
Archived
Jenkins on AWS

May 2017

This paper has been archived

For the latest technical content, see

https://aws.amazon.com/
whitepapers/

https://aws.amazon.com/whitepapers/

Archived

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Archived

Contents

Introduction 1

Why CI/CD? 1

Why Use Jenkins? 2

Deploying Jenkins on AWS 3

Amazon VPC 3

Traditional Deployment 3

Containerized Deployment 23

Using AWS CodeBuild with Jenkins 30

Jenkins Integration 33

AWS Integration 33

Other Notable Plugins 34

Solution 1: Vanilla CI/CD Pipeline 34

Solution 2: Container Pipeline 36

Solution 3: Mobile Application 37

Solution 4: Serverless Code Management 38

Solution 5: Security Automation Framework 40

Conclusion 42

Contributors 43

Further Reading 43

Document Revisions 44

Archived

Abstract
Although there are many ways to deploy the Jenkins open-source automation

server on Amazon Web Services (AWS), this whitepaper focuses on two specific

approaches. First, the traditional deployment on top of Amazon Elastic

Compute Cloud (Amazon EC2). Second, the containerized deployment that

leverages Amazon EC2 Container Service (Amazon ECS). These approaches

enable customers to take advantage of the continuous integration/ continuous

delivery (CI/CD) capabilities of Jenkins. Using an extensive plugin system,

Jenkins offers options for integrating with many AWS services and can morph

to fit most use cases (e.g., traditional development pipelines, mobile

development, security requirements, etc.).

Archived

Amazon Web Services – Jenkins on AWS

Page 1

Introduction

Why CI/CD?

To understand the continuous integration/continuous delivery (CI/CD) model

that Jenkins uses, let’s start with understanding its underlying drivers. Since the

early 2000s, the advent of fast-paced, iterative methodologies such as agile has

shifted the thinking about software development. In this new paradigm, product

teams push their work to customers as quickly as possible so that they can

collect feedback and improve upon the previous iteration of their products.

Concepts such as minimum viable product (MVP), release candidate, velocity,

etc. are all derived from these new approaches. In contrast, product teams using

older paradigms like waterfall development might not hear back from

customers for months and, quite often, not until the product is commercialized.

Figure 1 illustrates the high-level phases of product development:1

Figure 1: High-level product development phases

The order and length of these phases varies depending on which development

models is used (e.g., waterfall, v-model, scrum, etc.).

Continuous Integration

Continuous integration (CI) is a software development practice in which

developers regularly merge their code changes into a central repository, after

which automated builds and tests are run. Continuous integration most often

refers to the build or integration stage of the software release process and

entails both an automation component (e.g., a CI or build service) and a cultural

component (e.g., learning to integrate frequently). The key goals of continuous

integration are to find and address bugs quicker, improve software quality, and

reduce the time it takes to validate and release new software updates.

The basic challenges of continuous integration include maintaining a single

source code repository, automating builds (and building fast), and automating

testing. Additional challenges include testing on a clone of the production

environment, providing visibility of the process to the team, and allowing

Archived

Amazon Web Services – Jenkins on AWS

Page 2

developers to obtain the latest version easily. The goal of this whitepaper is to

show you how using Jenkins on AWS is a strategy fit to address these CI

challenges.

Continuous Delivery and Deployment

Continuous delivery (CD) is a software development practice where code

changes are automatically built, tested, and prepared for production release. It

expands upon continuous integration by deploying all code changes to a testing

environment, a production environment, or both after the build stage has been

completed. When continuous delivery is properly implemented, developers

always have a deployment-ready build artifact that has passed through a

standardized test process.

With continuous deployment, revisions are deployed to a production

environment automatically without explicit approval from a developer, making

the entire software release process automated. This, in turn, allows for the

product to be in front of its customers early on, and for feedback to start coming

back to the development teams.

Why Use Jenkins?

Jenkins is a very popular product among AWS customers who want to automate

their CI/CD pipelines.2

 It accomplishes all of the phases described in the previous section.

 It integrates very well across languages, platforms, and operating

systems.

 It’s open-source software.

Jenkins works well on AWS and with AWS because it’s available on the AWS

Marketplace;3 it’s widely documented; and it’s very well integrated.

Additionally, Jenkins plugins are available for a number of AWS services. The

rest of this whitepaper discusses some of those plugins and what they allow our

customers to accomplish.

Archived

Amazon Web Services – Jenkins on AWS

Page 3

“The leading open source automation server, Jenkins provides hundreds of

plugins to support building, deploying and automating any project.” –Jenkins

official website (https://jenkins.io/)

Deploying Jenkins on AWS
In this section we discuss two approaches to deploying Jenkins on AWS. First,

you could use the traditional deployment on top of Amazon Elastic Compute

Cloud (Amazon EC2). Second, you could use the containerized deployment that

leverages Amazon EC2 Container Service (Amazon ECS). Both approaches are

production-ready for an enterprise environment. In addition, both approaches

place the Jenkins environment inside an Amazon Virtual Private Cloud

(Amazon VPC).4

Amazon VPC

Amazon VPC lets you provision a logically isolated section of the AWS Cloud

where you can launch AWS resources in a virtual network that you define. You

have complete control over your virtual networking environment, including

selection of your own IP address range, creation of subnets, and configuration of

route tables and network gateways.

We highly recommend that you launch your Jenkins installation within a VPC.

Launching inside a VPC not only allows you to keep your Jenkins resources

separate from other resources you might be running, but also provides the

ability to have control over static instance IP addresses, which will be important

as you add worker nodes to your configuration (more on that later).

Traditional Deployment

A Jenkins traditional deployment means deploying Jenkins on top of Amazon

EC2. Later in this whitepaper we explore containerized deployment.

Overview of Jenkins Architecture

The Jenkins architecture is fairly straightforward. Out of the box, it’s deployed

as both a server and a build agent running on the same host. You can choose to

deploy Jenkins as either a server or a build agent, which allows for decoupling

Archived

Amazon Web Services – Jenkins on AWS

Page 4

orchestration and build execution. This, in turn, allows for more architecture

design flexibility.

Strategies for Jenkins Worker Node Deployments

By default, the Jenkins server will handle all HTTP requests as well as the builds

for each project. As the number of users grows, or the amount or complexity of

jobs increases, the master server may experience degraded performance due to

a taxing of resources like CPU and memory, or due to the number of builds that

are running on the master server.

This is when build agents (or worker nodes) can benefit a Jenkins installation

by freeing up resources on the master node and providing customized

environments in which to test builds. A worker node contains an agent that

communicates with the master server and runs a lightweight Jenkins build that

allows it to receive and run offloaded jobs.

Figure 2: Master and Worker deployment options

Strategies for Jenkins Master Deployments

Jenkins installations generally fall into one of two scenarios:

1. A single, large master server with multiple worker nodes connected to it.

2. Multiple smaller master servers with multiple worker nodes connected to

each.

Archived

Amazon Web Services – Jenkins on AWS

Page 5

M

w w w w w w w w w w

M M M

w w w w w w w w w w

w

w

w

w

Figure 3: Jenkins deployment strategies

In both cases, one or more worker nodes are present. In larger systems, this is

an important practice—do not build on the master. Choosing between a single

master or multiple masters depends on a few factors, but usually we see

customers adopt multiple masters. For example, Netflix runs more than 25

masters on AWS.5

The following table provides some criteria that you can use when you’re

choosing which strategy best fits your needs:

 Single Master Strategy Multi Master Strategy

Number of teams Few Many

Plugins Consistent set across all teams Varied set across teams

Custom configurations per team Harder to manage Easier to manage

Server maintenance Easier to manage Harder to manage

While there are many successful strategies for deploying multiple Jenkins

masters, this paper focuses on deploying a single Jenkins master to Amazon

EC2, but architecting it to be self-healing and highly available. The techniques

described here for deploying a single Jenkins master can be employed to create

a multiple-master environment.

Archived

Amazon Web Services – Jenkins on AWS

Page 6

Architecting for High Availability

The AWS infrastructure (Figure 4) is built around Regions and Availability

Zones (AZs).6 A Region is a physical area of the world where AWS has multiple

Availability Zones. An Availability Zone consists of one or more discrete data

centers, each with redundant power, networking, and connectivity, housed in

separate facilities. These Availability Zones offer you the ability to operate

production applications and databases that are more highly available, fault

tolerant, and scalable than would be possible from a single data center.7

Figure 4: Current AWS global infrastructure

Archived

Amazon Web Services – Jenkins on AWS

Page 7

In the AWS Cloud, a web-accessible application like Jenkins is typically

designed for high availability and fault tolerance by spreading instances across

multiple Availability Zones and fronting them with an Elastic Load Balancing

(ELB) load balancer. Elastic Load Balancing automatically distributes incoming

application traffic across multiple Amazon EC2 instances in the cloud. It

enables you to achieve greater levels of fault tolerance in your applications and

seamlessly provides the required amount of load balancing capacity needed to

distribute application traffic.

Due to the fact that Jenkins stores master node configuration in the

$JENKINS_HOME directory—rather than, say, a database—it becomes

problematic to maintain a redundant Jenkins server in a separate Availability

Zone in a single master setup without the aid of plugins. Tasks like configuring

Jenkins, maintaining plugins, and managing users would need to be repeated

across each replicated instance in each Availability Zone.

You should explore the use of plugins. There are plugins available to make

your Jenkins environment more effective and useful.

For example, using a plugin like the High Availability plugin from CloudBees,8

you could set up the $JENKINS_HOME directory on a shared network drive, so

it could be accessible by multiple Jenkins servers behind an ELB load balancer.

This would provide a fault-tolerant environment.

The Private SaaS Edition by CloudBees is another option.9

If your business requirements demand a fault-tolerant Jenkins environment,

your preferred setup might be a scenario in which multiple masters with their

own workers are placed in separate Availability Zones.

Because the focus of this whitepaper is on the single master scenario, you

should consider creating an Amazon CloudWatch10 alarm that monitors your

Jenkins instance. CloudWatch automatically recovers the instance11 if it

becomes impaired due to an underlying hardware failure or a problem that

requires AWS involvement to repair. This method gives you the ability to

quickly recover in the event of a failure without having the benefit of running

Jenkins across multiple Availability Zones.

https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition/features/high-availability-plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/private-saas-edition

Archived

Amazon Web Services – Jenkins on AWS

Page 8

Later in this whitepaper, we propose that decoupling your configuration storage

from the Jenkins compute node allows for increased availability.

These options do not require additional Jenkins plugins. Instead they rely on

AWS technology.

Resource Considerations for Right-Sizing Your Jenkins Master

As with any AWS deployment, sizing your instance in terms of CPU, memory,

and storage has an impact on performance and cost profiles. It’s therefore very

important to make the right choices.

Operating System

We discuss a Jenkins deployment using Amazon Linux, but it’s easily adapted to

other flavors of Linux or to Windows environments using the Windows installer

for Jenkins.

CPU and Networking

A Jenkins deployment built for scale and high availability varies based on the

number of worker nodes that connect to a master node. A master Jenkins node

launches multiple threads per connection—two for each SSH and Java Web

Start (JWS) connection, and three for each HTTP connection.12

Jenkins serves dashboard content over HTTP. Therefore, if you expect a large

number of concurrent users, you should expect additional CPU overhead for the

rendering of this content.

Storage

A Jenkins deployment for large teams should ensure that worker nodes perform

the build. Therefore it’s more important to have large storage volumes on the

worker nodes than on the master. Jenkins settings and build logs are stored on

the master by default, so when you plan for volume size on your master consider

the number and size of the projects you will maintain. In this installation,

storage in the form of Amazon Elastic Block Store (Amazon EBS) volumes is

attached to both the primary and worker node instances.13 Amazon EBS

provides persistent, block-level storage volumes to deliver low-latency and

consistent I/O performance scaled to the needs of your application.

EBS volumes are designed for an annual failure rate (AFR) of between 0.1% -

0.2%, where failure refers to a complete or partial loss of the volume, depending

Archived

Amazon Web Services – Jenkins on AWS

Page 9

on the size and performance of the volume. This makes EBS volumes 20 times

more reliable than typical commodity disk drives, which fail with an AFR of

around 4%.

Instance Type

When building your Jenkins environment on Amazon EC2, consider CPU,

networking, and storage. We encourage you to benchmark your project builds

on several Amazon EC2 instance types in order to select the most appropriate

configuration.

We benchmarked five different instance types14 in our evaluations: the t2.large,

the m3.medium, and the m4.large, m4.xlarge, and m4.2xlarge. Each benchmark

simulated traffic from 100 concurrent users loading multiple pages inside the

Jenkins dashboard for a sustained period of 10 minutes.

Overall, we found the m4.large to be the best value for the performance. The

average CPU utilization during load testing did not exceed 3%, with an average

response time of 220 milliseconds. As expected, the m4.xlarge and m4.2xlarge

sizes performed well but at a higher cost per hour; therefore, the m4.large

remains the best choice for our needs.

The m3.medium, while a good choice for many applications, did not perform as

well as the m4.large and had an average CPU utilization of over 80% for the

duration of the testing.

The t2.large performed well during the first few minutes of testing. However,

because t2 instances offer burstable performance,15 a sustained amount of high

traffic from 100 users depleted available CPU credits, and performance

significantly decreased. Further testing with fewer users (i.e., 10 users) saw

improved results. Thus, if you have a relatively small team and do not expect

frequent or high-volume usage from your Jenkins master, the T2 family may be

a good option for you.

In this whitepaper, we build a Jenkins master using the m4.large, which comes

with 2 vCPUs and 8 GB of memory. A general purpose solid-state drive (SSD)

EBS volume of 20 GB is provisioned and attached to the instance. General

purpose SSD volumes are the default EBS volume type for Amazon EC2 and are

backed by SSDs, making them suitable for a broad range of workloads,

https://aws.amazon.com/ec2/instance-types/#burst

Archived

Amazon Web Services – Jenkins on AWS

Page 10

including small- to medium-sized databases, development and test

environments, and boot volumes.

Installation

Master Node

1. From the AWS Management Console, launch the Amazon EC2 instance

from an Amazon Machine Image (AMI) that has the base operating

system you want.16 This example uses an Amazon Linux 64-bit AMI.

2. Choose a security group that will allow SSH access as well as port 80 or

8080 to access your Jenkins dashboard. You should only enable ingress

from the IP addresses you wish to allow access to your server. See

Securing Network Access to the Master Node for more

details.

3. Connect to the instance via SSH.17

4. Update the yum package management tool.

$ sudo yum update –y

5. Download the latest Jenkins code package.

$ sudo wget -O /etc/yum.repos.d/jenkins.repo

http://pkg.jenkins-ci.org/redhat/jenkins.repo

6. Import a key file from Jenkins-CI to enable installation from the package.

$ sudo rpm --import

https://pkg.jenkins.io/redhat/jenkins.io.key

7. Install Jenkins.

$ sudo yum install jenkins -y

8. Start Jenkins as a service.

$ sudo service jenkins start

9. Configure Jenkins, now that it’s installed and running on your Amazon

EC2 instance. Use its management interface at port 80 or 8080, or

remotely access the server via SSH. In its default configuration, Jenkins

versions 2.0 and later lock down access to the management interface.

Archived

Amazon Web Services – Jenkins on AWS

Page 11

The first time you use the dashboard at http://<your-server-

address>:8080, you will be prompted to unlock Jenkins:

Figure 5: Unlock Jenkins

As noted on the user interface, you can find this password in

/var/lib/jenkins/secrets/initialAdminPassword. Paste the

value into the password box, then choose Continue.

10. The installation script directs you to the Customize Jenkins page. Choose

Select plugins to install and select any plugins appropriate to your

particular installation. For our example, ensure that the Git plugin

(under Source Code Management) and SSH Slaves plugin (under

Distributed Builds) are installed.

Security Considerations

At a minimum, incoming traffic to the Jenkins master should be locked down to

the specific IP address ranges from which you expect traffic. Additionally, your

environment can be further secured using the following methods.

Enable SSL

Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates can be

used to secure network communications and establish the identity of websites

over the Internet. You can make this easy by fronting your Jenkins master with

the ELB load balancer. In that case, you can use the AWS Certificate Manager to

easily provision a certificate that gives you encrypted network connections and

protects your data as it travels across the wire.18

Archived

Amazon Web Services – Jenkins on AWS

Page 12

CSRF Protection

Cross-site request forgery (CSRF) is a class of attack that forces an end user to

execute unwanted actions on Jenkins. By default, Jenkins 2.x installations have

the CSRF protection option enabled. To check the status of this setting, choose

Manage Jenkins, then Configure Global Security, and ensure that

Prevent Cross-Site Request Forgery Exploits is enabled.

Security Implication of Building on Master

Care should be taken not to perform builds on the master. As you see in the

following configuration steps, we recommend that you configure the master to

have no executors, and that you run builds only on worker nodes. Builds that

are run on the master have the ability to read and modify files in

$JENKINS_HOME, which, if accessed maliciously, can affect the entire Jenkins

installation and the security of your system.

Worker Node Access Control

Jenkins versions 1.5.80.x and later have a subsystem in place that establishes a

barrier between worker nodes and a master to safely allow less trusted worker

nodes to be connected to a master.

Your Jenkins 2.x installation should have this barrier enabled by default. You

can verify this by visiting “Manage Jenkins,” then “Configure Global Security,”

and ensuring that “Enable Slave -> Master Access Control” is enabled.

Configure User Authentication

During the installation process, you can choose to create a First Admin User.

Create a master user that can be used to create other groups and users, and then

proceed to the Jenkins dashboard.

User authentication can be provided through a number of methods:

 The simplest authentication scheme is to use the Jenkins user database.

User accounts can be created using the Jenkins dashboard (choose

Manage Jenkins, then Configure Global Security).

o The option for Matrix-based security offers the most precise control

over user privileges. Using this option you can specify fine-grained

permissions for each user and each action they can take.

Archived

Amazon Web Services – Jenkins on AWS

Page 13

 If Jenkins is running on a Windows machine, you can configure Jenkins

to authenticate the user name and the password through Active

Directory using the Active Directory plugin.19

 If Jenkins is running on Linux, the same Active Directory plugin can be

used by specifying the Active Directory domains to authenticate with, or

you can configure access to Unix users/groups in your local system.

With this setting, users will be logged into Jenkins by entering their

Unix username and password.

 With the LDAP plugin,20 users can authenticate with an Active

Directory-compliant LDAP service like AWS Directory Service21 or

OpenLDAP.

Securing Network Access

A security group acts as a virtual firewall that controls traffic to your instances.22

When you launch an instance, you associate one or more security groups with

the instance. Because all ports are disabled by default, you add rules to each

security group that allow traffic to or from its associated instances.

When launching your master, create a security group that allows ingress to the

following ports:

1. Port 80 or 8080, for the ability to configure Jenkins and interact with the

management dashboard. By default, the Jenkins dashboard is accessible

through port 8080, but you can use iptables to redirect port 80 to

8080 and allow local connections:

$ sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --

dport 80 -j REDIRECT --to-port 8080

$ sudo iptables -t nat -I OUTPUT -p tcp -o lo --dport 80

-j REDIRECT --to-ports 8080

2. Port 22, to connect via an SSH connection to the instances and perform

maintenance.

For each port, restrict access to your IP address or an IP address range using the

Source field, which determines the traffic that can reach your instance. Specify a

single IP address or an IP address range in classless inter-domain routing

Archived

Amazon Web Services – Jenkins on AWS

Page 14

(CIDR) notation (e.g., 203.0.113.5/32 as in Figure 6). If connecting from behind

a firewall, you'll need the IP address range used by the client computers.

Figure 6: Security group configuration

Worker Nodes

A Jenkins worker node is an instance that offloads build projects from the

master. The Jenkins master makes the distribution of tasks fairly automatic and

is configurable per project. Users accessing Jenkins using the management

dashboard can track build progress, browse Javadoc files, and view and

download test results without needing to be aware that builds were done on

worker nodes.

Each worker node runs a worker agent, which eliminates the need to install the

full Jenkins package on those instances. These agents can be installed using

various methods, each with the end result of establishing bi-directional

communication between the master instance and the worker instance.

After you choose an instance type and resources for your worker nodes, it’s best

to build them to be general purpose, rather than building them for a specific

project. This is especially true on large teams or in environments with a variety

of different projects. As a rule of thumb, remember that your worker nodes

should be fungible—easily replaced by another node in the event of failure.

You can significantly reduce your costs using Amazon EC2 Spot Instances to

run workers. Amazon EC2 Spot Instances allow you to bid on spare EC2

computing capacity and achieve up to 90% cost savings.23 Spot Instances are

particularly adapted for asynchronous workloads such as those that Jenkins

https://aws.amazon.com/ec2/spot/

Archived

Amazon Web Services – Jenkins on AWS

Page 15

workers run. To take advantage of Spot instances, configure Jenkins to use the

Amazon EC2 Fleet Plugin.24

Lyft, an AWS customer, was able to save 75% a month using Spot instances.

The case study is available here.25

After configuring a suitable worker node and installing your necessary packages

and tools (e.g., Maven or Git), create an AMI from which you can quickly launch

other nodes.

The worker nodes will only need port 22 to be open for communication with a

master. They will not need port 8080 open. Create a security group that allows

ingress to port 22, and restrict access to the IP address of both your master node

and your specific IP address on your internal network.

You should benchmark performance for your projects to determine the

appropriate instance type and size you need, as well as the amount of disk

space. In this whitepaper, we specify that our Jenkins worker nodes use an

m4.large instance type, which comes with 2 vCPUs and 8 GB of memory, along

with a 40 GB general purpose SSD Amazon EBS volume.

Worker nodes connect to the master in a variety of different ways—via SSH, via

Windows through the remote management facility (built into Windows 2000 or

later), via Java Web Start, or via a custom script.26

For Linux installations, SSH is the most convenient and preferred method for

launching worker agents, and is the one used in this whitepaper.

Installation

1. Launch a new instance into the same VPC that you launched the Jenkins

master into. For this example, we launch the instance from an Amazon

Linux 64-bit AMI. (Note that you will not have to install Jenkins on your

workers.)

2. Attach a security group that allows ingress to the worker nodes via SSH

from the internal IP address of the master Jenkins install.

3. Connect to the master instance via SSH.27

4. Create a pair of authentication keys from the ~/.ssh directory:

https://wiki.jenkins-ci.org/display/JENKINS/Amazon+EC2+Fleet+Plugin
https://aws.amazon.com/solutions/case-studies/lyft/

Archived

Amazon Web Services – Jenkins on AWS

Page 16

$ cd ~/.ssh

$ ssh-keygen -t rsa

5. Copy the public key—you’ll need it in step 7.

$ cat ~/.ssh/id_rsa.pub

6. From another terminal window, connect to the worker instance via SSH.

7. Edit ~/.ssh/authorized keys and add the contents of the public key from

step 5 to the end of the file. Take care not to include any line breaks that

you may have copied as you captured the public key.

8. Return to the terminal where you connected to the master instance via

SSH, and verify that you can connect to the worker instance the same

way.

$ ssh ec2-user@111.222.333.444

Configuration

On the master instance, log in to the Jenkins management dashboard, choose

Manage Jenkins, then Manage Nodes, and finally New Node. For each

worker node, perform the following steps:

1. Name your node and choose Permanent Agent. Then choose OK to

continue. (If you have already configured a worker node, you can choose

Copy Existing Node to duplicate a previous configuration.)

2. Add a description and set the number of executors you wish to run on the

worker node. Plan for two executors per core.

3. Set Remote Root Directory to an absolute path, like /home/ec2-

user/jenkins. The remote root directory will cache data such as tool

installations or build workspaces. This prevents unnecessary

downloading of tools, or checking out source code again when builds

start to run on this agent again after a reboot. Set any other options you

want.

4. For the launch method, choose Launch slave agents on Unix

machines via SSH and set the host to the private IP address of your

worker node.

5. Add your credentials by choosing Add, then SSH Username with

private key.

mailto:ec2-user@111.222.333.444

Archived

Amazon Web Services – Jenkins on AWS

Page 17

6. Add the value “ec2-user” for Username.

7. For Private Key, choose Enter directly, then paste in the value of the

private key (~/.ssh/id_rsa) from the master instance, and choose Add.

Finally, choose Save to save your worker node configuration.

8. Select the worker from the nodes table, and then choose Launch agent.

After you have configured your worker nodes, it’s important to change the

number of executors to 0 on the master. Select the master from the nodes table,

and configure the “# of executors” settings to 0. This ensures that project builds

will now happen on the worker nodes, and not on the master.

Test your Jenkins setup by adding a new project and performing a build.

Decoupling Configuration from Our Jenkins Installation

In the previous section we hinted that options for highly available (HA)

deployments are limited, with the exception of the deployments that CloudBees

has built.28

This section illustrates how decoupling those configuration files from the

machine running the Jenkins master node allows for an increased level of

reliability and availability. We will rely on Amazon Elastic File System (Amazon

EFS) to store $JENKINS_HOME,29 and we will implement Auto Scaling30

launch configurations31 to ensure that our installation can recover across

Availability Zones, if anything happens to our Jenkins installation.

Create an Amazon EFS file system

1. In the AWS Management Console, go to the Amazon EFS dashboard.32

2. Choose Create File System.

3. Select the target VPC into which you want to deploy your file system. This

should be the same VPC where you put your Jenkins setup.

4. Under Create mount targets configure the mount targets you need.

Instances connect to a file system via mount targets you create. We

recommend creating a mount target in each of your VPC's Availability

Zones so that Amazon EC2 instances across your VPC can access the file

system.

When choosing a security group, ensure that Amazon EFS allows traffic

from your Jenkins instances. These security groups act as a virtual

Archived

Amazon Web Services – Jenkins on AWS

Page 18

firewall that controls the traffic between them. If you don't provide a

security group when creating a mount target, Amazon EFS associates the

default security group of the VPC with it. That group allows all traffic

across instances so it will server our purpose.

Regardless, to enable traffic between an EC2 instance and a mount

target (and thus the file system), you must configure the following rules

in these security groups:

a. The security groups you associate with a mount target must allow

inbound access for the TCP protocol on port 2049 for NFS from all

EC2 instances on which you want to mount the file system.

b. Each EC2 instance that mounts the file system must have a security

group that allows outbound access to the mount target on TCP port

2049.

5. Choose Next Step.

6. Add tags if you need them, and choose performance mode. We

recommend General Purpose performance mode for most file systems.

Max I/O performance mode is optimized for applications where tens,

hundreds, or thousands of EC2 instances are accessing the file system —

it scales to higher levels of aggregate throughput and operations per

second with a tradeoff of slightly higher latencies for file operations.

7. Choose Next Step.

8. Review your configuration and then choose Create File System.

Setting Up Your Jenkins Host

1. Launch an instance into your VPC from an AMI (our example uses an

Amazon Linux 64-bit AMI). Follow the instructions given earlier, and be

sure to pick a security group that allows SSH and HTTPS (ports 22 and

8080, respectively).

2. Connect to the instance via SSH.

3. Update the yum package management tool:

$ sudo yum update -y

4. Install nfs-utils, if necessary:

$ sudo yum install nfs-utils

Archived

Amazon Web Services – Jenkins on AWS

Page 19

If you choose the Amazon Linux AMI 2016.03.0 when launching your

EC2 instance, you won't need to install nfs-utils because it’s already

included in the AMI by default.

5. Create a folder for mounting your $JENKINS_HOME folder:

$ sudo mkdir –p /mnt/JENKINS_HOME

6. Mount the Amazon EFS file system to this directory. 33 Use the following

command, replacing <file-system-id> and <aws-region>

placeholders with your file system ID and AWS Region,34 respectively:

$ sudo mount -t nfs4 -o vers=4.1 $(curl -s

http://169.254.169.254/latest/meta-

data/placement/availability-zone).<file-system-

id>.efs.<aws-region>.amazonaws.com:/ /mnt/JENKINS_HOME

Hint: <aws-region> will be one of the following values:

Region Name <aws-region>

US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (Oregon) us-west-2

EU (Ireland) eu-west-1

Asia Pacific (Sydney) ap-southeast-2

7. Install Jenkins:

$ sudo wget -O /etc/yum.repos.d/jenkins.repo

http://pkg.jenkins-ci.org/redhat/jenkins.repo

$ sudo rpm --import

https://pkg.jenkins.io/redhat/jenkins.io.key

$ sudo yum install jenkins –y

8. Change the ownership of the newly created mount:

$ sudo chown jenkins:jenkins /mnt/JENKINS_HOME

9. Update Jenkins configuration:

Archived

Amazon Web Services – Jenkins on AWS

Page 20

$ sudo vi /etc/sysconfig/jenkins

Inside that file, replace the value of $JENKINS_HOME with

/mnt/JENKINS_HOME. If there are already configuration files in the

existing $JENKINS_HOME directory (/var/lib/jenkins, by default),

make sure to move them to the new /mnt/JENKINS_HOME directory.

10. Launch Jenkins:

$ sudo service jenkins start

11. Make sure the share auto-mounts when the box starts up:35

$ sudo vi /etc/fstab

Add the line:

<mount-target-DNS>:/ /mnt/JENKINS_HOME nfs

defaults,vers=4.1 0 0

Replace <mount-target-DNS> with the DNS name of your Amazon EFS server.

(You used that DNS name when mounting the Amazon EFS volume on the

machine earlier, in Step 6.)

Setting Up an Auto Scaling Group for Auto-recovery

At this point you have a Jenkins server that relies on Amazon EFS for its

configuration. This means that if your Jenkins server disappeared, you could

replace it with another Jenkins install pointing to the Amazon EFS share where

your data is stored.

You could certainly replace that server manually (rerunning the steps above).

However, we want that to happen automatically, relying on standard AWS

features.

1. Create an AMI of your instance:

a. On the AWS Management Console, right-click your instance.

b. Choose Image-> Create Image, give it a name, choose Create

Image, and wait for a few minutes.

2. Create a launch configuration:

a. On the Amazon EC2 Dashboard, choose Launch Configuration in

the navigation pane at the left, then choose Create Auto Scaling

Archived

Amazon Web Services – Jenkins on AWS

Page 21

Group. (The console might show a Create launch configuration

button if you already have some Auto Scaling groups. Choose that

button instead if that’s the case.)

b. Choose Create launch configuration.

c. Pick the AMI you just created. (Choose My AMIs in the navigation

pane to show your AMIs.)

d. Fill out the required information over the next few pages. Be sure to

select the security group you created earlier. (Ports 22 and 8080

should be open.)

e. Finally, choose Create launch configuration from the Review

page and select a key you have access to.

3. Create an Auto Scaling group:

a. Before running the steps below, shut down your existing, manually

created Jenkins instance so that it doesn’t interfere with the ones that

will be spun up as part of your Auto Scaling group.

b. On the Amazon EC2 Dashboard, choose Auto Scaling Group in the

navigation pane, then choose Create Auto Scaling group.

c. Pick the Launch Configuration you just created and choose Next

Step.

d. Name your Auto Scaling group and set Group Size = 1. (Remember,

we can only run one instance at a time.)

e. Pick the proper VPC and subnets. (Be sure to select subnets that are

on different Availability Zones.) Choose Next: Configure scaling

policies.

f. Do not use Scaling Policies so that the group stays at its initial size.

g. Click through the next few pages, and finally choose Create Auto

Scaling group on the Review page.

Expansions

At this point, if you manually shut down your Jenkins server, Auto Scaling starts

a new one that will pick up where the old server left off. Consider also doing the

following:

Archived

Amazon Web Services – Jenkins on AWS

Page 22

 Set up a load balancer pointing to your Auto Scaling group so that you

can consistently find your server using the load balancer DNS name. (As

your server gets replaced, its IP address will change.)

 As mentioned before, use Amazon EFS or any other distributed and

highly reliable storage mechanism.

 Capture this setup in an AWS CloudFormation template to make it easy

to reproduce.36

Best practices

Security

In its default configuration, Jenkins doesn’t perform any security checks that

could expose passwords, certificates, and private data, as well as leave job builds

and configurations open to anyone. Using security groups, configure user

security and network security on both your master instance and work nodes to

limit the vectors at which an attacker can compromise your system.

Instances

Launch your Jenkins master from an instance that has enough CPU and

network bandwidth to handle concurrent users. Configure worker nodes so that

they are identical to each other. They should run on the same instance family

from the same generation, and builds should happen on the worker nodes, not

the master. Worker nodes should be fungible—able to be thrown away quickly,

and brought up or added into the cluster with as little manual interaction as

possible. Use AMIs as described earlier to create a default image for your worker

nodes. Then, launch additional worker nodes as necessary based on this image.

If your teams build at dedicated or predictable times, you can stop worker nodes

when jobs are not running, and turn them on only when you need them. This

way you don’t pay for idle instances.

Monitoring

At all times, monitor your instances, especially CPU and disk performance. Take

advantage of Amazon CloudWatch alarms to monitor instance resources like

CPU usage or disk utilization.37 This will help you right-size your instances and

volumes. Email and SMS alerts can be configured to immediately notify you

when events like low disk space or high CPU utilization cross a threshold that

you define.

Archived

Amazon Web Services – Jenkins on AWS

Page 23

Backup and Restoration

Maintaining a regular backup of your Jenkins master is crucial to providing a

stable environment. A backup ensures that your Jenkins instance can be

restored in the event of data corruption or loss, or misconfiguration of Jenkins,

which leaves it in a usable state.

You can perform a backup by either taking a snapshot of the entire server or by

backing up the $JENKINS_HOME directory.

Amazon EBS provides a feature for backing up the data on your Amazon EBS

volumes to Amazon Simple Storage Service (S3) by taking point-in-time

snapshots. We strongly recommend that you take regular snapshots of the

Amazon EBS volumes backing your Jenkins master. Because you can launch a

new volume based on a snapshot, you can quickly recover in the event of a

failure.

Instead of taking a snapshot of the entire volume, you can choose to just back

up the $JENKINS_HOME directory, which contains your Jenkins-specific

configurations. When you restore, you simply launch a new Jenkins master and

replace the $JENKINS_HOME directory with the contents of your backup.

Finally, there are many plugins available to manage backups for your

$JENKINS_HOME directory, like the S3 Plugin,38 which backs up your

configuration to Amazon S3—which is designed to provide 99.999999999%

durability and 99.99% availability.

Further Reading

For more information on best practices for using Jenkins in your projects’

lifecycles, we encourage you to read the Jenkins Best Practices wiki.39

Containerized Deployment

Containers are a form of operating system virtualization that allow you to run

an application and its dependencies in resource-isolated processes.40

Overview of Container Technology

Containers allow you to easily package an application's code, configurations,

and dependencies into a template called an image, which is used to launch the

container. Containers can help ensure that applications deploy quickly, reliably,

Archived

Amazon Web Services – Jenkins on AWS

Page 24

and consistently regardless of the deployment environment. You also have more

granular control over resources, which can improve the efficiency of your

infrastructure.

Overview of Container-based Jenkins

Another approach to deploying and running Jenkins is to run the master and

the worker nodes in Docker containers. A Docker container packages an

application, its configurations, and all its dependencies into a single unit of

deployment that contains everything the application needs to run.41

Running Jenkins in Docker containers allows you to use servers running

Jenkins worker nodes more efficiently. It also simplifies the configuration of the

worker node servers. Using containers to manage builds allows the underlying

servers to be pooled into a cluster. The Jenkins worker containers can then run

and execute a build on any of the servers with resources available to support the

build. This ability to pool multiple builds to run independently of each other on

the server improves the utilization of the server.

Another benefit of containers is that they allow for tests to be run in “clean”

environments every time, as opposed to environments that can potentially

become “dirty” over time and corrupt the tests.

Configuration is also simplified when you use containers for running the

workers. The same base configuration can be reused multiple times. By making

the worker containers fungible you can easily run multiple compiler types and

versions, libraries, and any other dependencies.

Amazon ECS

Amazon EC2 Container Service (Amazon ECS) is a container management

service that supports creating a cluster of Amazon EC2 instances for running the

Jenkins master nodes and worker nodes as Docker containers. This cluster of

servers is typically referred to as a build farm.

Amazon ECS eliminates the need for you to install, operate and scale your own

cluster management infrastructure. You can use API calls to launch and stop

Docker-enabled applications, query the complete state of your cluster, and

access many familiar features like security groups, load balancers, Amazon EBS

volumes, and IAM roles.

Archived

Amazon Web Services – Jenkins on AWS

Page 25

The build farm based on Amazon ECS consists of the following components:

 Cluster – A logical grouping of container instances into which you can

place Amazon ECS tasks for the Jenkins master or worker node.

 Amazon ECS Container Agent – Allows container instances to connect to

the cluster and is included in the AMI that is optimized for Amazon

ECS.42 The Amazon ECS container agent can also be installed on any

EC2 instance that supports the Amazon ECS specification.43

 Container instance – The EC2 instance that is running the Amazon ECS

container agent and has been registered into a cluster. The Jenkins

master and worker nodes can run on any of the container instances in

the cluster.

 Task definition – An application description that contains one or more

container definitions. The task definition captures how the task running

the Jenkins master is configured, for example, how much memory the

Jenkins master needs, what port it would be accessed on, etc.

 Scheduler – The method used for placing tasks on container instances.

The scheduler determines what container instance a Jenkins worker

node or master runs on when it’s started.

 Service – Allows you to run and maintain a specified number of

instances of a task definition simultaneously. The Jenkins master is a

long-running task and runs as a service.

 Task – An instantiation of a task definition running on a container

instance. The Jenkins worker nodes run as tasks.

 Container – A Docker container created as part of a task.

Archived

Amazon Web Services – Jenkins on AWS

Page 26

Scheduler

Container Instance

Docker

Task

ContainerContainerContainerContainer

Task

ContainerContainerContainerContainer

ECS Agent

Container Instance

Docker

Task

ContainerContainerContainerContainer

Task

ContainerContainerContainerContainer

ECS Agent

Figure 7: Amazon ECS components

Implementation

In this section we review the steps needed to implement containerized Jenkins.

Setting Up the Amazon ECS Cluster for Our Build Farm

The first step in setting up the build farm is to launch an Amazon ECS cluster in

a VPC. You must specify the instance type to be used for the build servers and

the number of Amazon EC2 instances needed in the build farm.44

Creating the Jenkins Master Service

To create the Jenkins master create a Dockerfile that uses the official Jenkins

Docker image as the base.45 The Dockerfile should also contain the steps to

install the Jenkins Amazon ECS plugin and any other plugins needed.46

Specifically, the Amazon ECS plugin will allow the Jenkins master to use

Amazon ECS to orchestrate starting up and tearing down the Jenkins workers

as needed.

Dockerfile for Jenkins Master

FROM Jenkins

Add the entry amazon-ecs to plugin.txt to preload the

Amazon ECS plugin

COPY plugins.txt /usr/share/jenkins/plugins.txt

RUN /usr/local/bin/plugins.sh

/usr/share/jenkins/plugins.txt

Archived

Amazon Web Services – Jenkins on AWS

Page 27

Use the Dockerfile to create an image and push the image to the Amazon EC2

Container Registry (Amazon ECR).47 Amazon ECR is a fully-managed Docker

container registry that makes it easy for developers to store, manage, and deploy

Docker container images. The custom image can now be used to run one or

more Jenkins masters in the Amazon ECS cluster.48

Login using docker command returned by the command

below

 aws ecr get-login --region <region>

Build your Docker image using the Dockerfile

 docker build -t jenkins-master .

 # Tag the jenkins_master image

 docker tag jenkins_master:latest <AWS Account

Number>.dkr.ecr.us-east-

1.amazonaws.com/jenkins_master:latest

Push the jenkins-master image to ECR

docker push <AWS Account Number>.dkr.ecr.us-east-

1.amazonaws.com/jenkins-master:latest

Jenkins uses the JENKINS_HOME directory to store information on installed

plugins, logs, build jobs, and other configuration settings. By design, the data in

the Jenkins master container is ephemeral and is lost when the container is

stopped or restarted. If you don’t want to lose this data, Amazon ECS supports

persisting the data by using data volume containers.

The Jenkins master container persists the data in JENKINS_HOME by

mounting a volume from the data volume container.

Behind the scenes, the data volume in the data container is associated with a

directory in a file system in an Amazon EBS volume attached to the container

instance.

Archived

Amazon Web Services – Jenkins on AWS

Page 28

Note that Amazon ECS does not sync your data volume across container

instances. The Jenkins master container has to be started on the same container

instance that has the data container volume.

To create a data volume container for use by the Jenkins master container,

create a Dockerfile that exports the Jenkin home directory /var/jenkins_home.

Dockerfile for Jenkins Data Volume Container

FROM Jenkins

VOLUME ["/var/jenkins_home"]

Creating a Jenkins Data Volume

docker build -t jenkins_dv .

#Tag the jenkins_dv image

 docker tag jenkins_dv:latest <AWS Account

Number>.dkr.ecr.us-east-

1.amazonaws.com/jenkins_dv:latest

Push the jenkins-dv image to ECR

docker push <AWS Account Number>.dkr.ecr.us-east-

1.amazonaws.com/jenkins_dv:latest

You can run the Jenkins master as an Amazon ECS service using a Docker

compose file, which starts the Jenkins master and the Jenkins data volume

containers. When running as an Amazon ECS service the Jenkins master will

restart if its container fails or stops.

Create a Docker compose file with the entries below:

jenkins_master:

 image: jenkins_master

 cpu_shares: 100

 mem_limit: 2000M

 ports:

 - "8080:8080",

Archived

Amazon Web Services – Jenkins on AWS

Page 29

 “50000:50000”

 volumes_from:jenkins_dv

jenkins_dv:

 image: jenkins_dv

 cpu_shares: 100

 mem_limit: 500M

 Use the Amazon ECS command line to start the Jenkins master container as a

service:

Create an ECS service from Jenkins compose file

ecs-cli compose --file <compose file> service up

The Jenkins master should also be configured with AWS credentials that give

the Jenkins master the appropriate privileges to register task definitions, run

tasks, and stop tasks in the Amazon ECS cluster.

Setting Up Jenkins Builders

To set up the Docker image used by the Jenkins master to start Amazon ECS

Jenkins worker tasks, use the Jenkins continuous integration (CI) official image

for the Docker-based JNLP worker as the base image in the Dockerfile.49 Then

add any additional tools needed to support the build process into the Dockerfile.

Store the custom Jenkins worker image created with the Dockerfile in Amazon

ECR.

CloudBees also provides a Docker image for JNLP worker nodes that includes

the tools to build Java applications that can be used as the image to run Amazon

ECS workers.50

Use the custom Jenkins worker image to configure the worker template in the

Jenkins master. The worker template specifies the label used to refer to the

worker, the Docker image used to create the worker, and the resources (such as

CPU and memory) needed by the worker Amazon ECS task.

When creating a job in the Jenkins master you can specify which type of

Amazon ECS worker you want for the job. Just specify the label used in the

Archived

Amazon Web Services – Jenkins on AWS

Page 30

Amazon ECS worker template configuration in the Restrict where this

Project can run field.

Security Considerations

Security Groups

The security considerations when running the Jenkins master and worker nodes

in Amazon ECS are similar to the traditional deployment of Jenkins. The

security group associated with the container instances in the cluster should only

allow TCP traffic t0 8080 and only allow access to port 5000 on container

instances from other container instances in the clusters.

Using AWS CodeBuild with Jenkins

AWS CodeBuild is a fully-managed build service in the cloud. AWS CodeBuild

compiles your source code, runs unit tests, and produces artifacts that are ready

to deploy.

AWS CodeBuild

AWS CodeBuild eliminates the need for you to provision, manage, and scale

your own build servers. It provides prepackaged build environments for the

most popular programming languages and build tools such as Apache Maven,

Gradle, and more. You can also fully customize build environments in AWS

CodeBuild to use your own build tools. AWS CodeBuild scales automatically to

meet peak build requests, and you pay only for the build time you consume.

AWS CodeBuild provides the following benefits:

 Fully Managed: AWS CodeBuild eliminates the need for you to set up,

patch, update, and manage your own build servers. There is no software

to install or manage.

 Secure: With AWS CodeBuild, your build artifacts are encrypted with

customer-specific keys that are managed by the AWS Key Management

Service (KMS). CodeBuild is integrated with AWS Identity and Access

Management (IAM), so you can assign user-specific permissions to your

build projects.

 Continuous Scaling: AWS CodeBuild scales automatically to meet

your build volume. It immediately processes each build you submit and

Archived

Amazon Web Services – Jenkins on AWS

Page 31

can run separate builds concurrently, which means your builds are not

left waiting in a queue.

 Extensible: You can bring your own build tools and programming

runtimes to use with AWS CodeBuild by creating customized build

environments in addition to the prepackaged build tools and runtimes

supported by CodeBuild.

 Enables Continuous Integration and Delivery (CI/CD): AWS

CodeBuild belongs to a family of AWS Code services, which you can use

to create complete, automated software release workflows for CI/CD.

You can also integrate CodeBuild into your existing CI/CD workflow. For

example, you can use CodeBuild as a worker node for your existing

Jenkins server setup for distributed builds.

 Pay as You Go: With AWS CodeBuild, you are charged based on the

number of minutes it takes to complete your build. This means you no

longer have to worry about paying for idle build server capacity.

Jenkins and AWS CodeBuild Integration

At a functional level, Jenkins has two components: a powerful scheduler that

allows the creation and execution of complex jobs, and a build platform,

namely, the worker nodes. Jenkins provides most of its value in job

orchestration. The Jenkins build workers are undifferentiated. This means that

they can be replaced by other systems that are more efficient or more effective,

and, as we’ve seen in previous sections, can live and die with each build with no

impact to the business. For that reason, they are a perfect candidate for being

offloaded to a managed service like AWS CodeBuild.

The Jenkins AWS CodeBuild Plugin, which we show you how to use later in this

whitepaper, allows for integrating AWS CodeBuild within Jenkins jobs. This

means that build jobs are sent to the AWS CodeBuild service instead of to

Jenkins worker nodes (which are not needed anymore). This eliminates the

need for provisioning and managing the worker nodes. The following diagram

shows a typical setup for this.

Archived

Amazon Web Services – Jenkins on AWS

Page 32

Figure 8: Jenkins integration with AWS CodeBuild

To set up the integration of the AWS CodeBuild service and the Jenkins server,

perform the following steps:

1. Build the Jenkins AWS CodeBuild plugin (aws-codebuild.hpi). This

plugin will be used to run the AWS CodeBuild projects from the Jenkins

server.

2. Install the Jenkins AWS CodeBuild plugin onto the Jenkins server.

3. The plugin will need an IAM identity in order to run the AWS CodeBuild

projects from the Jenkins server. To do this, create an AWS IAM user to

be used by the plugin. The access/secret key information associated with

the new IAM user will be used to configure the build step for the Jenkins

project in the later step.

4. The plugin will also require certain IAM permissions in order to perform

the AWS CodeBuild actions, access resources in Amazon S3, and retrieve

Amazon CloudWatch logs. To do this, create an AWS IAM policy with

the required permissions and attach the policy to the AWS IAM user

created in the previous step.

5. Create an AWS CodeBuild project for the actual build step. To do this,

create and configure an AWS CodeBuild project in the selected AWS

Region and ensure it can build the target project successfully directly

https://console.aws.amazon.com/iam/home?region=us-east-1#/users$new?step=details
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies$new
http://docs.aws.amazon.com/codebuild/latest/userguide/create-project.html?icmpid=docs_acb_console#create-project-console

Archived

Amazon Web Services – Jenkins on AWS

Page 33

inside of the AWS CodeBuild. This project will be invoked by the plugin

on the Jenkins server.

6. To configure the plugin to invoke the AWS CodeBuild project from the

Jenkins server, create a freestyle project in Jenkins server. Next, add a

Build Step and choose Run build on AWS Codebuild. Configure

the build step with information such as the AWS Region and the project

name of the AWS CodeBuild project created previously, as well as the

IAM user access/secret key details created previously.

After you have completed these steps, you will be ready to run the build

command in Jenkins to send the build job to the AWS CodeBuild service. You

can find detailed instruction for this here.

Jenkins Integration
One of the reasons that Jenkins is widely popular is because it integrates with

many third-party tools, including AWS products. Each of the five solutions that

follow provides a compelling use case for Jenkins.

AWS Integration

The plugin ecosystem for Jenkins offers options for integration with these AWS

services:

 Amazon EC251

 Amazon ECR52

 Amazon Simple Notification Service (SNS)53

 Amazon ECS54

 Amazon S355

 AWS CloudFormation56

 AWS CodeDeploy57

 AWS CodePipeline58

 AWS CodeCommit59 (Note that the AWS DevOps Blog offers additional

insights on how to integrate AWS CodeCommit with Jenkins.60)

 AWS Device Farm61

https://github.com/awslabs/aws-codebuild-jenkins-plugin

Archived

Amazon Web Services – Jenkins on AWS

Page 34

 AWS Elastic Beanstalk62

The solutions that follow walk you through how to use these services together to

create useful patterns.

Other Notable Plugins

The following plugins are widely recognized by Jenkins communities. The

solutions focus on AWS integration. If you don’t find what you are looking for,

you can see the full list of Jenkins plugins on the official site.63

 SSH Slaves64 - Manage workers through SSH

 JUnit65 - Graphical representation of your JUnit66 tests

 Maven Project Plugin67 - Build Maven projects

 Mailer68 - Email notifications for builds

 Monitoring69 - Chart server information (resource consumption, server

activity, etc.)

 Nested View Plugin70 - Groups jobs into multiple levels instead of a

single big list of tabs

 Build Monitor Plugin71 - Visual view of your builds status

 Dashboard View72 - Portal-like view for Jenkins

 Green Balls73 - Changes Hudson to use green balls instead of blue for

successful builds

Solution 1: Vanilla CI/CD Pipeline

Many AWS customers host their code, builds, and applications on AWS, and use

AWS CodePipeline for orchestration.

Goal

In this solution we discuss how the pipeline works, relying on Jenkins for

deployment. This typical workflow allows product teams to release to their

customers quickly and collect feedback in a timely manner.

Services Used

 Amazon EC2

Archived

Amazon Web Services – Jenkins on AWS

Page 35

 AWS CodeCommit

 AWS CodeDeploy

 AWS CodePipeline

Architecture Diagram

Figure 9: A simple workflow using AWS services and Jenkins

Explanation

1. Developer commits code to AWS CodeCommit using a standard git

commit command.

2. AWS CodePipeline detects that new code has been pushed to AWS

CodeCommit and triggers the pipeline.

3. AWS CodePipeline invokes Jenkins to build the application.

4. Upon a successful build, AWS CodePipeline triggers deployment on AWS

CodeDeploy.

5. AWS CodeDeploy deploys the application onto AWS application servers.

This example does not make a distinction between quality assurance (QA),

staging, and production environments. This would involve additional steps

(either automated or manual) for more complex DevOps workflows than the

one we discuss here.

Note that AWS CodePipeline supports other repositories like GitHub and other

deployment options like AWS Elastic Beanstalk and AWS OpsWorks. Find out

how to build a pipeline in the AWS CodePipeline documentation.74

Archived

Amazon Web Services – Jenkins on AWS

Page 36

Solution 2: Container Pipeline

To simplify and speed up the delivery process, a number of customers building

micro service-based architectures are adopting containers as their unit of

deployment.

Goal

This solution allows the developer to have his or her changes packaged into a

Docker image and spun up as a container in the different environments

associated with the stages in the delivery pipeline.

Services Used

 AWS CodeCommit

 Amazon EC2

 Amazon ECR

 Amazon ECS

Architecture Diagram

Developer AWS CodeCommit Amazon ECS
Jenkins

(EC2 Instance)

Amazon ECR

1 2 6

4

3 5

Figure 10: Using AWS services and Jenkins to deploy a container

Archived

Amazon Web Services – Jenkins on AWS

Page 37

Explanation

1. Developer commits code using a standard git push command.

2. Jenkins picks up that new code has been pushed to AWS CodeCommit.

3. Jenkins pulls a Docker image from Amazon ECR.

4. Jenkins rebuilds the Docker image incorporating the developer’s

changes.

5. Jenkins pushes updated the Docker image to Amazon ECR.

6. Jenkins starts the task/service using the updated image in an Amazon

ECS cluster.

Find out how to deploy such a pipeline on our Application Management Blog.75

Solution 3: Mobile Application

AWS Device Farm allows AWS customers to test their iOS or Android mobile

applications on a fleet of physical devices. It allows them to detect bugs and

optimize for performance. Jenkins integrates well with AWS Device Farm.

Goal

In this scenario, a developer and a tester (who could be the same person) upload

work to AWS CodeCommit. Jenkins picks up this new code and pushes it to

AWS Device Farm for testing.

Services Used

 Amazon EC2

 AWS CodeCommit

 AWS Device Farm

Archived

Amazon Web Services – Jenkins on AWS

Page 38

Architecture Diagram

Figure 11: Using AWS services and Jenkins to test a mobile application

Explanation

1. A developer and a tester use Eclipse to generate a Maven build, which

gets pushed to AWS CodeCommit.

2. Jenkins picks up the new code that has been pushed to AWS

CodeCommit and pulls the application.

3. Jenkins pushes the application and the tests to AWS Device Farm for

testing across a pool of physical devices.76

Find out how to deploy such a pipeline on the AWS Mobile Development Blog.77

Solution 4: Serverless Code Management

You can use AWS Lambda, an Amazon S3 bucket, Git, and Jenkins for a

serverless code management solution.

Goal

In this solution, an AWS Lambda function monitors an Amazon S3 bucket for

new PDF objects. Developers check the function code into a Git repository, and

Jenkins hooks are used to build and test the latest code changes. The latest

successful builds are pushed back into AWS Lambda.

Services Used

 AWS CodeCommit

Developer

AWS CodeCommit AWS Device Farm
Jenkins

(EC2 Instance)

1
2 3

Tester

Archived

Amazon Web Services – Jenkins on AWS

Page 39

 Amazon EC2 (for the Jenkins deployment)

 Amazon S3

 AWS Lambda

 AWS DynamoDB

Architecture Diagram

Developer AWS CodeCommit AWS Lambda
Jenkins

(EC2 Instance)

1 2 3

Amazon S3
Bucket

4

Amazon
DynamoDB

5

Figure 12: Using AWS and Jenkins for serverless code management

Explanation

1. Developers work independently on code and store their work in a Git

repository like AWS CodeCommit.

2. Git hooks, like post-commit or post-receive, are used to notify Jenkins

that a build is required.

3. Jenkins runs the build, executing any available unit tests, and invokes a

post-build step that uses the AWS CLI to upload the latest code package

to AWS.

4. The AWS Lambda function picks up on new objects being added to the

Amazon S3 bucket.

5. Objects are processed with the latest code, and results are written into

Amazon DynamoDB.

Find out how to deploy such a pipeline on our AWS Compute Blog.78

Archived

Amazon Web Services – Jenkins on AWS

Page 40

Solution 5: Security Automation Framework

When moving to a CI/CD model, application teams aim to rapidly release and

update code. However, they often become blocked by manual security processes

that are required when performing deployments.

Goal

This solution allows security teams to automate their security processes and

integrate them into the deployment pipeline, thus allowing application teams to

scale their pace of deployment without compromising the overall security of the

application.

For this solution we have two examples:

Example 1: A developer commits a code change to an existing AWS

CloudFormation template, which is then combined with another AWS

CloudFormation template from the security teams.

Example 2: A developer commits an update to his or her application code,

including AWS CodeDeploy’s AppSpec.yml. Here, Jenkins merges requirements

from the security team into that AppSpec.yml.

Services Used

 Amazon EC2 (for the Jenkins deployment)

 Amazon S3

 AWS CloudFormation

 AWS CodeDeploy

 AWS CodeCommit

Archived

Amazon Web Services – Jenkins on AWS

Page 41

Architecture Diagram – Example 1

Developer AWS CodeCommit
(Developer)

AWS CloudFormation
Jenkins

(EC2 Instance)

AWS CodeCommit
(Security Team)

1 2 4

3

5

Figure 13: First example—Using AWS services and Jenkins to automate a security

framework

Explanation – Example 1

1. Developer commits his or her CloudFormation JSON file to the

application AWS CodeCommit repository.

2. Jenkins picks up the change in AWS CodeCommit on its next polling

interval and kicks off new build process.

3. Jenkins pulls down the security controls for CloudFormation from the

security teams’ AWS CodeCommit repository (e.g., allowed IP address

ranges, allowed AMIs, etc.).

4. Jenkins executes the security checks against the developer

CloudFormation template. The job only proceeds if it doesn’t encounter

violations. (If it does encounter a violation, it fails and can alert the

security team.)

5. Upon success, Jenkins issues an update stack call to CloudFormation

using the validated template.

Archived

Amazon Web Services – Jenkins on AWS

Page 42

Architecture Diagram – Example 2

Developer AWS CodeCommit
(Developer)

Amazon S3
Jenkins

(EC2 Instance)

Amazon S3

1 2 4

3

5 6

AWS CodeDeploy

7

Application Servers

Figure 14: Second example—Using AWS services and Jenkins to automate a

security framework

Explanation – Example 2

1. Developer commits an application code update to the application AWS

CodeCommit repository.

2. Jenkins picks up the code change in AWS CodeCommit on its next

polling interval and kicks off new build process.

3. Jenkins pulls the security portion of the AppSpec.yml file for AWS

CodeDeploy from the security teams’ Amazon S3 bucket.

4. Jenkins merges this with the developer/application teams’ AppSpec.yml

file.

5. Jenkins zips this all up and sends it to an Amazon S3 bucket.

6. Jenkins kicks off an AWS CodeDeploy API call. EC2 instances pull the zip

file from the Amazon S3 bucket and deploy.

7. AWS CodeDeploy returns success only if all checks from the security

teams’ AppSpec.yml succeed.

Conclusion
Faster software development has become a competitive advantage for

companies. The automation of software development processes facilitates speed

and consistency.

Archived

Amazon Web Services – Jenkins on AWS

Page 43

Jenkins is the leading automation product. We see many of our most successful

AWS customers implementing it. This whitepaper walks you through using

AWS services with Jenkins and covers some of the common customer scenarios

for AWS integration with Jenkins.

Contributors

The following individuals authored this document:

 Nicolas Vautier, Solutions Architect, Amazon Web Services

 Jeff Nunn, Solutions Architect, Amazon Web Services

Special thanks to the following individuals for their contributions:

 Chuck Meyer, Solutions Architect, Amazon Web Services

 Michael Capicotto, Solutions Architect, Amazon Web Services

 David Ping, Solutions Architect, Amazon Web Services

 Chris Munns, DevOps Business Development, Amazon Web Services

Further Reading
When you want to dive deeper into the topics of this whitepaper, the following

resources are great starting points:

 Continuous delivery on AWS:

http://aws.amazon.com/devops/continuous-delivery/

 Continuous integration on AWS:

http://aws.amazon.com/devops/continuous-integration/

 DevOps and AWS: http://aws.amazon.com/devops/

 Jenkins on the AWS Marketplace:

https://aws.amazon.com/marketplace/search/results/ref=dtl_navgno_s

earch_box?page=1&searchTerms=jenkins

http://aws.amazon.com/devops/continuous-delivery/
http://aws.amazon.com/devops/continuous-integration/
http://aws.amazon.com/devops/
https://aws.amazon.com/marketplace/search/results/ref=dtl_navgno_search_box?page=1&searchTerms=jenkins
https://aws.amazon.com/marketplace/search/results/ref=dtl_navgno_search_box?page=1&searchTerms=jenkins

Archived

Amazon Web Services – Jenkins on AWS

Page 44

Document Revisions

Date Description

May 2017 Inclusion of AWS CodeBuild

September 2016 First publication

1 http://aws.amazon.com/devops/what-is-devops/

2 http://hudson-ci.org

3 https://aws.amazon.com/marketplace/

4 https://aws.amazon.com/vpc/

5 http://techblog.netflix.com/2016/03/how-we-build-code-at-netflix.html

6 https://aws.amazon.com/about-aws/global-infrastructure/

7 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-

availability-zones.html

8 https://www.cloudbees.com/products/cloudbees-jenkins-

platform/enterprise-edition/features/high-availability-plugin

9 https://www.cloudbees.com/products/cloudbees-jenkins-platform/private-

saas-edition

10 https://aws.amazon.com/cloudwatch/

11 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-

recover.html

12 https://wiki.jenkins-

ci.org/display/JENKINS/Consideration+for+Large+Scale+Jenkins+Deploym

ent

13 https://aws.amazon.com/ebs/

14 Amazon EC2 instance types - https://aws.amazon.com/ec2/instance-types/

Notes

Archived

Amazon Web Services – Jenkins on AWS

Page 45

15 https://aws.amazon.com/ec2/instance-types/#burst

16 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.h

tml?ConnectToInstanceLinux.html

18 https://aws.amazon.com/certificate-manager/

19 https://wiki.jenkins-ci.org/display/JENKINS/Active+Directory+plugin

20 https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Plugin

21 http://aws.amazon.com/directoryservice/

22 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-

security.html

23 https://aws.amazon.com/ec2/spot/

24 https://wiki.jenkins-ci.org/display/JENKINS/Amazon+EC2+Fleet+Plugin

25 https://aws.amazon.com/solutions/case-studies/lyft/

26 https://wiki.jenkins-

ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-

Differentwaysofstartingslaveagents

27

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.h

tml?ConnectToInstanceLinux.html

28 https://www.cloudbees.com/products/cloudbees-jenkins-

platform/enterprise-edition/features/high-availability-plugin

29 https://aws.amazon.com/efs/

30 https://aws.amazon.com/autoscaling/

31

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/LaunchCo

nfiguration.html

32 https://console.aws.amazon.com/efs/home

33 https://docs.aws.amazon.com/efs/latest/ug/mounting-fs.html

Archived

Amazon Web Services – Jenkins on AWS

Page 46

34

http://docs.aws.amazon.com/general/latest/gr/rande.html#elasticfilesystem-

region

35 https://docs.aws.amazon.com/efs/latest/ug/mount-fs-auto-mount-

onreboot.html

36 https://aws.amazon.com/cloudformation/

37 https://aws.amazon.com/cloudwatch/

38 https://wiki.jenkins-ci.org/display/JENKINS/S3+Plugin

39 https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Best+Practices

40 https://aws.amazon.com/containers/

41 https://www.docker.com/what-docker

42 http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-

optimized_AMI.html

43

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/container_i

nstance_AMIs.html

44

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_clus

ter.html

45 https://github.com/jenkinsci/docker/blob/master/README.md

46 https://wiki.jenkins-

ci.org/display/JENKINS/Amazon+EC2+Container+Service+Plugin

47 https://aws.amazon.com/ecr/

48 You might do this if, for example, you have several teams that each need their

own Jenkins environment.

49 https://hub.docker.com/r/jenkinsci/jnlp-slave/

50 https://hub.docker.com/r/cloudbees/jnlp-slave-with-java-build-tools/

51 https://wiki.jenkins-ci.org/display/JENKINS/Amazon+EC2+Plugin

52 https://wiki.jenkins-ci.org/display/JENKINS/Amazon+ECR

53 https://wiki.jenkins-ci.org/display/JENKINS/Amazon+SNS+Notifier

54 https://wiki.jenkins-

ci.org/display/JENKINS/Amazon+EC2+Container+Service+Plugin

Archived

Amazon Web Services – Jenkins on AWS

Page 47

55 https://wiki.jenkins-ci.org/display/JENKINS/S3+Plugin

56 https://wiki.jenkins-ci.org/display/JENKINS/AWS+Cloudformation+Plugin

57 https://wiki.jenkins-ci.org/display/JENKINS/AWS+Codedeploy+plugin

58 https://wiki.jenkins-ci.org/display/JENKINS/AWS+CodePipeline+Plugin

59 https://wiki.jenkins-ci.org/display/JENKINS/CodeCommit+URL+Helper

60 https://blogs.aws.amazon.com/application-

management/post/Tx1C8B98XN0AF2E/Integrating-AWS-CodeCommit-

with-Jenkins

61 https://wiki.jenkins-ci.org/display/JENKINS/AWS+Device+Farm+Plugin

62 https://wiki.jenkins-

ci.org/display/JENKINS/AWS+Beanstalk+Publisher+Plugin

63 https://wiki.jenkins-ci.org/display/JENKINS/Plugins

64 https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin

65 https://wiki.jenkins-ci.org/display/JENKINS/junit+Plugin

66 http://junit.org/

67 https://wiki.jenkins-ci.org/display/JENKINS/Maven+Project+Plugin

68 https://wiki.jenkins-ci.org/display/JENKINS/Mailer

69 https://wiki.jenkins-ci.org/display/JENKINS/Monitoring

70 https://wiki.jenkins-ci.org/display/JENKINS/Nested+View+Plugin

71 https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin

72 https://wiki.jenkins-ci.org/display/JENKINS/Dashboard+View

73 https://wiki.jenkins-ci.org/display/JENKINS/Green+Balls

74 http://docs.aws.amazon.com/codepipeline/latest/userguide/getting-started-

4.html

75 https://blogs.aws.amazon.com/application-

management/post/Tx32RHFZHXY6ME1/Set-up-a-build-pipeline-with-

Jenkins-and-Amazon-ECS

76 Jenkins Plugin for AWS Device Farm: https://wiki.jenkins-

ci.org/display/JENKINS/AWS+Device+Farm+Plugin

77 http://mobile.awsblog.com/post/Tx3QJUQQSRX3R1H/Set-Up-Continuous-

Testing-with-Appium-AWS-CodeCommit-Jenkins-and-AWS-Device-Farm

Archived

Amazon Web Services – Jenkins on AWS

Page 48

78 https://aws.amazon.com/blogs/compute/continuous-integration-

deployment-for-aws-lambda-functions-with-jenkins-and-grunt-part-1/

