
AWS Serverless
Multi-Tier Architectures
With Amazon API Gateway and AWS Lambda

First Published November 2015

Updated October 20, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Three-tier architecture overview ... 2

Serverless logic tier ... 3

AWS Lambda ... 3

API Gateway... 6

Data tier ... 11

Presentation tier .. 14

Sample architecture patterns .. 15

Mobile backend .. 16

Single-page application .. 17

Web application .. 19

Microservices with Lambda.. 20

Conclusion ... 21

Contributors ... 21

Further reading .. 22

Document revisions ... 22

Abstract

This whitepaper illustrates how innovations from Amazon Web Services (AWS) can be

used to change the way you design multi-tier architectures and implement popular

patterns such as microservices, mobile backends, and single-page applications.

Architects and developers can use Amazon API Gateway, AWS Lambda, and other

services to reduce the development and operations cycles required to create and

manage multi-tiered applications.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 1

Introduction

The multi-tier application (three-tier, n-tier, and so forth) has been a cornerstone

architecture pattern for decades, and remains a popular pattern for user-facing

applications. Although the language used to describe a multi-tier architecture varies, a

multi-tier application generally consists of the following components:

• Presentation tier – Component that the user directly interacts with (for example,

webpages and mobile app UIs).

• Logic tier – Code required to translate user actions to application functionality

(for example, CRUD database operations and data processing).

• Data tier – Storage media (for example, databases, object stores, caches, and

file systems) that hold the data relevant to the application.

The multi-tier architecture pattern provides a general framework to ensure decoupled

and independently scalable application components can be separately developed,

managed, and maintained (often by distinct teams).

As a consequence of this pattern in which the network (a tier must make a network call

to interact with another tier) acts as the boundary between tiers, developing a multi-tier

application often requires creating many undifferentiated application components. Some

of these components include:

• Code that defines a message queue for communication between tiers

• Code that defines an application programming interface (API) and a data model

• Security-related code that ensures appropriate access to the application

All of these examples can be considered “boilerplate” components that, while necessary

in multi-tier applications, do not vary greatly in their implementation from one application

to the next.

AWS offers a number of services that enable the creation of serverless multi-tier

applications—greatly simplifying the process of deploying such applications to

production and removing the overhead associated with traditional server management.

Amazon API Gateway, a service for creating and managing APIs, and AWS Lambda, a

service for running arbitrary code functions, can be used together to simplify the

creation of robust multi-tier applications.

https://aws.amazon.com/api-gateway
https://aws.amazon.com/lambda

Amazon Web Services AWS Serverless Multi-Tier Architectures

Page 2

API Gateway’s integration with AWS Lambda enables user-defined code functions to be

initiated directly through HTTPS requests. Regardless of the request volume, both API

Gateway and Lambda scale automatically to support exactly the needs of your

application (refer to Amazon API Gateway quotas and important notes for scalability

information). By combining these two services, you can create a tier that enables you to

write only the code that matters to your application and not focus on various other

undifferentiating aspects of implementing a multi-tiered architecture such as architecting

for high availability, writing client SDKs, server and operating system (OS)

management, scaling, and implementing a client authorization mechanism.

API Gateway and Lambda enable the creation of a serverless logic tier. Depending on

your application requirements, AWS also provides options to create a serverless

presentation tier (for example, with Amazon CloudFront and Amazon Simple Storage

Service (Amazon S3) and data tier (for example, Amazon Aurora and Amazon

DynamoDB).

This whitepaper focuses on the most popular example of a multi-tiered architecture, the

three-tier web application. However, you can apply this multi-tier pattern well beyond a

typical three-tier web application.

Three-tier architecture overview

The three-tier architecture is the most popular implementation of a multi-tier

architecture, and consists of a single presentation tier, a logic tier, and a data tier. The

following illustration shows an example of a simple, generic three-tier application.

Architectural pattern for a three-tier application

There are many great online resources where you can learn more about the general

three-tier architecture pattern. This whitepaper focuses on a specific implementation

pattern for this architecture using API Gateway and Lambda.

https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://aws.amazon.com/cloudfront
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://aws.amazon.com/aurora
https://aws.amazon.com/dynamodb
https://aws.amazon.com/dynamodb

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 3

Serverless logic tier

The logic tier of the three-tier architecture represents the brains of the application. This

is where using API Gateway and AWS Lambda can have the most impact compared to

a traditional, server-based implementation. The features of these two services enable

you to build a serverless application that is highly available, scalable, and secure. In a

traditional model, your application could require thousands of servers; however, by

using Amazon API Gateway and AWS Lambda you are not responsible for server

management in any capacity. In addition, by using these managed services together,

you gain the following benefits:

• Lambda

o No OS to choose, secure, patch, or manage

o No servers to right size, monitor, or scale

o Reduced risk to your cost from over-provisioning

o Reduced risk to your performance from under-provisioning

• API Gateway

o Simplified mechanisms to deploy, monitor, and secure APIs

o Improved API performance through caching and content delivery

AWS Lambda

AWS Lambda is a compute service that enables you to run arbitrary code functions in

any of the supported languages (Node.js, Python, Ruby, Java, Go, .NET. For more

information, refer to Lambda FAQs) without provisioning, managing, or scaling servers.

Lambda functions are run in a managed, isolated container, and are launched in

response to an event which can be one of several programmatic triggers that AWS

makes available, called an event source. Refer to Lambda FAQs for all event sources.

Many popular use cases for Lambda revolve around event-driven data processing

workflows, such as processing files stored in Amazon S3 or streaming data records

from Amazon Kinesis. When used in conjunction with API Gateway, a Lambda function

performs the functionality of a typical web service: it initiates code in response to a client

HTTPS request; API Gateway acts as the front door for your logic tier, and Lambda

invokes the application code.

https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/s3
https://aws.amazon.com/kinesis/

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 4

Your business logic goes here, no servers necessary

Lambda requires that you to write code functions, called handlers, which will run when

initiated by an event. To use Lambda with API Gateway, you can configure API

Gateway to launch handler functions when an HTTPS request to your API occurs. In a

serverless multi-tier architecture, each of the APIs you create in API Gateway will

integrate with a Lambda function (and the handler within) that invokes the business

logic required.

Using AWS Lambda functions to compose the logic tier enables you to define a desired

level of granularity for exposing the application functionality (one Lambda function per

API or one Lambda function per API method). Inside the Lambda function, the handler

can reach out to any other dependencies (for example, other methods you’ve uploaded

with your code, libraries, native binaries, and external web services), or even other

Lambda functions.

Creating or updating a Lambda function requires either uploading code as a Lambda

deployment package in a zip file to an Amazon S3 bucket, or packaging code as a

container image along with all the dependencies. The functions can use different

deployment methods, such as AWS Management Console, running AWS Command

Line Interface (CLI), or running infrastructure as code templates or frameworks such as

AWS CloudFormation, AWS Serverless Application Model (AWS SAM), or AWS Cloud

Development Kit (AWS CDK). When you create your function using any of these

methods, you specify which method inside your deployment package will act as the

request handler. You can reuse the same deployment package for multiple Lambda

function definitions, where each Lambda function might have a unique handler within

the same deployment package.

Lambda security

To run a Lambda function, it must be invoked by an event or service that is permitted by

an AWS Identity and Access Management (IAM) policy. Using IAM policies, you can

create a Lambda function that cannot be initiated at all unless it is invoked by an API

Gateway resource that you define. Such policy can be defined using resource-based

policy across various AWS services.

Each Lambda function assumes an IAM role that is assigned when the Lambda function

is deployed. This IAM role defines the other AWS services and resources your Lambda

function can interact with (for example, Amazon DynamoDB table and Amazon S3). In

context of Lambda function, this is called an execution role.

https://aws.amazon.com/console/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 5

Do not store sensitive information inside a Lambda function. IAM handles access to

AWS services through the Lambda execution role; if you need to access other

credentials (for example, database credentials and API keys) from inside your Lambda

function, you can use AWS Key Management Service (AWS KMS) with environment

variables, or use a service such as AWS Secrets Manager to keep this information safe

when not in use.

Performance at scale

Code pulled in as a container image from Amazon Elastic Container Registry (Amazon

ECR), or from a zip file uploaded to Amazon S3, runs in an isolated environment

managed by AWS. You do not have to scale your Lambda functions—each time an

event notification is received by your function, AWS Lambda locates available capacity

within its compute fleet and runs your code with runtime, memory, disk, and timeout

configurations that you define. With this pattern, AWS can start as many copies of your

function as needed.

A Lambda-based logic tier is always right sized for your customer needs. The ability to

quickly absorb surges in traffic through managed scaling and concurrent code initiation,

combined with Lambda pay-per-use pricing, enables you to always meet customer

requests while simultaneously not paying for idle compute capacity.

Serverless deployment and management

To help you deploy and manage your Lambda functions, use AWS Serverless

Application Model (AWS SAM), an open-source framework that includes:

• AWS SAM template specification – Syntax used to define your functions and

describe their environments, permissions, configurations, and events for

simplified upload and deployment.

• AWS SAM CLI – Commands that enable you to verify AWS SAM template

syntax, invoke functions locally, debug Lambda functions, and deployment

package functions.

You can also use AWS CDK, which is a software development framework for defining

cloud infrastructure using programming languages and provisioning it through

CloudFormation. AWS CDK provides an imperative way to define AWS resources,

whereas AWS SAM provides a declarative way.

https://aws.amazon.com/kms/
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/ecr/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 6

Typically, when you deploy a Lambda function, it is invoked with permissions defined by

its assigned IAM role, and is able to reach internet-facing endpoints. As the core of your

logic tier, AWS Lambda is the component directly integrating with the data tier. If your

data tier contains sensitive business or user information, it is important to ensure that

this data tier is appropriately isolated (in a private subnet).

You can configure a Lambda function to connect to private subnets in a virtual private

cloud (VPC) in your AWS account if you want the Lambda function to access resources

that you cannot expose publicly, like a private database instance. When you connect a

function to a VPC, Lambda creates an elastic network interface for each subnet in your

function's VPC configuration and elastic network interface is used to access your

internal resources privately.

Lambda architecture pattern inside a VPC

The use of Lambda with VPC means that databases and other storage media that your

business logic depends on can be made inaccessible from the internet. The VPC also

ensures that the only way to interact with your data from the internet is through the APIs

that you’ve defined and the Lambda code functions that you have written.

API Gateway

API Gateway is a fully managed service that enables developers to create, publish,

maintain, monitor, and secure APIs at any scale.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 7

Clients (that is, presentation tiers) integrate with the APIs exposed through API

Gateway using standard HTTPS requests. The applicability of APIs exposed through

API Gateway to a service-oriented multi-tier architecture is the ability to separate

individual pieces of application functionality and expose this functionality through REST

endpoints. API Gateway has specific features and qualities that can add powerful

capabilities to your logic tier.

Integration with Lambda

Amazon API Gateway supports both REST and HTTP types of APIs. An API Gateway

API is made up of resources and methods. A resource is a logical entity that an app can

access through a resource path (for example, /tickets). A method corresponds to an

API request that is submitted to an API resource (for example, GET /tickets). API

Gateway enables you to back each method with a Lambda function, that is, when you

call the API through the HTTPS endpoint exposed in API Gateway, API Gateway

invokes the Lambda function.

You can connect API Gateway and Lambda functions using proxy integrations and non-

proxy integrations.

Proxy integrations

In a proxy integration, the entire client HTTPS request is sent as-is to the Lambda

function. API Gateway passes the entire client request as the event parameter of the

Lambda handler function, and the output of the Lambda function is returned directly to

the client (including status code, headers, and so forth).

Non-proxy integrations

In a non-proxy integration, you configure how the parameters, headers, and body of the

client request are passed to the event parameter of the Lambda handler function.

Additionally, you configure how the Lambda output is translated back to the user.

Note: API Gateway can also proxy to additional serverless resources
outside of AWS Lambda, such as mock integrations (useful for initial
application development) and direct proxy to S3 objects.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 8

Stable API performance across regions

Each deployment of API Gateway includes a Amazon CloudFront distribution under the

hood. CloudFront is a content delivery service that uses Amazon’s global network of

edge locations as connection points for clients using your API. This helps decrease the

response latency of your API. By using multiple edge locations across the world,

CloudFront also provides capabilities to combat distributed denial of service (DDoS)

attack scenarios. For more information, review the AWS Best Practices for DDoS

Resiliency whitepaper.

You can improve the performance of specific API requests by using API Gateway to

store responses in an optional in-memory cache. This approach not only provides

performance benefits for repeated API requests, but it also reduces the number of times

your Lambda functions are invoked, which can reduce your overall cost.

Encourage innovation and reduce overhead with built-in features

The development cost to build any new application is an investment. Using API

Gateway can reduce the amount of time required for certain development tasks and

lower the total development cost, enabling organizations to more freely experiment and

innovate.

During initial application development phases, implementation of logging and metrics

gathering are often neglected to deliver a new application more quickly. This can lead to

technical debt and operational risk when deploying these features to an application

running in production. API Gateway integrates seamlessly with Amazon CloudWatch,

which collects and processes raw data from API Gateway into readable, near real-time

metrics for monitoring API implementation. API Gateway also supports access logging

with configurable reports, and AWS X-Ray tracing for debugging. Each of these features

requires no code to be written, and can be adjusted in applications running in production

without risk to the core business logic.

The overall lifetime of an application might be unknown, or it might be known to be

short-lived. Creating a business case for building such applications can be made easier

if your starting point already includes the managed features that API Gateway provides,

and if you only incur infrastructure costs after your APIs begin receiving requests. For

more information, refer to Amazon API Gateway pricing.

https://aws.amazon.com/cloudfront/
https://d1.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://d1.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
https://aws.amazon.com/api-gateway/pricing/

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 9

Iterate rapidly, stay agile

Using API Gateway and AWS Lambda to build the logic tier of your API enables you to

quickly adapt to the changing demands of your user base by simplifying API deployment

and version management.

Stage deployment

When you deploy an API in API Gateway, you must associate the deployment with an

API Gateway stage—each stage is a snapshot of the API and is made available for

client apps to call. Using this convention, you can easily deploy apps to dev, test, stage,

or prod stages, and move deployments between stages. Each time you deploy your API

to a stage, you create a different version of the API which can be reverted if necessary.

These features enable existing functionality and client dependencies to continue

undisturbed while new functionality is released as a separate API version.

Decoupled integration with Lambda

The integration between API in API Gateway and Lambda function can be decoupled

using API Gateway stage variables and a Lambda function alias. This simplifies and

speeds up the API deployment. Instead of configuring the Lambda function name or

alias in the API directly, you can configure stage variable in API which can point to a

particular alias in the Lambda function. During deployment, change the stage variable

value to point to a Lambda function alias and API will run the Lambda function version

behind the Lambda alias for a particular stage.

Canary release deployment

Canary release is a software development strategy in which a new version of an API is

deployed for testing purposes, and the base version remains deployed as a production

release for normal operations on the same stage. In a canary release deployment, total

API traffic is separated at random into a production release and a canary release with a

preconfigured ratio. APIs in API Gateway can be configured for the canary release

deployment to test new features with a limited set of users.

Custom domain names

You can provide an intuitive business-friendly URL name to API instead of the URL

provided by API Gateway. API Gateway provides features to configure custom domain

for the APIs. With custom domain names, you can set up your API's hostname, and

choose a multi-level base path (for example, myservice, myservice/cat/v1, or

myservice/dog/v2) to map the alternative URL to your API.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 10

Prioritize API security

All applications must ensure that only authorized clients have access to their API

resources. When designing a multi-tier application, you can take advantage of several

different ways in which API Gateway contributes to securing your logic tier:

Transit security

All requests to your APIs can be made through HTTPS to enable encryption in transit.

API Gateway provides built-in SSL/TLS Certificates—if using the custom domain name

option for public APIs, you can provide your own SSL/TLS certificate using AWS

Certificate Manager. API Gateway also supports mutual TLS (mTLS) authentication.

Mutual TLS enhances the security of your API and helps protect your data from attacks

such as client spoofing or man-in-the middle attacks.

API authorization

Each resource and method combination that you create as part of your API is granted a

unique Amazon Resource Name (ARN) that can be referenced in AWS Identity and

Access Management (IAM) policies.

There are three general methods to add authorization to an API in API Gateway:

• IAM roles and policies. Clients use AWS Signature Version 4 (SigV4)

authorization and IAM policies for API access. The same credentials can restrict

or permit access to other AWS services and resources as needed (for example,

S3 buckets or Amazon DynamoDB tables).

• Amazon Cognito user pools. Clients sign in through an Amazon Cognito user

pool and obtain tokens which are included in the authorization header of a

request.

• Lambda authorizer. Define a Lambda function that implements a custom

authorization scheme that uses a bearer token strategy (for example, OAuth and

SAML) or uses request parameters to identify users.

Access restrictions

API Gateway supports the generation of API keys and association of these keys with a

configurable usage plan. You can monitor API key usage with CloudWatch.

API Gateway supports throttling, rate limits, and burst rate limits for each method in your

API.

https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/cognito/

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 11

Private APIs

Using API Gateway, you can create private REST APIs that can only be accessed from

your virtual private cloud in Amazon VPC by using an interface VPC endpoint. This is an

endpoint network interface that you create in your VPC.

Using resource policies, you can enable or deny access to your API from selected

VPCs and VPC endpoints, including across AWS accounts. Each endpoint can be used

to access multiple private APIs. You can also use AWS Direct Connect to establish a

connection from an on-premises network to Amazon VPC and access your private API

over that connection.

In all cases, traffic to your private API uses secure connections and does not leave the

Amazon network—it is isolated from the public internet.

Firewall protection using AWS WAF

Internet-facing APIs are vulnerable to malicious attacks. AWS WAF is a web application

firewall which helps protect APIs from such attacks. It protects APIs from common web

exploits such as SQL injection and cross-site scripting attacks. You can use AWS WAF

with API Gateway to help protect APIs.

Data tier

Using AWS Lambda as your logic tier does not limit the data storage options available

in your data tier. Lambda functions connect to any data storage option by including the

appropriate database driver in the Lambda deployment package, and use IAM role-

based access or encrypted credentials (through AWS KMS or Secrets Manager).

Choosing a data store for your application is highly dependent on your application

requirements. AWS offers a number of serverless and non-serverless data stores that

you can use to compose the data tier of your application.

Serverless data storage options

• Amazon S3 is an object storage service that offers industry-leading scalability,

data availability, security, and performance.

https://aws.amazon.com/waf/
https://aws.amazon.com/s3

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 12

• Amazon Aurora is a MySQL-compatible and PostgreSQL-compatible relational

database built for the cloud, that combines the performance and availability of

traditional enterprise databases with the simplicity and cost-effectiveness of

open-source databases. Aurora offers both serverless and traditional usage

models.

• Amazon DynamoDB is a key-value and document database that delivers single-

digit millisecond performance at any scale. It is a fully managed, serverless,

multi-region, durable database with built-in security, backup and restore, and in-

memory caching for internet-scale applications.

• Amazon Timestream is a fast, scalable, fully managed time series database

service for IoT and operational applications that makes it simple to store and

analyze trillions of events per day at 1/10th the cost of relational databases.

Driven by the rise of IoT devices, IT systems, and smart industrial machines, time

series data—data that measures how things change over time—is one of the

fastest growing data types.

• Amazon Quantum Ledger Database (Amazon QLDB) is a fully managed ledger

database that provides a transparent, immutable, and cryptographically verifiable

transaction log owned by a central trusted authority. Amazon QLDB tracks each

and every application data change and maintains a complete and verifiable

history of changes over time.

• Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and

managed Apache Cassandra–compatible database service. With Amazon

Keyspaces, you can run your Cassandra workloads on AWS using the same

Cassandra application code and developer tools that you use today. You don’t

have to provision, patch, or manage servers, and you don’t have to install,

maintain, or operate software. Amazon Keyspaces is serverless, so you pay for

only the resources you use and the service can automatically scale tables up and

down in response to application traffic.

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/relational-database/
https://aws.amazon.com/relational-database/
https://aws.amazon.com/dynamodb
https://aws.amazon.com/timestream
https://aws.amazon.com/qldb
https://aws.amazon.com/keyspaces/

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 13

• Amazon Elastic File System (Amazon EFS) provides a simple, serverless, set-

and-forget, elastic file system that lets you share file data without provisioning or

managing storage. It can be used with AWS Cloud services and on-premises

resources, and is built to scale on demand to petabytes without disrupting

applications. With Amazon EFS, you can grow and shrink your file systems

automatically as you add and remove files, eliminating the need to provision and

manage capacity to accommodate growth. Amazon EFS can be mounted with

Lambda function which makes it a viable file storage option for APIs.

Non-serverless data storage options

• Amazon Relational Database Service (Amazon RDS) is a managed web service

that enables you to set up, operate, and scale a relational database using several

engines (Aurora, PostgreSQL, MySQL, MariaDB, Oracle, and Microsoft SQL

Server) and running on several different database instance types that are

optimized for memory, performance, or I/O.

• Amazon Redshift is a fully managed, petabyte-scale data warehouse service in

the cloud.

• Amazon ElastiCache is a fully managed deployment of Redis or Memcached.

Seamlessly deploy, run, and scale popular open source compatible in-memory

data stores.

• Amazon Neptune is a fast, reliable, fully managed graph database service that

makes it simple to build and run applications that work with highly connected

datasets. Neptune supports popular graph models—property graphs and W3C

Resource Description Framework (RDF)—and their respective query languages,

enabling you to easily build queries that efficiently navigate highly connected

datasets.

• Amazon DocumentDB (with MongoDB compatibility) is a fast, scalable, highly

available, and fully managed document database service that supports MongoDB

workloads.

• Finally, you can also use data stores running independently on Amazon EC2 as

the data tier of a multi-tier application.

https://aws.amazon.com/efs/
https://aws.amazon.com/rds
https://aws.amazon.com/redshift
https://aws.amazon.com/elasticache
https://aws.amazon.com/neptune
https://aws.amazon.com/documentdb

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 14

Presentation tier

The presentation tier is responsible for interacting with the logic tier through the API

Gateway REST endpoints exposed over the internet. Any HTTPS capable client or

device can communicate with these endpoints, giving your presentation tier the flexibility

to take many forms (desktop applications, mobile apps, webpages, IoT devices, and so

forth). Depending on your requirements, your presentation tier can use the following

AWS serverless offerings:

• Amazon Cognito – A serverless user identity and data synchronization service

that enables you to add user sign-up, sign-in, and access control to your web and

mobile apps quickly and efficiently. Amazon Cognito scales to millions of users

and supports sign-in with social identity providers, such as Facebook, Google,

and Amazon, and enterprise identity providers through SAML 2.0.

• Amazon S3 with CloudFront – Enables you to serve static websites, such as

single-page applications, directly from an S3 bucket without requiring provision of

a web server. You can use CloudFront as a managed content delivery network

(CDN) to improve performance and enable SSL/TL using managed or custom

certificates.

AWS Amplify is a set of tools and services that can be used together or on their own, to

help front-end web and mobile developers build scalable full stack applications,

powered by AWS. Amplify offers a fully managed service for deploying and hosting

static web applications globally, served by Amazon's reliable CDN with hundreds of

points of presence globally and with built-in CI/CD workflows that accelerate your

application release cycle. Amplify supports popular web frameworks including

JavaScript, React, Angular, Vue, Next.js, and mobile platforms including Android, iOS,

React Native, Ionic, and Flutter. Depending on your networking configurations and

application requirements, you might need to enable your API Gateway APIs to be cross-

origin resource sharing (CORS) – compliant. CORS compliance allows web browsers to

directly invoke your APIs from within static webpages.

When you deploy a website with CloudFront, you are provided a CloudFront domain

name to reach your application (for example, d2d47p2vcczkh2.cloudfront.net).

You can use Amazon Route 53 to register domain names and direct them to your

CloudFront distribution, or direct already-owned domain names to your CloudFront

distribution. This enables users to access your site using a familiar domain name. Note

https://aws.amazon.com/amplify/
https://aws.amazon.com/route53

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 15

that you can also assign a custom domain name using Route 53 to your API Gateway

distribution, which enables users to invoke APIs using familiar domain names.

Sample architecture patterns

You can implement popular architecture patterns using API Gateway and AWS Lambda

as your logic tier. This whitepaper includes the most popular architecture patterns that

use AWS Lambda-based logic tiers:

• Mobile backend – A mobile application communicates with API Gateway and

Lambda to access application data. This pattern can be extended to generic

HTTPS clients that don’t use serverless AWS resources to host presentation tier

resources (such as desktop clients, web server running on EC2, and so forth).

• Single-page application – A single-page application hosted in Amazon S3 and

CloudFront communicates with API Gateway and AWS Lambda to access

application data.

• Web application – The web application is a general-purpose, event-driven, web

application back-end that uses AWS Lambda with API Gateway for its business

logic. It also uses DynamoDB as its database and Amazon Cognito for user

management. All static content is hosted using Amplify.

In addition to these two patterns, this whitepaper discusses the applicability of AWS

Lambda and API Gateway to a general microservice architecture. A microservice

architecture is a popular pattern that, although not a standard three-tier architecture,

involves decoupling application components and deploying them as stateless, individual

units of functionality that communicate with each other.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 16

Mobile backend

Architectural pattern for serverless mobile backend

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 17

Table 1 - Mobile backend tier components

Tier Components

Presentation Mobile application running on a user device.

Logic API Gateway with AWS Lambda.

This architecture shows three exposed services (/tickets, /shows, and

/info). API Gateway endpoints are secured by Amazon Cognito user pools. In

this method, users sign in to Amazon Cognito user pools (using a federated

third party if necessary), and receive access and ID tokens that are used to

authorize API Gateway calls.

Each Lambda function is assigned its own Identity and Access Management

(IAM) role to provide access to the appropriate data source.

Data DynamoDB is used for the /tickets and /shows services.

Amazon RDS is used for the /info service. This Lambda function retrieves

Amazon RDS credentials from Secrets Manager and uses an elastic network

interface to access the private subnet.

Single-page application

Architectural pattern for serverless single-page application

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 18

Table 2 - Single-page application components

Tier Components

Presentation Static website content is hosted in Amazon S3 and distributed by CloudFront.

AWS Certificate Manager allows a custom SSL/TLS certificate to be used.

Logic API Gateway with AWS Lambda.

This architecture shows three exposed services (/tickets, /shows, and

/info). API Gateway endpoints are secured by a Lambda authorizer. In this

method, users sign in through a third-party identity provider and obtain access

and ID tokens. These tokens are included in API Gateway calls, and the

Lambda authorizer validates these tokens and generates an IAM policy

containing API initiation permissions.

Each Lambda function is assigned its own IAM role to provide access to the

appropriate data source.

Data DynamoDB is used for the /tickets and /shows services.

ElastiCache is used by the /shows service to improve database performance.

Cache misses are sent to DynamoDB.

Amazon S3 is used to host static content used by the /info service.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 19

Web application

Architectural pattern for web application

Table 3 - Web application components

Tier Components

Presentation The front-end application is all static content (HTML, CSS, JavaScript and

images) which are generated by React utilities like create-react-app. Amazon

CloudFront hosts all these objects. The web application, when used, downloads

all the resources to the browser and starts to run from there. The web

application connects to the backend calling the APIs.

Logic Logic layer is built using Lambda functions fronted by API Gateway REST APIs.

This architecture shows multiple exposed services. There are multiple different

Lambda functions each handling a different aspect of the application. The

Lambda functions are behind API Gateway and accessible using API URL

paths.

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 20

Tier Components

The user authentication is handled using Amazon Cognito User Pools or

federated user providers. API Gateway uses out of box integration with Amazon

Cognito. Only after a user is authenticated, the client will receive a JSON Web

Token (JWT) which it should then use when making the API calls.

Each Lambda function is assigned its own IAM role to provide access to the

appropriate data source.

Data In this particular example, DynamoDB is used for the data storage but other

purpose-built Amazon database or storage services can be used depending on

the use case and usage scenario.

Microservices with Lambda

Architectural pattern for microservices with Lambda

The microservice architecture pattern is not bound to the typical three-tier architecture;

however, this popular pattern can realize significant benefits from the use of serverless

resources.

In this architecture, each of the application components are decoupled and

independently deployed and operated. An API created with API Gateway, and functions

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 21

subsequently launched by AWS Lambda, is all that you need to build a microservice.

Your team can use these services to decouple and fragment your environment to the

level of granularity desired.

In general, a microservices environment can introduce the following difficulties:

repeated overhead for creating each new microservice, issues with optimizing server

density and utilization, complexity of running multiple versions of multiple microservices

simultaneously, and proliferation of client-side code requirements to integrate with many

separate services.

When you create microservices using serverless resources, these problems become

less difficult to solve and, in some cases, simply disappear. The serverless

microservices pattern lowers the barrier for the creation of each subsequent

microservice (API Gateway even allows for the cloning of existing APIs, and use of

Lambda functions in other accounts). Optimizing server utilization is no longer relevant

with this pattern. Finally, API Gateway provides programmatically generated client SDKs

in a number of popular languages to reduce integration overhead.

Conclusion

The multi-tier architecture pattern encourages the best practice of creating application

components that are simple to maintain, decouple, and scale. When you create a logic

tier where integration occurs by API Gateway and computation occurs within AWS

Lambda, you realize these goals while reducing the amount of effort to achieve them.

Together, these services provide an HTTPS API front end for your clients and a secure

environment to apply your business logic while removing the overhead involved with

managing typical server-based infrastructure.

Contributors

Contributors to this document include:

• Andrew Baird, AWS Solutions Architect

• Bryant Bost, AWS ProServe Consultant

• Stefano Buliani, Senior Product Manager, Tech, AWS Mobile

• Vyom Nagrani, Senior Product Manager, AWS Mobile

Amazon Web Services AWS Serverless Multi-Tier Architectures

 Page 22

• Ajay Nair, Senior Product Manager, AWS Mobile

• Rahul Popat, Global Solutions Architect

• Brajendra Singh, Senior Solutions Architect

Further reading

For additional information, refer to:

• AWS Whitepapers and Guides

Document revisions

Date Description

October 20, 2021 Updated for new service features and patterns.

June 1, 2021 Updated for new service features and patterns.

September 25, 2019 Updated for new service features.

November 1, 2015 First publication.

https://aws.amazon.com/whitepapers/

	Introduction
	Three-tier architecture overview
	Serverless logic tier
	AWS Lambda
	Your business logic goes here, no servers necessary
	Lambda security
	Performance at scale
	Serverless deployment and management

	API Gateway
	Integration with Lambda
	Proxy integrations
	Non-proxy integrations

	Stable API performance across regions
	Encourage innovation and reduce overhead with built-in features
	Iterate rapidly, stay agile
	Stage deployment
	Decoupled integration with Lambda
	Canary release deployment
	Custom domain names

	Prioritize API security
	Transit security
	API authorization
	Access restrictions
	Private APIs
	Firewall protection using AWS WAF

	Data tier
	Serverless data storage options
	Non-serverless data storage options

	Presentation tier
	Sample architecture patterns
	Mobile backend
	Single-page application
	Web application
	Microservices with Lambda

	Conclusion
	Contributors
	Further reading
	Document revisions

