal to deliver significant

performance benefits with low latency and high throughput. To achieve this goal,

key/value stores and document stores have simpler and less constrained data models

than traditional relational databases. Although the fundamental data model building-

blocks are similar in both Amazon DynamoDB and Apache HBase, each database uses

a distinct terminology to describe its specific data model.

At a high level, a database is a collection of tables, and each table is a collection of

rows. A row can contain one or more columns. In most cases, NoSQL database tables

typically do not require a formal schema except for a mandatory primary key that

uniquely identifies each row. The following table illustrates the high-level concept of a

NoSQL database.

Table 2: High-Level NoSQL Database Table Representation

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 10

Table

Row Primary Key Column 1

Columnar databases are devised to store each column separately so that aggregate

operations for one column of the entire table are significantly quicker than the traditional

row storage model.

From a comparative standpoint, a row in Amazon DynamoDB is referred to as an item,

and each item can have any number of attributes. An attribute comprises a key and a

value and commonly referred to as a name-value pair. An Amazon DynamoDB table

can have unlimited items indexed by primary key, as shown in the following example.

Table 3: High-Level Representation of Amazon DynamoDB Table

Table

Item 1 Primary Key Attribute 1 Attribute 2 Attribute 3 Attribute …n

Item 2 Primary Key Attribute 1 Attribute 3

Item n Primary Key Attribute 2 Attribute 3

Amazon DynamoDB defines two types of primary keys: a simple primary key with one

attribute called a partition key (Table 4) and a composite primary key with two attributes

(Table 5).

Table 4: Amazon DynamoDB Simple Primary Key (Partition Key)

Table

Item Partition Key Attribute 1 Attribute 2 Attribute 3 Attribute …n

Table 5: Amazon DynamoDB Composite Primary Key (Partition & Sort Key)

Table

Item Partition Key Sort Key Attribute 1 Attribute 2 Attribute 3 attribute …n

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 11

A JSON representation of the item in the Table 5 with additional nested attributes is

given below:

{

 "Partition Key": "Value",

 "Sort Key": "Value",

 "Attribute 1": "Value",

 "Attribute 2": "Value",

 "Attribute 3": [

 {

 "Attribute 4": "Value",

 "Attribute 5": "Value",

 },

 {

 "Attribute 4": "Value",

 "Attribute 5": "Value",

 }

]

}

In Amazon DynamoDB, a single attribute primary key or partition key is useful for quick

reads and writes of data. For example, PersonID serves as the partition key in the

following Person table.

Table 6: Example Person Amazon DynamoDB Table

Person Table

Item PersonId

(Partition Key)

FirstName LastName Zipcode Gender

Item 1 1001 Fname-1 Lname-1 00000

Item 2 1002 Fname-2 Lname-2 M

Item 3 2002 Fname-3 Lname-3 10000 F

A composite key in Amazon DynamoDB is indexed as a partition key and a sort key.

This multi-part key maintains a hierarchy between the first and second element values.

Holding the partition key element constant facilitates searches across the sort key

element to retrieve items quickly for a given partition key. In the following GameScores

table, the composite partition-sort key is a combination of PersonId (partition key) and

GameId (sort key).

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 12

Table 7: Example GameScores Amazon DynamoDB Table

GameScores Table

 PersonId

(Partition Key)

GameId

(Sort Key)

TopScore TopScoreDate Wins Losses

item1 1001 Game01 67453 2013-12-

09:17:24:31

73 21

item2 1001 Game02 98567 2013-12-

11:14:14:37

98 27

Item3 1002 Game01 43876 2013-12-

15:19:24:39

12 23

Item4 2002 Game02 65689 2013-10-

01:17:14:41

23 54

The partition key of an item is also known as its hash attribute and sort key as its range

attribute. The term hash attribute arises from the use of an internal hash function that

takes the value of the partition key as input and the output of that hash function

determines the partition or physical storage node where the item will be stored. The

term range attribute derives from the way DynamoDB stores items with the same

partition key together, in sorted order by the sort key value.

Although there is no explicit limit on the number of attributes associated with an

individual item in an Amazon DynamoDB table, there are restrictions on the aggregate

size of an item or payload, including all attribute names and values. A small payload can

potentially improve performance and reduce costs because it requires fewer resources

to process. For information on how to handle items that exceed the maximum item size,

see Best Practices for Storing Large Items and Attributes.

In Apache HBase, the most basic unit is a column. One or more columns form a row.

Each row is addressed uniquely by a primary key referred to as a row key. A row in

Apache HBase can have millions of columns. Each column can have multiple versions

with each distinct value contained in a separate cell.

One fundamental modeling concept in Apache HBase is that of a column family. A

column family is a container for grouping sets of related data together within one table,

as shown in the following example.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 13

Table 8: Apache HBase Row Representation

Table

 Column Family 1 Column Family 2 Column Family 3

row row key Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Apache HBase groups columns with the same general access patterns and size

characteristics into column families to form a basic unit of separation. For example, in

the following Person table, you can group personal data into one column family called

personal_info and the statistical data into a demographic column family. Any other

columns in the table would be grouped accordingly as well, as shown in the following

example.

Table 9: Example Person Table in Apache HBase

Person Table

 personal_info demographic

 row key firstname lastname zipcode gender

row 1 1001 Fname-1 Lname-1 00000

row 2 1002 Fname-2 Lname-2 M

row 3 2002 Fname-3 Lname-3 10000 F

Columns are addressed as a combination of the column family name and the column

qualifier expressed as family:qualifier. All members of a column family have the

same prefix. In the preceding example, the firstname and lastname column qualifiers

can be referenced as personal_info:firstname and personal_info:lastname,

respectively.

Column families allow you to fetch only those columns that are required by a query. All

members of a column family are physically stored together on a disk. This means that

optimization features, such as performance tunings, compression encodings, and so on,

can be scoped at the column family level.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 14

The row key is a combination of user and game identifiers in the following Apache

HBase GameScores table. A row key can consist of multiple parts concatenated to

provide an immutable way of referring to entities. From an Apache HBase modeling

perspective, the resulting table is tall-narrow. This is because the table has few columns

relative to the number of rows, as shown in the following example.

Table 10: Tall-Narrow GameScores Apache HBase Table

GameScores Table

 top_scores metrics

 row key score date wins loses

row 1 1001-game01 67453 2013-12-

09:17:24:31

73 21

row 2 1001-game02 98567 2013-12-

11:14:14:37

98 27

row 3 1002-game01 43876 2013-12-

15:19:24:39

12 23

row 4 2002-game02 65689 2013-10-

01:17:14:41

23 54

Alternatively, you can model the game identifier as a column qualifier in Apache HBase.

This approach facilitates precise column lookups and supports usage of filters to read

data. The result is a flat-wide table with few rows relative to the number of columns.

This concept of a flat-wide Apache HBase table is shown in the following table.

Table 11: Flat-Wide GameScores Apache HBase Table

GameScores Table

 top_scores metrics

 row key gameId score top_score_date gameId wins loses

row 1 1001 game01 98567 2013-12-

11:14:14:37

game01 98 27

 game02 43876 2013-12-

15:19:24:39

game02 12 23

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 15

GameScores Table

row 2 1002 game01 67453 2013-12-

09:17:24:31

game01 73 21

row 3 2002 game02 65689 2013-10-

01:17:14:41

game02 23 54

For performance reasons, it is important to keep the number of column families in your

Apache HBase schema low. Anything above three-column families can potentially

degrade performance. The recommended best practice is to maintain a one-column

family in your schemas and introduce a two-column family and three-column family only

if data access is limited to a one-column family at a time. Note that Apache HBase does

not impose any restrictions on row size.

Data Types

Both Amazon DynamoDB and Apache HBase support unstructured datasets with a

wide range of data types.

Amazon DynamoDB supports the data types shown in the following table:

Table 12: Amazon DynamoDB Data Types

Type Description Example (JSON Format)

Scalar

String Unicode with UTF8 binary

encoding

{"S": "Game01"}

Number Positive or negative exact- value

decimals and integers

{"N": "67453"}

Binary Encoded sequence of bytes {"B":

"dGhpcyB0ZXh0IGlzIGJhc2U2NC1l"}

Boolean True or false {"BOOL": true}

Null Unknown or undefined state {"NULL": true}

Document

List Ordered collection of values {"L": ["Game01", 67453]}

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 16

Type Description Example (JSON Format)

Map Unordered collection of name-

value pairs

{"M": {"GameId": {"S": "Game01"},

"TopScore": {"N": "67453"}}}

Multi-valued

String Set Unique set of strings {"SS": ["Black","Green] }

Number Set Unique set of numbers {"NS": ["42.2","-19.87"] }

Binary Set Unique set of binary values {"BS": ["U3Vubnk=","UmFpbnk=] }

Each Amazon DynamoDB attribute can be a name-value pair with exactly one value

(scalar type), a complex data structure with nested attributes (document type), or a

unique set of values (multi-valued set type). Individual items in an Amazon DynamoDB

table can have any number of attributes.

Primary key attributes can only be scalar types with a single value and the only data

types allowed are string, number, or binary. Binary type attributes can store any binary

data, for example, compressed data, encrypted data, or even images.

Map is ideal for storing JSON documents in Amazon DynamoDB. For example, in Table

6, Person could be represented as a map of person id that maps to detailed information

about the person: name, gender, and a list of their previous addresses also represented

as a map. This is illustrated in the following script:

{

 "PersonId": 1001,

 "FirstName": "Fname-1",

 "LastName": "Lname-1",

 "Gender": "M",

 "Addresses": [

 {

 "Street": "Main St",

 "City": "Seattle",

 "Zipcode": 98005,

 "Type": "current",

 },

 {

 "Street": "9th St",

 "City": Seattle,

 "Zipcode": 98005,

 "Type": "past",

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 17

 }

]

}

In summary, Apache HBase defines the following concepts:

• Row—An atomic byte array or key/value container.

• Column—A key within the key/value container inside a row.

• Column Family—Divides columns into related subsets of data that are stored

together on disk.

• Timestamp—Apache HBase adds the concept of a fourth dimension column that

is expressed as an explicit or implicit timestamp. A timestamp is usually

represented as a long integer in milliseconds.

• Value—A time-versioned value in the key/value container. This means that a cell

can contain multiple versions of a value that can change over time. Versions are

stored in decreasing timestamp, with the most recent first.

Apache HBase supports a bytes-in/bytes-out interface. This means that anything that

can be converted into an array of bytes can be stored as a value. Input could be strings,

numbers, complex objects, or even images as long as they can be rendered as bytes.

Consequently, key/value pairs in Apache HBase are arbitrary arrays of bytes. Because

row keys and column qualifiers are also arbitrary arrays of bytes, almost anything can

serve as a row key or column qualifier, from strings to binary representations of longs or

even serialized data structures.

Column family names must comprise printable characters in human-readable format.

This is because column family names are used as part of the directory name in the file

system. Furthermore, column families must be declared up front at the time of schema

definition. Column qualifiers are not subjected to this restriction and can comprise any

arbitrary binary characters and be created at runtime.

Indexing

In general, data is indexed using a primary key for fast retrieval in both Amazon

DynamoDB and Apache HBase. Secondary indexes extend the basic indexing

functionality and provide an alternate query path in addition to queries against the

primary key.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 18

Amazon DynamoDB supports two kinds of secondary indexes on a table that already

implements a partition and sort key:

• Global secondary index—An index with a partition and optional sort key that

can be different from those on the table.

• Local secondary index—An index that has the same partition key as the table,

but a different sort key.

You can define one or more global secondary indexes and one or more local secondary

indexes per table. For documents, you can create a local secondary index or global

secondary index on any top-level JSON element.

In the example GameScores table introduced in the preceding section, you can define

LeaderBoardIndex as a global secondary index as follows:

Table 13: Example Global Secondary Index in Amazon DynamoDB

LeaderBoardIndex

Index Key Attribute 1

GameId (Partition Key) TopScore (Sort Key) PersonId

Game01 98567 1001

Game02 43876 1001

Game01 65689 1002

Game02 67453 2002

The LeaderBoardIndex shown in Table 13 defines GameId as its primary key and

TopScore as its sort key. It is not necessary for the index key to contain any of the key

attributes from the source table. However, the table’s primary key attributes are always

present in the global secondary index. In this example, PersonId is automatically

projected or copied into the index.

With LeaderBoardIndex defined, you can easily obtain a list of top scores for a

specific game by simply querying it. The output is ordered by TopScore, the sort key.

You can choose to project additional attributes from the source table into the index.

A local secondary index, on the other hand, organizes data by the index sort key. It

provides an alternate query path for efficiently accessing data using a different sort key.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 19

You can define PersonTopScoresIndex as a local secondary index for the example

GameScores table introduced in the preceding section. The index contains the same

partition key, PersonId, as the source table and defines TopScoreDate as its new sort

key. The old sort key value from the source table (in this example, GameId) is

automatically projected or copied into the index, but it is not a part of the index key, as

shown in the following table.

Table 14: Local Secondary Index in Amazon DynamoDB

PersonTopScoresIndex

Index Key Attribute1 Attribute2

PersonId

(Partition

Key)

TopScoreDate

(New Sort Key)

GameId

(Old Sort Key as attribute)

TopScore

(Optional projected attribute)

1001 2013-12-

09:17:24:31

Game01 67453

1001 2013-12-

11:14:14:37

Game02 98567

1002 2013-12-

15:19:24:39

Game01 43876

2002 2013-10-

01:17:14:41

Game02 65689

A local secondary index is a sparse index. An index will only have an item if the index

sort key attribute has a value.

With local secondary indexes, any group of items that have the same partition key value

in a table and all their associated local secondary indexes form an item collection. There

is a size restriction on item collections in a DynamoDB table. For more information, see

Item Collection Size Limit.

The main difference between a global secondary index and a local secondary index is

that a global secondary index defines a completely new partition key and optional sort

index on a table. You can define any attribute as the partition key for the global

secondary index as long as its data type is scalar rather than a multi-value set.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ItemCollections.SizeLimit

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 20

Additional highlights between global and local secondary indexes are captured in the

following table.

Table 15: Global and secondary indexes

 Global Secondary Indexes Local Secondary Indexes

Creation Can be created for existing

tables

(Online indexing supported)

Only at table creation time

(Online indexing not supported)

Primary Key Values Need not be unique Must be unique

Partition Key Different from primary table Same as primary table

Sort Key Optional Required (different from

Primary table)

Provisioned

Throughput

Independent from primary table Dependent on primary table

Writes Asynchronous Synchronous

For more information on global and local secondary indexes in Amazon DynamoDB,

see Improving Data Access with Secondary Indexes.

In Apache HBase, all rows are always sorted lexicographically by row key. The sort is

byte-ordered. This means that each row key is compared on a binary level, byte by

byte, from left to right. Row keys are always unique and act as the primary index in

Apache HBase.

Although Apache HBase does not have native support for built-in indexing models such

as Amazon DynamoDB, you can implement custom secondary indexes to serve as

alternate query paths by using these techniques:

• Create an index in another table—You can maintain a secondary table that is

periodically updated. However, depending on the load strategy, the risk with this

method is that the secondary index can potentially become out of sync with the

main table. You can mitigate this risk if you build the secondary index while

publishing data to the cluster and perform concurrent writes into the index table.

• Use the coprocessor framework—You can leverage the coprocessor

framework to implement custom secondary indexes. Coprocessors act like

triggers that are similar to stored procedures in RDBMS.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 21

• Use Apache Phoenix—Acts as a front-end to Apache HBase to convert

standard SQL into native HBase scans and queries and for secondary indexing.

In summary, both Amazon DynamoDB and Apache HBase define data models that

allow efficient storage of data to optimize query performance. Amazon DynamoDB

imposes a restriction on its item size to allow efficient processing and reduce costs.

Apache HBase uses the concept of column families to provide data locality for more

efficient read operations.

Amazon DynamoDB supports both scalar and multi-valued sets to accommodate a wide

range of unstructured datasets. Similarly, Apache HBase stores its key/value pairs as

arbitrary arrays of bytes, giving it the flexibility to store any data type.

Amazon DynamoDB supports built-in secondary indexes and automatically updates and

synchronizes all indexes with their parent tables. With Apache HBase, you can

implement and manage custom secondary indexes yourself.

From a data model perspective, you can choose Amazon DynamoDB if your item size is

relatively small. Although Amazon DynamoDB provides a number of options to

overcome row size restrictions, Apache HBase is better equipped to handle large

complex payloads with minimal restrictions.

Data Processing

This section highlights foundational elements for processing and querying data within

Amazon DynamoDB and Apache HBase.

Throughput Model

Amazon DynamoDB uses a provisioned throughput model to process data. With this

model, you can specify your read and write capacity needs in terms of number of input

operations per second that a table is expected to achieve. During table creation time,

Amazon DynamoDB automatically partitions and reserves the appropriate amount of

resources to meet your specified throughput requirements.

Automatic scaling for Amazon DynamoDB automates capacity management and

eliminates the guesswork involved in provisioning adequate capacity when creating new

tables and global secondary indexes. With automatic scaling enabled, you can specify

percent target utilization and DynamoDB will scale the provisioned capacity for reads

and writes within the bounds to meet the target utilization percent. For more information,

see Managing Throughput Capacity Automatically with DynamoDB Auto Scaling.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-phoenix.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 22

To decide on the required read and write throughput values for a table without auto

scaling feature enabled, consider the following factors:

• Item size—The read and write capacity units that you specify are based on a

predefined data item size, per read or per write operation. For more information

about provisioned throughput data item size restrictions, see Provisioned

Throughput in Amazon DynamoDB.

• Expected read and write request rates—You must also determine the

expected number of read and write operations your application will perform

against the table, per second.

• Consistency—Whether your application requires strongly consistent or

eventually consistent reads is a factor in determining how many read capacity

units you need to provision for your table. For more information about

consistency and Amazon DynamoDB, see the Consistency Model section in this

document.

• Global secondary indexes—The provisioned throughput settings of a global

secondary index are separate from those of its parent table. Therefore, you must

also consider the expected workload on the global secondary index when

specifying the read and write capacity at index creation time.

• Local secondary indexes—Queries against indexes consume provisioned read

throughput. For more information, see Provisioned Throughput Considerations

for Local Secondary Indexes.

Although read and write requirements are specified at table creation time, Amazon

DynamoDB lets you increase or decrease the provisioned throughput to accommodate

load with no downtime.

With Apache HBase, the number of nodes in a cluster can be driven by the required

throughput for reads and/or writes. The available throughput on a given node can vary

depending on the data, specifically:

• Key/value sizes

• Data access patterns

• Cache hit rates

• Node and system configuration

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html#LSI.ThroughputConsiderations

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 23

You should plan for peak load if load will likely be the primary factor that increases node

count within an Apache HBase cluster.

Consistency Model

A database consistency model determines the manner and timing in which a successful

write or update is reflected in a subsequent read operation of that same value.

Amazon DynamoDB lets you specify the desired consistency characteristics for each

read request within an application. You can specify whether a read is eventually

consistent or strongly consistent.

The eventual consistency option is the default in Amazon DynamoDB and maximizes

the read throughput. However, an eventually consistent read might not always reflect

the results of a recently completed write. Consistency across all copies of data is

usually reached within a second.

A strongly consistent read in Amazon DynamoDB returns a result that reflects all writes

that received a successful response prior to the read. To get a strongly consistent read

result, you can specify optional parameters in a request. It takes more resources to

process a strongly consistent read than an eventually consistent read. For more

information about read consistency, see Data Read and Consistency Considerations.

Apache HBase reads and writes are strongly consistent. This means that all reads and

writes to a single row in Apache HBase are atomic. Each concurrent reader and writer

can make safe assumptions about the state of a row. Multi-versioning and time

stamping in Apache HBase contribute to its strongly consistent model.

Transaction Model

Unlike RDBMS, NoSQL databases typically have no domain-specific language, such as

SQL, to query data. Amazon DynamoDB and Apache HBase provide simple application

programming interfaces (APIs) to perform the standard create, read, update, and delete

(CRUD) operations.

Amazon DynamoDB Transactions support coordinated, all-or-nothing changes to

multiple items both within and across tables. Transactions provide atomicity,

consistency, isolation, and durability (ACID) in DynamoDB, helping you to maintain data

correctness in your applications. Apache HBase integrates with Apache Phoenix to add

cross row and cross table transaction support with full ACID semantics.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://phoenix.apache.org/transactions.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 24

Amazon DynamoDB provides atomic item and attribute operations for adding, updating,

or deleting data. Further, item-level transactions can specify a condition that must be

satisfied before that transaction is fulfilled. For example, you can choose to update an

item only if it already has a certain value.

Conditional operations allow you to implement optimistic concurrency control systems

on Amazon DynamoDB. For conditional updates, Amazon DynamoDB allows atomic

increment and decrement operations on existing scalar values without interfering with

other write requests. For more information about conditional operations, see Conditional

Writes.

Apache HBase also supports atomic high update rates (the classic read-modify-write)

within a single row key, enabling storage for high frequency counters. Unlike Amazon

DynamoDB, Apache HBase uses multi-version concurrency control to implement

updates. This means that an existing piece of data is not overwritten with a new one;

instead, it becomes obsolete when a newer version is added.

Row data access in Apache HBase is atomic and includes any number of columns, but

there are no further guarantees or transactional features spanning multiple rows. Similar

to Amazon DynamoDB, Apache HBase supports only single-row transactions.

Amazon DynamoDB has an optional feature, DynamoDB Streams, to capture table

activity. The data modification events such as add, update, or delete can be captured in

near real time, in a time-ordered sequence. If stream is enabled on a DynamoDB table,

each event gets recorded as a stream record along with name of the table, event

timestamp and other metadata. For more information, see the section on Capturing

Table Activity with DynamoDB Streams.

Amazon DynamoDB Streams can be used with AWS Lambda to create trigger-code

that executes automatically whenever an event of interest (add, update, delete) appears

in a stream. This pattern enables powerful solutions, such as data replication within and

across AWS Regions, materialized views of data in DynamoDB tables, data analysis

using Amazon Kinesis, notifications via Amazon Simple Notification Service (Amazon

SNS) or Amazon Simple Email Service (Amazon SES) and much more. For more

information, see DynamoDB Streams and AWS Lambda Triggers.

Table Operations

Amazon DynamoDB and Apache HBase provide scan operations to support large-scale

analytical processing. A scan operation is similar to cursors in RDBMS. By taking

advantage of the underlying sequential, sorted storage layout, a scan operation can

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ConditionalUpdate
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ConditionalUpdate
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/ses/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 25

easily iterate over wide ranges of records or entire tables. Applying filters to a scan

operation can effectively narrow the result set and optimize performance.

Amazon DynamoDB uses parallel scanning to improve performance of a scan

operation. A parallel scan logically sub-divides an Amazon DynamoDB table into

multiple segments, and then processes each segment in parallel. Rather than using the

default scan operation in Apache HBase, you can implement a custom parallel scan by

means of the API to read rows in parallel.

Both Amazon DynamoDB and Apache HBase provide a Query API for complex query

processing in addition to the scan operation. The Query API in Amazon DynamoDB is

accessible only in tables that define a composite primary key. In Apache HBase, bloom

filters improve Get operations and the potential performance gain increases with the

number of parallel reads.

In summary, Amazon DynamoDB and Apache HBase have similar data processing

models in that they both support only atomic single-row transactions. Both databases

also provide batch operations for bulk data processing across multiple rows and tables.

One key difference between the two databases is the flexible provisioned throughput

model of Amazon DynamoDB. The ability to increase capacity when you need it and

decrease it when you are done is useful for processing variable workloads with

unpredictable peaks.

For workloads that need high update rates to perform data aggregations or maintain

counters, Apache HBase is a good choice. This is because Apache HBase supports a

multi-version concurrency control mechanism, which contributes to its strongly

consistent reads and writes. Amazon DynamoDB gives you the flexibility to specify

whether you want your read request to be eventually consistent or strongly consistent

depending on your specific workload.

Architecture

This section summarizes key architectural components of Amazon DynamoDB and

Apache HBase.

Amazon DynamoDB Architecture Overview

At a high level, Amazon DynamoDB is designed for high availability, durability, and

consistently low latency (typically in the single digit milliseconds) performance.

https://hbase.apache.org/book.html#schema.bloom
https://hbase.apache.org/book.html#schema.bloom

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 26

Amazon DynamoDB runs on a fleet of AWS managed servers that leverage solid state

drives (SSDs) to create an optimized, high-density storage platform. This platform

decouples performance from table size and eliminates the need for the working set of

data to fit in memory while still returning consistent, low latency responses to queries.

As a managed service, Amazon DynamoDB abstracts its underlying architectural details

from the user.

Apache HBase Architecture Overview

Apache HBase is typically deployed on top of HDFS. Apache ZooKeeper is a critical

component for maintaining configuration information and managing the entire Apache

HBase cluster.

The three major Apache HBase components are the following:

• Client API — Provides programmatic access to Data Manipulation Language

(DML) for performing CRUD operations on HBase tables.

• Region servers — HBase tables are split into regions and are served by region

servers.

• Master server — Responsible for monitoring all region server instances in the

cluster and is the interface for all metadata changes.

Apache HBase stores data in indexed store files called HFiles on HDFS. The store files

are sequences of blocks with a block index stored at the end for fast lookups. The store

files provide an API to access specific values as well as to scan ranges of values, given

a start and end key.

During a write operation, data is first written to a commit log called a write-ahead-log

(WAL) and then moved into memory in a structure called Memstore. When the size of

the Memstore exceeds a given maximum value, it is flushed as a HFile to disk. Each

time data is flushed from Memstores to disk, new HFiles must be created. As the

number of HFiles builds up, a compaction process merges the files into fewer, larger

files.

A read operation essentially is a merge of data stored in the Memstores and in the

HFiles. The WAL is never used in the read operation. It is meant only for recovery

purposes if a server crashes before writing the in-memory data to disk.

A region in Apache HBase acts as a store per column family. Each region contains

contiguous ranges of rows stored together. Regions can be merged to reduce the

http://zookeeper.apache.org/

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 27

number of store files. A large store file that exceeds the configured maximum store file

size can trigger a region split.

A region server can serve multiple regions. Each region is mapped to exactly one region

server. Region servers handle reads and writes, as well as keeping data in-memory

until enough is collected to warrant a flush. Clients communicate directly with region

servers to handle all data-related operations.

The master server is responsible for monitoring and assigning regions to region servers

and uses Apache ZooKeeper to facilitate this task. Apache ZooKeeper also serves as a

registry for region servers and a bootstrap location for region discovery.

The master server is also responsible for handling critical functions such as load

balancing of regions across region servers, region server failover, and completing

region splits, but it is not part of the actual data storage or retrieval path.

You can run Apache HBase in a multi-master environment. All masters compete to run

the cluster in a multi-master mode. However, if the active master shuts down, then the

remaining masters contend to take over the master role.

Apache HBase on Amazon EMR Architecture Overview

Amazon EMR defines the concept of instance groups, which are collections of Amazon

EC2 instances. The Amazon EC2 virtual servers perform roles analogous to the master

and slave nodes of Hadoop. For best performance, Apache HBase clusters should run

on at least two Amazon EC2 instances. There are three types of instance groups in an

Amazon EMR cluster.

• Master—Contains one master node that manages the cluster. You can use the

Secure Shell (SSH) protocol to access the master node if you want to view logs

or administer the cluster yourself. The master node runs the Apache HBase

master server and Apache ZooKeeper.

• Core—Contains one or more core nodes that run HDFS and store data. The core

nodes run the Apache HBase region servers.

• Task—(Optional). Contains any number of task nodes.

Managed Apache HBase on Amazon EMR (Amazon S3 Storage Mode)

When you run Apache HBase on Amazon EMR with Amazon S3 storage mode

enabled, the HBase root directory is stored in Amazon S3, including HBase store files

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 28

and table metadata. For more information, see HBase on Amazon S3 (Amazon S3

Storage Mode).

For production workloads, EMRFS consistent view is recommended when you enable

HBase on Amazon S3. Not using consistent view may result in performance impacts for

specific operations.

Partitioning

Amazon DynamoDB stores three geographically distributed replicas of each table to

enable high availability and data durability within a region. Data is auto-partitioned

primarily using the partition key. As throughput and data size increase, Amazon

DynamoDB will automatically repartition and reallocate data across more nodes.

Partitions in Amazon DynamoDB are fully independent, resulting in a shared nothing

cluster. However, provisioned throughput is divided evenly across the partitions.

A region is the basic unit of scalability and load balancing in Apache HBase. Region

splitting and subsequent load-balancing follow this sequence of events:

1. Initially, there is only one region for a table, and as more data is added to it, the

system monitors the load to ensure that the configured maximum size is not

exceeded.

2. If the region size exceeds the configured limit, the system dynamically splits the

region into two at the row key in the middle of the region, creating two roughly

equal halves.

3. The master then schedules the new regions to be moved off to other servers for

load balancing, if required.

Behind the scenes, Apache ZooKeeper tracks all activities that take place during a

region split and maintains the state of the region in case of server failure. Apache

HBase regions are equivalent to range partitions that are used in RDBMS sharding.

Regions can be spread across many physical servers that consequently distribute the

load, resulting in scalability.

In summary, as a managed service, the architectural details of Amazon DynamoDB are

abstracted from you to let you focus on your application details.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 29

With the self-managed Apache HBase deployment model, it is crucial to understand the

underlying architectural details to maximize scalability and performance. AWS gives you

the option to offload Apache HBase administrative overhead if you opt to launch your

cluster on Amazon EMR.

Performance Optimizations

Amazon DynamoDB and Apache HBase are inherently optimized to process large

volumes of data with high performance. NoSQL databases typically use an on-disk,

column-oriented storage format for fast data access and reduced I/O when fulfilling

queries. This performance characteristic is evident in both Amazon DynamoDB and

Apache HBase.

Amazon DynamoDB stores items with the same partition key contiguously on disk to

optimize fast data retrieval. Similarly, Apache HBase regions contain contiguous ranges

of rows stored together to improve read operations. You can enhance performance

even further if you apply techniques that maximize throughput at reduced costs, both at

the infrastructure and application tiers.

Tip: A recommended best practice is to monitor Amazon DynamoDB and
Apache HBase performance metrics to proactively detect and diagnose
performance bottlenecks.

The following section focuses on several common performance optimizations that are

specific to each database or deployment model.

Amazon DynamoDB Performance Considerations

Performance considerations for Amazon DynamoDB focus on how to define an

appropriate read and write throughput and how to design a suitable schema for an

application. These performance considerations span both infrastructure level and

application tiers.

On-demand Mode – No Capacity Planning

Amazon DynamoDB on-demand is a flexible billing option capable of serving thousands

of requests per second without capacity planning. For on-demand mode tables, you

don't need to specify how much read and write throughput you expect your application

to perform. DynamoDB tables using on-demand capacity mode automatically adapt to

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 30

your application’s traffic volume. On-demand capacity mode instantly accommodates up

to double the previous peak traffic on a table. For more information, see On-Demand

Mode.

Tip: DynamoDB recommends spacing your traffic growth over at least 30
minutes before driving more than 100,000 reads per second.

Provisioned Throughput Considerations

Factors that must be taken into consideration when determining the appropriate

throughput requirements for an application are, item size, expected read and write

rates, consistency, and secondary indexes, as discussed in the Throughput Model

section of this whitepaper.

If an application performs more reads per second or writes per second than a table’s

provisioned throughput capacity allows, requests above the provisioned capacity will be

throttled. For instance, if a table’s write capacity is 1,000 units and an application can

perform 1,500 writes per second for the maximum data item size, Amazon DynamoDB

will allow only 1,000 writes per second to go through, and the extra requests will be

throttled.

Tip: For applications where capacity requirement increases or decreases
gradually and the traffic stays at the elevated or depressed level for at
least several minutes, manage read and write throughput capacity
automatically using auto scaling feature. With any changes in traffic
pattern, DynamoDB will scale the provisioned capacity up or down within a
specified range to match the desired capacity utilization you enter for a
table or a global secondary index.

Read Performance Considerations

With the launch of Amazon DynamoDB Accelerator (DAX), you can now get

microsecond access to data that lives in Amazon DynamoDB. DAX is an in-memory

cache in front of DynamoDB and has the identical API as DynamoDB.

Because reads can be served from the DAX layer for queries with a cache hit, and the

table will only serve the reads when there is a cache miss, the provisioned read

capacity units can be lowered for cost savings.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html#HowItWorks.OnDemand
https://docs.amazonaws.cn/en_us/amazondynamodb/latest/developerguide/DAX.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 31

Tip: Based on the size of your tables and data access pattern, consider
provisioning a single DAX cluster for multiple smaller tables or multiple
DAX clusters for a single bigger table or a hybrid caching strategy that will
work best for your application.

Primary Key Design Considerations

Primary key design is critical to the performance of Amazon DynamoDB. When storing

data, Amazon DynamoDB divides a table's items into multiple partitions, and distributes

the data primarily based on the partition key element. The provisioned throughput

associated with a table is also divided evenly among the partitions with no sharing of

provisioned throughput across partitions.

Tip: To efficiently use the overall provisioned throughput, spread the
workload across partition key values.

For example, if a table has a very small number of heavily accessed partition key

elements, possibly even a single very heavily used partition key element, traffic can

become concentrated on a single partition and create "hot spots" of read and write

activity within a single item collection. In extreme cases, throttling can occur if a single

partition exceeds its maximum capacity.

To better accommodate uneven access patterns, Amazon DynamoDB adaptive

capacity enables your application to continue reading and writing to hot partitions

without being throttled, provided that traffic does not exceed your table’s total

provisioned capacity or the partition maximum capacity. Adaptive capacity works by

automatically and instantly increasing throughput capacity for partitions that receive

more traffic.

To get the most out of Amazon DynamoDB throughput, you can build tables where the

partition key element has a large number of distinct values. Ensure that values are

requested fairly uniformly and as randomly as possible. The same guidance applies to

global secondary indexes. Choose partitions and sort keys that provide uniform

workloads to achieve the overall provisioned throughput.

Local Secondary Index Considerations

When querying a local secondary index, the number of read capacity units consumed

depends on how the data is accessed. For example, when you create a local secondary

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-partition-key-design.html#bp-partition-key-partitions-adaptive-split
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-partition-key-design.html#bp-partition-key-partitions-adaptive-split

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 32

index and project non-key attributes into the index from the parent table, Amazon

DynamoDB can retrieve these projected attributes efficiently.

In addition, when you query a local secondary index, the query can also retrieve

attributes that are not projected into the index. Avoid these types of index queries that

read attributes that are not projected into the local secondary index. Fetching attributes

from the parent table that are not specified in the local secondary index causes

additional latency in query responses and incurs a higher provisioned throughput cost.

Tip: Project frequently accessed non-key attributes into a local secondary
index to avoid fetches and improve query performance.

Maintain multiple local secondary indexes in tables that are updated infrequently but are

queried using many different criteria to improve query performance. This guidance does

not apply to tables that experience heavy write activity.

If very high write activity to the table is expected, one option to consider is to minimize

interference from reads by not reading from the table at all. Instead, create a global

secondary index with a structure that is identical to that of the table, and then direct all

queries to the index rather than to the table.

Global Secondary Index Considerations

If a query exceeds the provisioned read capacity of a global secondary index, that

request will be throttled. Similarly, if a request performs heavy write activity on the table,

but a global secondary index on that table has insufficient write capacity, then the write

activity on the table will be throttled.

Tip: For a table write to succeed, the provisioned throughput settings for
the table and global secondary indexes must have enough write capacity
to accommodate the write; otherwise, the write will be throttled.

Global secondary indexes support eventually consistent reads, each of which consume

one half of a read capacity unit. The number of read capacity units is the sum of all

projected attribute sizes across all of the items returned in the index query results. With

write activities, the total provisioned throughput cost for a write, consists of the sum of

write capacity units consumed by writing to the table and those consumed by updating

the global secondary indexes.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 33

Apache HBase Performance Considerations

Apache HBase performance tuning spans hardware, network, Apache HBase

configurations, Hadoop configurations, and the Java Virtual Machine Garbage

Collection settings. It also includes applying best practices when using the client API. To

optimize performance, it is worthwhile to monitor Apache HBase workloads with tools

such as Ganglia to identify performance problems early and apply recommended best

practices based on observed performance metrics.

Memory Considerations

Memory is the most restrictive element in Apache HBase. Performance-tuning

techniques are focused on optimizing memory consumption.

From a schema design perspective, it is important to bear in mind that every cell stores

its value as fully qualified with its full row key, column family, column name, and

timestamp on disk. If row and column names are long, the cell value coordinates might

become very large and take up more of the Apache HBase allotted memory. This can

cause severe performance implications, especially if the dataset is large.

Tip: Keep the number of column families small to improve performance
and reduce the costs associated with maintaining HFiles on disk.

Apache HBase Configurations

Apache HBase supports built-in mechanisms to handle region splits and compactions.

Split/compaction storms can occur when multiple regions grow at roughly the same rate,

and eventually split at about the same time. This can cause a large spike in disk I/O

because of the compactions needed to rewrite the split regions.

Tip: Rather than relying on Apache HBase to automatically split and
compact the growing regions, you can perform these tasks manually.

If you handle the splits and compactions manually, you can perform them in a time-

controlled manner and stagger them across all regions to spread the I/O load as much

as possible to avoid potential split/compaction storms. With the manual option, you can

further alleviate any problematic split/compaction storms and gain additional

performance.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 34

Schema Design

A region can run hot when dealing with a write pattern that does not distribute the load

across all servers evenly. This is a common scenario when dealing with streams

processing events with time series data. The gradually increasing nature of time series

data can cause all incoming data to be written to the same region.

This concentrated write activity on a single server can slow down the overall

performance of the cluster. This is because inserting data is now bound to the

performance of a single machine. This problem is easily overcome by employing key

design strategies such as the following.

• Applying salting prefixes to keys; in other words, prepending a random number to

a row.

• Randomizing the key with a hash function.

• Promoting another field to prefix the row key.

These techniques can achieve a more evenly distributed load across all servers.

Client API Considerations

There are a number of optimizations to take into consideration when reading or writing

data from a client using the Apache HBase API. For example, when performing a large

number of PUT operations, you can disable the auto-flush feature. Otherwise, the PUT

operations will be sent one at a time to the region server.

Whenever you use a scan operation to process large numbers of rows, use filters to

limit the scan scope. Using filters can potentially improve performance. This is because

column over-selection can incur a nontrivial performance penalty, especially over large

data sets.

Tip: As a recommended best practice, set the scanner-caching to a value
greater than the default of 1, especially if Apache HBase serves as an
input source for a MapReduce job.

Setting the scanner-caching value to 500, for example, will transfer 500 rows at a time

to the client to be processed, but this might potentially cost more in memory

consumption.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 35

Compression Techniques

Data compression is an important consideration in Apache HBase production

workloads. Apache HBase natively supports a number of compression algorithms that

you can enable at the column family level.

Tip: Enabling compression yields better performance.

In general, compute resources for performing compression and decompression tasks

are typically less than the overheard for reading more data from disk.

Apache HBase on Amazon EMR (HDFS Mode)

Apache HBase on Amazon EMR is optimized to run on AWS with minimal

administration overhead. You still can access the underlying infrastructure and manually

configure Apache HBase settings, if desired.

Cluster Considerations

You can resize an Amazon EMR cluster using core and task nodes. You can add more

core nodes, if desired. Task nodes are useful for managing the Amazon EC2 instance

capacity of a cluster. You can increase capacity to handle peak loads and decrease it

later during demand lulls.

Tip: As a recommended best practice, in production workloads you can
launch Apache HBase on one cluster and any analysis tools, such as
Apache Hive, on a separate cluster to improve performance. Managing
two separate clusters ensures that Apache HBase has ready access to
the infrastructure resources it requires.

Amazon EMR provides a feature to backup Apache HBase data to Amazon S3. You

can perform either manual or automated backups with options to perform full or

incremental backups as needed.

Tip: As a best practice, every production cluster should always take
advantage of the backup feature available on Amazon EMR.

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 36

Hadoop and Apache HBase Configurations

You can use a bootstrap action to install additional software or change Apache HBase

or Apache Hadoop configuration settings on Amazon EMR. Bootstrap actions are

scripts that are run on the cluster nodes when Amazon EMR launches the cluster. The

scripts run before Hadoop starts and before the node begins processing data.

You can write custom bootstrap actions or use predefined bootstrap actions provided by

Amazon EMR. For example, you can install Ganglia to monitor Apache HBase

performance metrics using a predefined bootstrap action on Amazon EMR.

Apache HBase on Amazon EMR (Amazon S3 Storage Mode)

When you run Apache HBase on Amazon EMR with Amazon S3 storage mode enabled

keep in recommended best practices discussed in this section.

Read Performance Considerations

With Amazon S3 storage mode enabled, Apache HBase region servers use MemStore

to store data writes in-memory, and use write-ahead logs to store data writes in HDFS

before the data is written to HBase StoreFiles in Amazon S3. Reading records

directly from the StoreFile in Amazon S3 results in significantly higher latency and

higher standard deviation than reading from HDFS.

Amazon S3 scales to support very high request rates. If your request rate grows

steadily, Amazon S3 automatically partitions your buckets as needed to support higher

request rates. However, the maximum request rates for Amazon S3 are lower than what

can be achieved from the local cache. For more information about Amazon S3

performance, see Performance Optimization.

For read-heavy workloads caching data in-memory or on-disk caches in Amazon EC2

instance storage is recommended. Because Apache HBase region servers use

BlockCache to store data reads in memory and BucketCache to store data reads on

EC2 instance storage, you can choose an EC2 instance type with sufficient instance

store.

In addition, you can add Amazon Elastic Block Store (Amazon EBS) storage to

accommodate your required cache size. You can increase the BucketCache size on

attached instance stores and EBS volumes using the hbase.bucketcache.size

property.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/PerformanceOptimization.html
https://aws.amazon.com/ebs/

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 37

Write Performance Considerations

As discussed in the preceding section, the frequency of MemStore flushes and the

number of StoreFiles present during minor and major compactions can contribute

significantly to an increase in region server response times, and consequently impact

write performance. Consider increasing the size of the MemStore flush and HRegion

block multiplier, which increases the elapsed time between major compactions for

optimal write performance,

Apache HBase compactions and region servers perform optimally when fewer

StoreFiles need to be compacted. You may get better performance using larger file

block sizes (but less than 5 GB) to trigger Amazon S3 multipart upload functionality in

EMRFS.

In summary, whether you are running a managed NoSQL database, such as Amazon

DynamoDB or Apache HBase on Amazon EMR, or managing your Apache HBase

cluster yourself on Amazon EC2 or on-premises, you should take performance

optimizations into consideration if you want to maximize performance at reduced costs.

The key difference between a hosted NoSQL solution and managing it yourself is that a

managed solution, such as Amazon DynamoDB or Apache HBase on Amazon EMR,

lets you offload the bulk of the administration overhead so that you can focus on

optimizing your application.

If you are a developer who is getting started with NoSQL, Amazon DynamoDB or the

hosted Apache HBase on the Amazon EMR solution are suitable options, depending on

your use case. For developers with in-depth Apache Hadoop/Apache HBase knowledge

who need full control of their Apache HBase clusters, the self-managed Apache HBase

deployment model offers the most flexibility from a cluster management standpoint.

Conclusion

Amazon DynamoDB lets you offload operating and scaling a highly available distributed

database cluster, making it a suitable choice for today’s real-time, web-based

applications. As a managed service, Apache HBase on Amazon EMR is optimized to

run on AWS with minimal administration overhead. For advanced users who want to

retain full control of their Apache HBase clusters, the self-managed Apache HBase

deployment model is a good fit.

Amazon DynamoDB and Apache HBase exhibit inherent characteristics that are critical

for successfully processing massive amounts of data. With use cases ranging from

https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

Amazon Web Services Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL

 Page 38

batch-oriented processing to real-time data-serving, Amazon DynamoDB and Apache

HBase are both optimized to handle large datasets. However, knowing your dataset and

access patterns are key to choosing the right NoSQL database for your workload.

Contributors

Contributors to this document include:

• Wangechi Doble, Principal Solutions Architect, Amazon Web Services

• Ruchika Abbi, Solutions Architect, Amazon Web Services

Further Reading

For additional information, see:

• Amazon DynamoDB Developer Guide

• Amazon EC2 User Guide

• Amazon EMR Management Guide

• Amazon EMR Migration Guide

• Amazon S3 Developer Guide

• HBase: The Definitive Guide, by Lars George

• The Apache HBase™ Reference Guide

• Dynamo: Amazon’s Highly Available Key-value Store

Document Revisions

Date Description

January 2020 Amazon DynamoDB foundational features and transaction model

updates

November 2018 Amazon DynamoDB, Apache HBase on EMR, and template updates

September 2014 First Publication

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://d1.awsstatic.com/whitepapers/amazon_emr_migration_guide.pdf
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://www.hbasebook.com/
http://hbase.apache.org/book.html
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf

	Introduction
	Amazon DynamoDB Overview
	Apache HBase Overview
	Apache HBase Deployment Options
	Managed Apache HBase on Amazon EMR (Amazon S3 Storage Mode)
	Managed Apache HBase on Amazon EMR (HDFS Storage Mode)
	Self-Managed Apache HBase Deployment Model on Amazon EC2

	Feature Summary
	Use Cases
	Data Models
	Data Types
	Indexing

	Data Processing
	Throughput Model
	Consistency Model
	Transaction Model
	Table Operations

	Architecture
	Amazon DynamoDB Architecture Overview
	Apache HBase Architecture Overview
	Apache HBase on Amazon EMR Architecture Overview
	Managed Apache HBase on Amazon EMR (Amazon S3 Storage Mode)

	Partitioning

	Performance Optimizations
	Amazon DynamoDB Performance Considerations
	On-demand Mode – No Capacity Planning
	Provisioned Throughput Considerations
	Read Performance Considerations
	Primary Key Design Considerations
	Local Secondary Index Considerations
	Global Secondary Index Considerations

	Apache HBase Performance Considerations
	Memory Considerations
	Apache HBase Configurations
	Schema Design
	Client API Considerations
	Compression Techniques
	Apache HBase on Amazon EMR (HDFS Mode)
	Cluster Considerations
	Hadoop and Apache HBase Configurations

	Apache HBase on Amazon EMR (Amazon S3 Storage Mode)
	Read Performance Considerations
	Write Performance Considerations

	Conclusion
	Contributors
	Further Reading
	Document Revisions

