

Infrastructure as Code

July 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction to Infrastructure as Code 1

The Infrastructure Resource Lifecycle 1

Resource Provisioning 3

AWS CloudFormation 4

Summary 9

Configuration Management 10

Amazon EC2 Systems Manager 10

AWS OpsWorks for Chef Automate 14

Summary 17

Monitoring and Performance 18

Amazon CloudWatch 18

Summary 21

Governance and Compliance 21

AWS Config 22

AWS Config Rules 23

Summary 25

Resource Optimization 25

AWS Trusted Advisor 26

Summary 27

Next Steps 28

Conclusion 28

Contributors 30

Resources 30

Abstract
Infrastructure as Code has emerged as a best practice for automating the
provisioning of infrastructure services. This paper describes the benefits of
Infrastructure as Code, and how to leverage the capabilities of Amazon Web
Services in this realm to support DevOps initiatives.

DevOps is the combination of cultural philosophies, practices, and tools that
increases your organization’s ability to deliver applications and services at high
velocity. This enables your organization to be more responsive to the needs of
your customers. The practice of Infrastructure as Code can be a catalyst that
makes attaining such a velocity possible.

Amazon Web Services – Infrastructure as Code

Page 1

Introduction to Infrastructure as Code
Infrastructure management is a process associated with software engineering.
Organizations have traditionally “racked and stacked” hardware, and then
installed and configured operating systems and applications to support their
technology needs. Cloud computing takes advantage of virtualization to enable
the on-demand provisioning of compute, network, and storage resources that
constitute technology infrastructures.

Infrastructure managers have often performed such provisioning manually. The
manual processes have certain disadvantages, including:

• Higher cost because they require human capital that could otherwise go
toward more important business needs.

• Inconsistency due to human error, leading to deviations from
configuration standards.

• Lack of agility by limiting the speed at which your organization can
release new versions of services in response to customer needs and
market drivers.

• Difficulty in attaining and maintaining compliance to corporate or
industry standards due to the absence of repeatable processes.

Infrastructure as Code addresses these deficiencies by bringing automation to
the provisioning process. Rather than relying on manually performed steps,
both administrators and developers can instantiate infrastructure using
configuration files. Infrastructure as Code treats these configuration files as
software code. These files can be used to produce a set of artifacts, namely the
compute, storage, network, and application services that comprise an operating
environment. Infrastructure as Code eliminates configuration drift through
automation, thereby increasing the speed and agility of infrastructure
deployments.

The Infrastructure Resource Lifecycle
In the previous section, we presented Infrastructure as Code as a way of
provisioning resources in a repeatable and consistent manner. The underlying
concepts are also relevant to the broader roles of infrastructure technology
operations. Consider the following diagram.

Amazon Web Services – Infrastructure as Code

Page 2

Figure 1: Infrastructure resource lifecycle

Figure 1 illustrates a common view of the lifecycle of infrastructure resources in
an organization. The stages of the lifecycle are as follows:

1. Resource provisioning. Administrators provision the resources
according to the specifications they want.

2. Configuration management. The resources become components
of a configuration management system that supports activities such
as tuning and patching.

3. Monitoring and performance. Monitoring and performance
tools validate the operational status of the resources by examining
items such as metrics, synthetic transactions, and log files.

4. Compliance and governance. Compliance and governance
frameworks drive additional validation to ensure alignment with
corporate and industry standards, as well as regulatory
requirements.

Amazon Web Services – Infrastructure as Code

Page 3

5. Resource optimization. Administrators review performance data
and identify changes needed to optimize the environment around
criteria such as performance and cost management.

Each stage involves procedures that can leverage code. This extends the benefits
of Infrastructure as Code from its traditional role in provisioning to the entire
resource lifecycle. Every lifecycle then benefits from the consistency and
repeatability that Infrastructure as Code offers. This expanded view of
Infrastructure as Code results in a higher degree of maturity in the Information
Technology (IT) organization as a whole.

In the following sections, we explore each stage of the lifecycle – provisioning,
configuration management, monitoring and performance, governance and
compliance, and optimization. We will consider the various tasks associated
with each stage and discuss how to accomplish those tasks using the capabilities
of Amazon Web Services (AWS).

Resource Provisioning
The information resource lifecycle begins with resource provisioning.
Administrators can use the principle of Infrastructure as Code to streamline the
provisioning process. Consider the following situations:

• A release manager needs to build a replica of a cloud-based production
environment for disaster recovery purposes. The administrator designs a
template that models the production environment and provisions
identical infrastructure in the disaster recovery location.

• A university professor wants to provision resources for classes each
semester. The students in the class need an environment that contains
the appropriate tools for their studies. The professor creates a template
with the appropriate infrastructure components, and then instantiates
the template resources for each student as needed.

• A service that has to meet certain industry protection standards requires
infrastructure with a set of security controls each time the service is
installed. The security administrator integrates the security controls into
the configuration template so that the security controls are instantiated
with the infrastructure.

Amazon Web Services – Infrastructure as Code

Page 4

• The manager of a software project team needs to provide development
environments for programmers that include the necessary tools and the
ability to interface with a continuous integration platform. The manager
creates a template of the resources and publishes the template in a
resource catalog. This enables the team members to provision their own
environments as needed.

These situations have one thing in common: the need for a repeatable process
for instantiating resources consistently. Infrastructure as Code provides the
framework for such a process. To address this need, AWS offers AWS
CloudFormation.1

AWS CloudFormation
AWS CloudFormation gives developers and systems administrators an easy way
to create, manage, provision, and update a collection of related AWS resources
in an orderly and predictable way. AWS CloudFormation uses templates written
in JSON or YAML format to describe the collection of AWS resources (known as
a stack), their associated dependencies, and any required runtime parameters.
You can use a template repeatedly to create identical copies of the same stack
consistently across AWS Regions. After deploying the resources, you can modify
and update them in a controlled and predictable way. In effect, you are applying
version control to your AWS infrastructure the same way you do with your
application code.

Template Anatomy
Figure 2 shows a basic AWS CloudFormation YAML-formatted template
fragment. Templates contain parameters, resource declaration, and outputs.
Templates can reference the outputs of other templates, which enables
modularization.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/

Amazon Web Services – Infrastructure as Code

Page 5

AWSTemplateFormatVersion: "version date"

Description:
 String

Parameters:
 set of parameters

Mappings:
 set of mappings

Conditions:
 set of conditions

Transform:
 set of transforms

Resources:
 set of resources

Outputs:
 set of outputs

Figure 2: Structure of an AWS CloudFormation YAML template

Figure 3 is an example of an AWS CloudFormation template. The template
requests the name of an Amazon Elastic Compute Cloud (EC2) key pair from the
user in the parameters section.2 The resources section of the template then
creates an EC2 instance using that key pair, with an EC2 security group that
enables HTTP (TCP port 80) access.

http://aws.amazon.com/ec2

Amazon Web Services – Infrastructure as Code

Page 6

Parameters:
 KeyName:
 Description: The EC2 key pair to allow SSH access to the
instance
 Type: AWS::EC2::KeyPair::KeyName
Resources:
 Ec2Instance:
 Type: AWS::EC2::Instance
 Properties:
 SecurityGroups: !Ref InstanceSecurityGroup
 KeyName: !Ref KeyName
 ImageId: ami-70065467
 InstanceSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Enable HTTP access via port 80
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: '80'
 ToPort: '80'
 CidrIp: 0.0.0.0/0

Figure 3: Example of an AWS CloudFormation YAML template

Change Sets
You can update AWS CloudFormation templates with application source code to
add, modify, or delete stack resources. The change sets feature enables you to
preview proposed changes to a stack without performing the associated
updates.3 You can control the ability to create and view change sets using AWS
Identity and Access Management (IAM).4 You can allow some developers to
create and preview change sets, while reserving the ability to update stacks or
execute change sets to a select few. For example, you could allow a developer to
see the impact of a template change before promoting that change to the testing
stage.

There are three primary phases associated with the use of change sets.

1. Create the change set.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets.html
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets-create.html

Amazon Web Services – Infrastructure as Code

Page 7

To create a change set for a stack, submit the changes to the template or
parameters to AWS CloudFormation. AWS CloudFormation generates a
change set by comparing the current stack with your changes.

2. View the change set.

You can use the AWS CloudFormation console, AWS CLI, or AWS
CloudFormation API to view change sets. The AWS CloudFormation
console provides a summary of the changes and a detailed list of changes
in JSON format. The AWS CLI and AWS CloudFormation API return a
detailed list of changes in JSON format.

3. Execute the change set.

You can select and execute the change set in the AWS CloudFormation
console, use the aws cloudformation execute-change-set
command in the AWS CLI, or the ExecuteChangeSet API.

The change sets capability allows you to go beyond version control in AWS
CloudFormation by enabling you to keep track of what will actually change from
one version to the next. Developers and administrators can gain more insight
into the impact of changes before promoting them and minimize the risk of
introducing errors.

Reusable Templates
Many programming languages offer ways to modularize code with constructs
such as functions and subroutines. Similarly, AWS CloudFormation offers
multiple ways to manage and organize your stacks. Although you can maintain
all your resources within a single stack, large single-stack templates can become
difficult to manage. There is also a greater possibility of encountering a number
of AWS CloudFormation limits.5

When designing the architecture of your AWS CloudFormation stacks, you can
group the stacks logically by function. Instead of creating a single template that
includes all the resources you need, such as virtual private clouds (VPCs),
subnets, and security groups, you can use nested stacks or cross-stack
references.6, 7

The nested stack feature allows you to create a new AWS CloudFormation stack
resource within an AWS CloudFormation template and establish a parent-child
relationship between the two stacks. Each time you create an AWS

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets-view.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets-execute.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-crossstackref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-crossstackref.html

Amazon Web Services – Infrastructure as Code

Page 8

CloudFormation stack from the parent template, AWS CloudFormation also
creates a new child stack. This approach allows you to share infrastructure code
across projects while maintaining completely separate stacks for each project.

Cross-stack references enable an AWS CloudFormation stack to export values
that other AWS CloudFormation stacks can then import. Cross-stack references
promote a service-oriented model with loose coupling that allows you to share a
single set of resources across multiple projects.

Template Linting
As with application code, AWS CloudFormation templates should go through
some form of static analysis, also known as linting. The goal of linting is to
determine whether the code is syntactically correct, identify potential errors,
and evaluate adherence to specific style guidelines. In AWS CloudFormation,
linting validates that a template is correctly written in either JSON or YAML.

AWS CloudFormation provides the ValidateTemplate API that checks for
proper JSON or YAML syntax. 8 If the check fails, AWS CloudFormation returns
a template validation error. For example, you can run the following command to
validate a template stored in Amazon Simple Storage Service (Amazon S3): 9

aws cloudformation validate-template --template-url \
s3://examplebucket/example_template.template

You can also use third-party validation tools. For example, cfn-nag performs
additional evaluations on templates to look for potential security concerns.
Another tool, cfn-check, performs deeper checks on resource specifications to
identify potential errors before they emerge during stack creation. 10, 11

Best Practices
The AWS CloudFormation User Guide provides a list of best practices for
designing and implementing AWS CloudFormation templates.12 We provide
links to these practices below.

Planning and organizing

• Organize Your Stacks By Lifecycle and Ownership13

• Use IAM to Control Access14

http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_ValidateTemplate.html
http://aws.amazon.com/s3
https://stelligent.com/2016/04/07/finding-security-problems-early-in-the-development-process-of-a-cloudformation-template-with-cfn-nag/
https://www.npmjs.com/package/cfn-check
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#organizingstacks
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#use-iam-to-control-access

Amazon Web Services – Infrastructure as Code

Page 9

• Reuse Templates to Replicate Stacks in Multiple Environments15

• Use Nested Stacks to Reuse Common Template Patterns16

• Use Cross-Stack References to Export Shared Resources17

Creating templates

• Do Not Embed Credentials in Your Templates18

• Use AWS-Specific Parameter Types19

• Use Parameter Constraints20

• Use AWS::CloudFormation::Init to Deploy Software Applications on
Amazon EC2 Instances21

• Use the Latest Helper Scripts22

• Validate Templates Before Using Them23

• Use Parameter Store to Centrally Manage Parameters in Your
Templates24

Managing stacks

• Manage All Stack Resources Through AWS CloudFormation25

• Create Change Sets Before Updating Your Stacks26

• Use Stack Policies27

• Use AWS CloudTrail to Log AWS CloudFormation Calls28

• Use Code Reviews and Revision Controls to Manage Your Templates29

• Update Your Amazon EC2 Linux Instances Regularly30

Summary
The information resource lifecycle starts with the provisioning of resources.
AWS CloudFormation provides a template-based way of creating infrastructure
and managing the dependencies between resources during the creation process.
With AWS CloudFormation, you can maintain your infrastructure just like
application source code.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#reuse
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#nested
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cross-stack
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#creds
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmtypes
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmconstraints
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfninit
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfninit
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#helper-scripts
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#validate
https://aws.amazon.com/ec2/systems-manager/parameter-store/
https://aws.amazon.com/ec2/systems-manager/parameter-store/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#donttouch
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfn-best-practices-changesets
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#stackpolicy
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cloudtrail
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#code
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#update-ec2-linux

Amazon Web Services – Infrastructure as Code

Page 10

Configuration Management
Once you provision your infrastructure resources and that infrastructure is up
and running, you must address the ongoing configuration management needs of
the environment. Consider the following situations:

• A release manager wants to deploy a version of an application across a
group of servers and perform a rollback if there are problems.

• A system administrator receives a request to install a new operating
system package in developer environments, but leave the other
environments untouched.

• An application administrator needs to periodically update a
configuration file across all servers housing an application.

One way to address these situations is to return to the provisioning stage,
provision fresh resources with the required changes, and dispose of the old
resources. This approach, also known as infrastructure immutability, ensures
that the provisioned resources are built anew according to the code baseline
each time a change is made. This eliminates configuration drift.

There are times, however, when you might want to take a different approach. In
environments that have high levels of durability, it might be preferable to have
ways to make incremental changes to the current resources instead of
reprovisioning them. To address this need, AWS offers Amazon EC2 Systems
Manager and AWS OpsWorks for Chef Automate. 31, 32

Amazon EC2 Systems Manager
Amazon EC2 Systems Manager is a collection of capabilities that simplifies
common maintenance, management, deployment, and execution of operational
tasks on EC2 instances and servers or virtual machines (VMs) in on-premises
environments. Systems Manager helps you easily understand and control the
current state of your EC2 instance and OS configurations. You can track and
remotely manage system configuration, OS patch levels, application
configurations, and other details about deployments as they occur over time.
These capabilities help with automating complex and repetitive tasks, defining
system configurations, preventing drift, and maintaining software compliance
of both Amazon EC2 and on-premises configurations.

https://aws.amazon.com/ec2/systems-manager/
https://aws.amazon.com/ec2/systems-manager/
https://aws.amazon.com/opsworks/chefautomate/

Amazon Web Services – Infrastructure as Code

Page 11

Table 1 lists the tasks that Systems Manager simplifies.

Tasks Details

Run Command33 Manage the configuration of managed instances at scale by distributing
commands across a fleet.

Inventory34 Automate the collection of the software inventory from managed instances.

State Manager35 Keep managed instances in a defined and consistent state.

Maintenance
Window36

Define a maintenance window for running administrative tasks.

Patch
Manager37

Deploy software patches automatically across groups of instances.

Automation38 Perform common maintenance and deployment tasks, such as updating Amazon
Machine Images (AMIs).

Parameter
Store39

Store, control, access, and retrieve configuration data, whether plain-text data
such as database strings or secrets such as passwords, encrypted through AWS
Key Management System (KMS).

Table 1: Amazon EC2 Systems Manager tasks

Document Structure
A Systems Manager document defines the actions that Systems Manager
performs on your managed instances. Systems Manager includes more than a
dozen preconfigured documents to support the capabilities listed in Table 1. You
can also create custom version-controlled documents to augment the
capabilities of Systems Manager. You can set a default version and share it
across AWS accounts. Steps in the document specify the execution order. All
documents are written in JSON and include both parameters and actions. As
with AWS OpsWorks for Chef Automate, documents for Systems Manager
become part of the infrastructure code base, bringing Infrastructure as Code to
configuration management.

The following is an example of a custom document for a Windows-based host.
The document uses the ipconfig command to gather the network configuration
of the node and then installs MySQL.

{
 "schemaVersion": "2.0",
 "description": "Sample version 2.0 document v2",
 "parameters": {},

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-commands.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-inventory.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-state.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-ami.html
https://aws.amazon.com/ec2/systems-manager/patch-manager/
https://aws.amazon.com/ec2/systems-manager/patch-manager/
https://aws.amazon.com/ec2/systems-manager/automation/
https://aws.amazon.com/ec2/systems-manager/parameter-store/
https://aws.amazon.com/ec2/systems-manager/parameter-store/

Amazon Web Services – Infrastructure as Code

Page 12

 "mainSteps": [
 {
 "action": "aws:runPowerShellScript",
 "name": "runShellScript",
 "inputs": {
 "runCommand": ["ipconfig"]
 }
 },
 {
 "action": "aws:applications",
 "name": "installapp",
 "inputs": {
 "action": "Install",
 "source":
"http://dev.mysql.com/get/Downloads/MySQLInstaller/mysql-
installer-community-5.6.22.0.msi"
 }
 }
]
}

Figure 4: Example of a Systems Manager document

Best Practices
The best practices for each of the Systems Manager capabilities appear below.

Run Command

• Improve your security posture by leveraging Run Command to access
your EC2 instances, instead of SSH/RDP.40

• Audit all API calls made by or on behalf of Run Command using AWS
CloudTrail.

• Use the rate control feature in Run Command to perform a staged
command execution.41

• Use fine-grained access permissions for Run Command (and all Systems
Manager capabilities) by using AWS Identity and Access Management
(IAM) policies.42

https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
http://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-multiple.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-multiple.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-configuring-access-iam-create.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-configuring-access-iam-create.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-configuring-access-iam-create.html

Amazon Web Services – Infrastructure as Code

Page 13

Inventory

• Use Inventory in combination with AWS Config to audit your
application configuration overtime.

State Manager

• Update the SSM agent periodically (at least once a month) using the
preconfigured AWS-UpdateSSMAgent document.43

• Bootstrap EC2 instances on launch using EC2Config for Windows.44

• (Specific to Windows) Upload the PowerShell or Desired State
Configuration (DSC) module to Amazon S3, and use AWS-
InstallPowerShellModule.

• Use tags to create application groups. Then target instances using the
Targets parameter, instead of specifying individual instance IDs.

• Automatically remediate findings generated by Amazon Inspector by
using Systems Manager.45

• Use a centralized configuration repository for all of your Systems
Manager documents, and share documents across your organization.46

Maintenance Windows

• Define a schedule for performing disruptive actions on your instances
such as OS patching, driver updates, or software installs.

Patch Manager

• Use Patch Manager to roll out patches at scale and to increase fleet
compliance visibility across your EC2 instances.

Automation

• Create self-serviceable runbooks for infrastructure as Automation
documents.

• Use Automation to simplify creating AMIs from the AWS Marketplace or
custom AMIs, using public documents, or authoring your own
workflows.

https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-configuration-manage.html
https://aws.amazon.com/blogs/security/how-to-remediate-amazon-inspector-security-findings-automatically/
https://aws.amazon.com/blogs/security/how-to-remediate-amazon-inspector-security-findings-automatically/
http://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-sharing.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-sharing.html

Amazon Web Services – Infrastructure as Code

Page 14

• Use the documents AWS-UpdateLinuxAmi or AWS-
UpdateWindowsAmi or create a custom Automation document to build
and maintain images.

Parameter Store

• Use Parameter Store to manage global configuration settings in a
centralized manner.47

• Use Parameter Store for secrets managements, encrypted through AWS
KMS.48

• Use Parameter Store with Amazon EC2 Container Service (ECS) task
definitions to store secrets.49

AWS OpsWorks for Chef Automate
AWS OpsWorks for Chef Automate brings the capabilities of Chef, a
configuration management platform, to AWS. OpsWorks for Chef Automate
further builds on Chef’s capabilities by providing additional features that
support DevOps capabilities at scale. Chef is based on the concept of recipes,
configuration scripts written in the Ruby language that perform tasks such as
installing services. Chef recipes, like AWS CloudFormation templates, are a
form of source code that can be version controlled, thereby extending the
principle of Infrastructure as Code to the configuration management stage of
the resource lifecycle.

OpsWorks for Chef Automate expands the capabilities of Chef to enable your
organization to implement DevOps at scale. OpsWorks for Chef Automate
provides three key capabilities that you can configure to support DevOps
practices: workflow, compliance, and visibility.

Workflow
You can use a workflow in OpsWorks for Chef Automate to coordinate
development, test, and deployment. The workflow includes quality gates that
enable users with the appropriate privileges to promote code between phases of
the release management process. This capability can be very useful in
supporting collaboration between teams. Each team can implement its own
gates to ensure compatibility between the projects of each team.

http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html
https://aws.amazon.com/blogs/compute/managing-secrets-for-amazon-ecs-applications-using-parameter-store-and-iam-roles-for-tasks/
https://aws.amazon.com/blogs/compute/managing-secrets-for-amazon-ecs-applications-using-parameter-store-and-iam-roles-for-tasks/

Amazon Web Services – Infrastructure as Code

Page 15

Compliance
OpsWorks for Chef Automate provides features that can assist you with
organizational compliance as part of configuration management. Chef Automate
can provide reports that highlight matters associated with compliance and risk.
You can also leverage profiles from well-known groups such as the Center for
Internet Security (CIS).

Visibility
OpsWorks for Chef Automate provides visibility into the state of workflows and
compliance within projects. A Chef user can create and view dashboards that
provide information about related events and query the events through a user
interface.

Recipe Anatomy
A Chef recipe consists of a set of resource definitions. The definitions describe
the desired state of the resources and how Chef can bring them to that state.
Chef supports over 60 resource types. A list of common resource types appears
below.

Resource Name Purpose

Bash Execute a script using the bash interpreter

Directory Manage directories

Execute Execute a single command

File Manage files

Git Manage source resources in Git repositories

Group Manage groups

Package Manage packages

Route Manage a Linux route table entry

Service Manage a service

User Manage users

Table 2: Common Chef resources

The following is an example of a Chef recipe. This example defines a resource
based on the installation of the Apache web server. The resource definition
includes a check for the underlying operating system. It uses the case operator
to examine the value of node[:platform] to check for the underlying

Amazon Web Services – Infrastructure as Code

Page 16

operating system. The action: install directive brings the resource to the
desired state (that is, it installs the package).

package 'apache2' do
 case node[:platform]
 when 'centos','redhat','fedora','amazon'
 package_name 'httpd'
 when 'debian','ubuntu'
 package_name 'apache2'
 end
 action :install
end

Figure 5: Example of a Chef recipe

Recipe Linting and Testing
A variety of tools is available from both Chef and the Chef user community that
support linting (syntax checking) and unit and integration testing. We highlight
some of the most common platforms in the following sections.

Linting with Rubocop and Foodcritic
Linting can be done on infrastructure code such as Chef recipes using tools such
as Rubocop and Foodcritic. 50, 51, 52 Rubocop performs static analysis on Chef
recipes based on the Ruby style guide. (Ruby is the language used to create Chef
recipes.) This tool is part of the Chef Development Kit and can be integrated
into the software development workflow. Foodcritic checks Chef recipes for
common syntax errors based on a set of built-in rules, which can be extended by
community contributions.

Unit Testing with ChefSpec
ChefSpec can provide unit testing on Chef cookbooks. 53 These tests can
determine whether Chef is being asked to do the appropriate tasks to
accomplish the desired goals. ChefSpec requires a configuration test
specification that is then evaluated against a recipe.

For example, ChefSpec would not actually check whether Chef installed the
Apache package, but instead checks whether a Chef recipe asked to install
Apache. The goal of the test is to validate whether the recipe reflects the
intentions of the programmer.

https://en.wikipedia.org/wiki/Lint_(software)
https://docs.chef.io/rubocop.html
https://docs.chef.io/foodcritic.html
https://docs.chef.io/chefspec.html

Amazon Web Services – Infrastructure as Code

Page 17

Integration Testing with Test Kitchen
Test Kitchen is a testing platform that creates test environments and then uses
bussers, which are test frameworks, to validate the creation of the resources
specified in the Chef recipes. 54

By leveraging the previous testing tools in conjunction with OpsWorks for Chef
Automate workflow capabilities, developers can automate the testing of their
infrastructures during the development lifecycle. These tests are a form of code
themselves and are another key part of the Infrastructure as Code approach to
deployments.

Best Practices
The strategies, techniques, and suggestions presented here will help you get the
maximum benefit and optimal outcomes from AWS OpsWorks for Chef
Automate:

• Consider storing your Chef recipes in an Amazon S3 archive. Amazon S3
is highly reliable and durable. Explicitly version each archive file by
using a naming convention. Or use Amazon S3 versioning, which
provides an audit trail and an easy way to revert to an earlier version.

• Establish a backup schedule that meets your organizational governance
requirements.

• Use IAM to limit access to the OpsWorks for Chef Automate API calls.

Summary
Amazon EC2 Systems Manager lets you deploy, customize, enforce, and audit an
expected state configuration to your EC2 instances and servers or VMs in your
on-premises environment. AWS OpsWorks for Chef Automate enables you to
use Chef recipes to support the configuration of an environment. You can use
OpsWorks for Chef Automate independently or on top of an environment
provisioned by AWS CloudFormation. The run documents and policies
associated with Systems Manager and the recipes associated with OpsWorks for
Chef Automate can become part of the infrastructure code base and be
controlled just like application source code.

https://docs.chef.io/kitchen.html

Amazon Web Services – Infrastructure as Code

Page 18

Monitoring and Performance
Having reviewed the role of Infrastructure as Code in the provisioning of
infrastructure resources and configuration management, we now look at
infrastructure health. Consider how the following events could affect the
operation of a website during periods of peak demand:

• Users of a web application are experiencing timeouts because of latency
of the load balancer, making it difficult to browse the product catalogs.

• An application server experiences performance degradation due to
insufficient CPU capacity and can no longer process new orders.

• A database that tracks session state doesn’t have enough throughput.
This causes delays as users transition through the various stages of an
application.

These situations describe operational problems arising from infrastructure
resources that don’t meet their performance expectations. It’s important to
capture key metrics to assess the health of the environment and take corrective
action when problems arise. Metrics provide visibility. With metrics, your
organization can respond automatically to events. Without metrics, your
organization is blind to what is happening in its infrastructure, thereby
requiring human intervention to address all issues. With scalable and loosely
coupled systems written in multiple languages and frameworks, it can be
difficult to capture the relevant metrics and logs and respond accordingly. To
address this need, AWS offers the Amazon CloudWatch services.55

Amazon CloudWatch
Amazon CloudWatch is a set of services that ingests, interprets, and responds to
runtime metrics, logs, and events. CloudWatch automatically collects metrics
from many AWS services, such as Amazon EC2, Elastic Load Balancing (ELB),
and Amazon DynamoDB.56, 57, 58 Responses can include built-in actions such as
sending notifications or custom actions handled by AWS Lambda, a serverless
event-driven compute platform.59 The code for Lambda functions becomes part
of the infrastructure code base, thereby extending Infrastructure as Code to the
operational level. CloudWatch consists of three services: the main CloudWatch
service, Amazon CloudWatch Logs, and Amazon CloudWatch Events. We now
consider each of these in more detail.

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/

Amazon Web Services – Infrastructure as Code

Page 19

Amazon CloudWatch
The main Amazon CloudWatch service collects and tracks metrics for many
AWS services such as Amazon EC2, ELB, DynamoDB, and Amazon Relational
Database Service (RDS). You can also create custom metrics for services you
develop, such as applications. CloudWatch issues alarms when metrics reach a
given threshold over a period of time.

Here are some examples of metrics and potential responses that could apply to
the situations mentioned at the start of this section:

• If the latency of ELB exceeds five seconds over two minutes, send an
email notification to the systems administrators.

• When the average EC2 instance CPU usage exceeds 60 percent for three
minutes, launch another EC2 instance.

• Increase the capacity units of a DynamoDB table when excessive
throttling occurs.

You can implement responses to metrics-based alarms using built-in
notifications, or by writing custom Lambda functions in Python, Node.js, Java,
or C#. Figure 6 shows an example of how a CloudWatch alarm uses Amazon
Simple Notification Service (Amazon SNS) to trigger a DynamoDB capacity
update.

CloudWatch

Alarm
ThrottledEvents > 2

over 5 minutes

SNS
Notification

Publish to
DynamoDB Topic

Lambda
Function

Call API
DynamoDB.UpdateTable

Figure 6: Example of a CloudWatch alarm flow

Amazon CloudWatch Logs
Amazon CloudWatch Logs monitors and stores logs from Amazon EC2, AWS
CloudTrail, and other sources. EC2 instances can ship logging information using
the CloudWatch Logs Agent and logging tools such as Logstash, Graylog, and
Fluentd. 60 Logs stored in Amazon S3 can be sent to CloudWatch Logs by
configuring an Amazon S3 event to trigger a Lambda function.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2Instance.html

Amazon Web Services – Infrastructure as Code

Page 20

Ingested log data can be the basis for new CloudWatch metrics that can, in turn,
trigger CloudWatch alarms. You can use this capability to monitor any resource
that generates logs without writing any code whatsoever. If you need a more
advanced response procedure, you can create a Lambda function to take the
appropriate actions. For example, a Lambda function can use the
SES.SendEmail or SNS.Publish APIs to publish information to a Slack channel
when NullPointerException errors appear in production logs. 61, 62

Log processing and correlation allow for deeper analysis of application
behaviors and can expose internal details that are hard to figure out from
metrics. CloudWatch Logs provides both the storage and analysis of logs, and
processing to enable data-driven responses to operational issues.

Amazon CloudWatch Events
Amazon CloudWatch Events produces a stream of events from changes to AWS
environments, applies a rules engine, and delivers matching events to specified
targets. Examples of events that can be streamed include EC2 instance state
changes, Auto Scaling actions, API calls published by CloudTrail, AWS console
sign-ins, AWS Trusted Advisor optimization notifications, custom application-
level events, and time-scheduled actions. Targets can include built-in actions
such as SNS notifications or custom responses using Lambda functions.

The ability of an infrastructure to respond to selected events offers benefits in
both operations and security. From the operations perspective, events can
automate maintenance activities without having to manage a separate
scheduling system. With regard to information security, events can provide
notifications of console logins, authentication failures, and risky API calls
recorded by CloudTrail. In both realms, incorporating event responses into the
infrastructure code promotes a greater degree of self-healing and a higher level
of operational maturity.

Best Practices
Here are some recommendations for best practices related to monitoring:

• Ensure that all AWS resources are emitting metrics.

• Create CloudWatch alarms for metrics that provide the appropriate
responses as metric-related events arise.

http://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

Amazon Web Services – Infrastructure as Code

Page 21

• Send logs from AWS resources, including Amazon S3 and Amazon EC2,
to CloudWatch Logs for analysis using log stream triggers and Lambda
functions.

• Schedule ongoing maintenance tasks with CloudWatch and Lambda.

• Use CloudWatch custom events to respond to application-level issues.

Summary
Monitoring is essential to understand systems behavior and to automate data-
driven reactions. CloudWatch collects observations from runtime environments,
in the form of metrics and logs, and makes those actionable through alarms,
streams, and events. Lambda functions written in Python, Node.js, Java, or C#
can respond to events, thereby extending the role of Infrastructure as Code to
the operational realm and improving the resiliency of operating environments.

Governance and Compliance
Having considered how you can use Infrastructure as Code to monitor the
health of your organization’s environments, we now turn our focus to
technology governance and compliance. Many organizations require visibility
into their infrastructures to address industry or regulatory requirements. The
dynamic provisioning capabilities of the cloud pose special challenges because
visibility and governance must be maintained as resources are added, removed,
or updated. Consider the following situations:

• A user is added to a privileged administration group, and the IT
organization is unable to explain when this occurred.

• The network access rules restricting remote management to a limited set
of IP addresses are modified to allow access from additional locations.

• The RAM and CPU configurations for several servers has unexpectedly
doubled, resulting in a much larger bill than in previous months.

Although you have visibility into the current state of your AWS resource
configurations using the AWS CLI and API calls, addressing these situations
requires the ability to look at how those resources have changed over time. To
address this need, AWS offers the AWS Config service.63

https://aws.amazon.com/config/

Amazon Web Services – Infrastructure as Code

Page 22

AWS Config
AWS Config enables you to assess, audit, and evaluate the configurations of
your AWS resources. AWS Config automatically builds an inventory of your
resources and tracks changes made to them. Figure 7 shows an example of an
AWS Config inventory of EC2 instances.

Figure 7: Example of an AWS Config resource inventory

AWS Config also provides a clear view of the resource change timeline,
including changes in both the resource configurations and the associations of
those resources to other AWS resources. Figure 8 shows the information
maintained by AWS Config for a VPC resource.

Amazon Web Services – Infrastructure as Code

Page 23

Figure 8: Example of AWS Config resource timeline

When many different resources are changing frequently and automatically,
automating compliance can become as important as automating the delivery
pipeline. To respond to changes in the environment, you can use AWS Config
rules.

AWS Config Rules
With AWS Config rules, every change triggers an evaluation by the rules
associated with the resources. AWS provides a collection of managed rules for
common requirements such as IAM users having good passwords, groups and
policies, or for determining if EC2 instances are on the correct VPCs and
Security Groups. AWS Config rules can quickly identify noncompliant resources
and help with reporting and remediation. For validations beyond those
provided by the managed rules, AWS Config rules also support the creation of
custom rules using Lambda functions.64 These rules become part of the
infrastructure code base, thus bringing the concept of Infrastructure as Code to
the governance and compliance stages of the information resource lifecycle.

Rule Structure
When a custom rule is invoked through AWS Config rules, the associated
Lambda function receives the configuration events, processes them, and returns
results. The following function determines if Amazon Virtual Private Cloud
(Amazon VPC) flow logs are enabled on a given Amazon VPC.

http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html

Amazon Web Services – Infrastructure as Code

Page 24

import boto3
import json

def evaluate_compliance(config_item, vpc_id):
 if (config_item['resourceType'] != 'AWS::EC2::VPC'):
 return 'NOT_APPLICABLE'
 elif is_flow_logs_enabled(vpc_id):
 return 'COMPLIANT'
 else:
 return 'NON_COMPLIANT'

def is_flow_logs_enabled(vpc_id):
 ec2 = boto3.client('ec2')
 response = ec2.describe_flow_logs(
 Filter=[{'Name': 'resource-id','Values': [vpc_id]},],
)
 if len(response[u'FlowLogs']) != 0: return True

def lambda_handler(event, context):
 invoking_event = json.loads(event['invokingEvent'])
 compliance_value = 'NOT_APPLICABLE'
 vpc_id = invoking_event['configurationItem']['resourceId']
 compliance_value = evaluate_compliance(
 invoking_event['configurationItem'], vpc_id)

 config = boto3.client('config')
 response = config.put_evaluations(
 Evaluations=[
 {
 'ComplianceResourceType':
invoking_event['configurationItem']['resourceType'],
 'ComplianceResourceId': vpc_id,
 'ComplianceType': compliance_value,
 'OrderingTimestamp':
invoking_event['configurationItem']['configurationItemCaptureTim
e']
 },
],
 ResultToken=event['resultToken'])

Figure 9: Example of a Lambda function to support AWS Config rules

Amazon Web Services – Infrastructure as Code

Page 25

In this example, when a configuration event on an Amazon VPC occurs, the
event passes to the function lambda_handler. This code extracts the ID of the
Amazon VPC and uses the describe_flow_logs API call to determine whether
the flow logs are enabled. The Lambda function returns a value of COMPLIANT
if the flow logs are enabled and NON_COMPLIANT otherwise.

Best Practices
Here are some recommendations for implementing AWS Config in your
environments:

• Enable AWS Config for all regions to record the configuration item
history, to facilitate auditing and compliance tracking.

• Implement a process to respond to changes detected by AWS Config.
This could include email notifications and the use of AWS Config rules
to respond to changes programmatically.

Summary
AWS Config extends the concept of infrastructure code into the realm of
governance and compliance. AWS Config can continuously record the
configuration of resources while AWS Config rules allow for event-driven
responses to changes in the configuration of tracked resources. You can use this
capability to assist your organization with the monitoring of compliance
controls.

Resource Optimization
We now focus on the final stage in the information resource lifecycle, resource
optimization. In this stage, administrators review performance data and identify
changes needed to optimize the environment around criteria such as security,
performance, and cost management. It’s important for all application
stakeholders to regularly evaluate the infrastructure to determine if it is being
used optimally.

Consider the following questions:

• Are there provisioned resources that are underutilized?

Amazon Web Services – Infrastructure as Code

Page 26

• Are there ways to reduce the charges associated with the operating
environment?

• Are there any suggestions for improving the performance of the
provisioned resources?

• Are there any service limits that apply to the resources used in the
environment and, if so, is the current usage of resources close to
exceeding these limits?

To answer these questions, we need a way to interrogate the operating
environment, retrieve data related to optimization, and use that data to make
meaningful decisions. To address this need, AWS offers AWS Trusted Advisor.65

AWS Trusted Advisor
AWS Trusted Advisor helps you observe best practices by scanning your AWS
resources and comparing their usage against AWS best practices in four
categories: cost optimization, performance, security, and fault tolerance. As part
of ongoing improvement to your infrastructure and applications, taking
advantage of Trusted Advisor can help keep your resources provisioned
optimally. Figure 10 shows an example of the Trusted Advisor dashboard.

Figure 10: Example of the AWS Trusted Advisor dashboard

Checks
Trusted Advisor provides a variety of checks to determine if the infrastructure is
following best practices. The checks include detailed descriptions of

https://aws.amazon.com/premiumsupport/trustedadvisor/

Amazon Web Services – Infrastructure as Code

Page 27

recommended best practices, alert criteria, guidelines for action, and a list of
useful resources on the topic. Trusted Advisor provides the results of the checks
and can also provide ongoing weekly notifications for status updates and cost
savings.

All customers have access to a core set of Trusted Advisor checks. Customers
with AWS Business or Enterprise support can access all Trusted Advisor checks
and the Trusted Advisor APIs. Using the APIs, you can obtain information from
Trusted Advisor and take corrective actions. For example, a program could
leverage Trusted Advisor to examine current account service limits. If current
resource usages approach the limits, you can automatically create a support case
to increase the limits.

Additionally, Trusted Advisor now integrates with Amazon CloudWatch Events.
You can design a Lambda function to notify a Slack channel when the status of
Trusted Advisor checks changes. These examples illustrate how the concept of
Infrastructure as Code can be extended to the resource optimization level of the
information resource lifecycle.

Best Practices
The best practices for AWS Trusted Advisor appear below.

• Subscribe to Trusted Advisor notifications through email or an
alternative delivery system.

• Use distribution lists and ensure that the appropriate recipients are
included on all such notifications.

• If you have AWS Business or Enterprise support, use the AWS Support
API in conjunction with Trusted Advisor notifications to create cases
with AWS Support to perform remediation.

Summary
You must continuously monitor your infrastructure to optimize the
infrastructure resources with regard to performance, security, and cost. AWS
Trusted Advisor provides the ability to use APIs to interrogate your AWS
infrastructure for recommendations, thus extending Infrastructure as Code to
the optimization phase of the information resource lifecycle.

Amazon Web Services – Infrastructure as Code

Page 28

Next Steps
You can begin the adoption of Infrastructure as Code in your organization by
viewing your infrastructure specifications in the same way you view your
product code. AWS offers a wide range of tools that give you more control and
flexibility over how you provision, manage, and operationalize your cloud
infrastructure.

Here are some key actions you can take as you implement Infrastructure as
Code in your organization:

• Start by using a managed source control service, such as AWS
CodeCommit, for your infrastructure code.

• Incorporate a quality control process via unit tests and static code
analysis before deployments.

• Remove the human element and automate infrastructure provisioning,
including infrastructure permission policies.

• Create idempotent infrastructure code that you can easily redeploy.

• Roll out every new update to your infrastructure via code by updating
your idempotent stacks. Avoid making one-off changes manually.

• Embrace end-to-end automation.

• Include infrastructure automation work as part of regular product
sprints.

• Make your changes auditable, and make logging mandatory.

• Define common standards across your organization and continuously
optimize.

By embracing these principles, your infrastructure can dynamically evolve and
accelerate with your rapidly changing business needs.

Conclusion
Infrastructure as Code enables you to encode the definition of infrastructure
resources into configuration files and control versions, just like application

Amazon Web Services – Infrastructure as Code

Page 29

software. We can now update our lifecycle diagram and show how AWS
supports each stage through code.

AWS CloudFormation

AWS OpsWorks for
Chef Automate

Amazon EC2
Systems Manager

AWS Config

AWS Trusted Advisor

Amazon CloudWatch

Figure 11: Information resource lifecycle with AWS

AWS CloudFormation, AWS OpsWorks for Chef Automate, Amazon EC2
Systems Manager, Amazon CloudWatch, AWS Config, and AWS Trusted
Advisor enable you to integrate the concept of Infrastructure as Code into all
phases of the project lifecycle. By using Infrastructure as Code, your
organization can automatically deploy consistently built environments that, in
turn, can help your organization to improve its overall maturity.

Amazon Web Services – Infrastructure as Code

Page 30

Contributors
The following individuals and organizations contributed to this document:

• Hubert Cheung, solutions architect, Amazon Web Services

• Julio Faerman, technical evangelist, Amazon Web Services

• Balaji Iyer, professional services consultant, Amazon Web Services

• Jeffrey S. Levine, solutions architect, Amazon Web Services

Resources
Refer to the following resources to learn more about our best practices related
to Infrastructure as Code.

Videos

• AWS re:Invent 2015 – DevOps at Amazon66

• AWS Summit 2016 - DevOps, Continuous Integration and Deployment
on AWS67

Documentation & Blogs

• DevOps and AWS68

• What is Continuous Integration69

• What is Continuous Delivery70

• AWS DevOps Blog71

Whitepapers

• Introduction to DevOps on AWS72

• AWS Operational Checklist73

• AWS Security Best Practices74

• AWS Risk and Compliance75

https://www.youtube.com/watch?v=esEFaY0FDKc
https://www.youtube.com/watch?v=DurzNeBQ-WU
https://www.youtube.com/watch?v=DurzNeBQ-WU
https://aws.amazon.com/devops/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/blogs/devops/
https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf

Amazon Web Services – Infrastructure as Code

Page 31

AWS Support

• AWS Premium Support76

• AWS Trusted Advisor77

1 https://aws.amazon.com/cloudformation/

2 https://aws.amazon.com/ec2/

3 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-
cfn-updating-stacks-changesets.html

4 http://aws.amazon.com/iam

5
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudf
ormation-limits.html

6 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-
properties-stack.html

7
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkth
rough-crossstackref.html

8
http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API
_ValidateTemplate.html

9 http://aws.amazon.com/s3

10 https://stelligent.com/2016/04/07/finding-security-problems-early-in-the-
development-process-of-a-cloudformation-template-with-cfn-nag/

11 https://www.npmjs.com/package/cfn-check

12 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html

13 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#organizingstacks

14 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#use-iam-to-control-access

Notes

https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets.html
http://aws.amazon.com/iam
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-crossstackref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-crossstackref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_ValidateTemplate.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_ValidateTemplate.html
http://aws.amazon.com/s3
https://stelligent.com/2016/04/07/finding-security-problems-early-in-the-development-process-of-a-cloudformation-template-with-cfn-nag/
https://stelligent.com/2016/04/07/finding-security-problems-early-in-the-development-process-of-a-cloudformation-template-with-cfn-nag/
https://www.npmjs.com/package/cfn-check
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#organizingstacks
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#organizingstacks
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#use-iam-to-control-access
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#use-iam-to-control-access

Amazon Web Services – Infrastructure as Code

Page 32

15 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-

practices.html#reuse

16 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#nested

17 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#cross-stack

18 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#creds

19 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#parmtypes

20 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#parmconstraints

21 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#cfninit

22 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#helper-scripts

23 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#validate

24 https://aws.amazon.com/ec2/systems-manager/parameter-store/

25 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#donttouch

26 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#cfn-best-practices-changesets

27 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#stackpolicy

28 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#cloudtrail

29 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#code

30 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-
practices.html#update-ec2-linux

31 https://aws.amazon.com/ec2/systems-manager/

32 https://aws.amazon.com/opsworks/chefautomate/

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#reuse
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#reuse
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#nested
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#nested
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cross-stack
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cross-stack
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#creds
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#creds
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmtypes
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmtypes
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmconstraints
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#parmconstraints
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfninit
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfninit
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#helper-scripts
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#helper-scripts
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#validate
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#validate
https://aws.amazon.com/ec2/systems-manager/parameter-store/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#donttouch
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#donttouch
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfn-best-practices-changesets
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cfn-best-practices-changesets
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#stackpolicy
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#stackpolicy
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cloudtrail
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#cloudtrail
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#code
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#code
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#update-ec2-linux
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html#update-ec2-linux
https://aws.amazon.com/ec2/systems-manager/
https://aws.amazon.com/opsworks/chefautomate/

Amazon Web Services – Infrastructure as Code

Page 33

33 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-

commands.html

34 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-
inventory.html

35 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-
state.html

36 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-
ami.html

37 https://aws.amazon.com/ec2/systems-manager/patch-manager/

38 https://aws.amazon.com/ec2/systems-manager/automation/

39 https://aws.amazon.com/ec2/systems-manager/parameter-store/

40 https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-
ec2-systems-manager/

41 http://docs.aws.amazon.com/systems-manager/latest/userguide/send-
commands-multiple.html

42 http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-
configuring-access-iam-create.html

43 https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-
ec2-systems-manager/

44 http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-
configuration-manage.html

45 https://aws.amazon.com/blogs/security/how-to-remediate-amazon-
inspector-security-findings-automatically/

46 http://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-
sharing.html

47 http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-
manager-paramstore.html

48 http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-
paramstore-walk.html

49 https://aws.amazon.com/blogs/compute/managing-secrets-for-amazon-ecs-
applications-using-parameter-store-and-iam-roles-for-tasks/

50 https://en.wikipedia.org/wiki/Lint_(software)

51 https://docs.chef.io/rubocop.html

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-commands.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/execute-remote-commands.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-inventory.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-inventory.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-state.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-state.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/systems-manager-ami.html
https://aws.amazon.com/ec2/systems-manager/patch-manager/
https://aws.amazon.com/ec2/systems-manager/automation/
https://aws.amazon.com/ec2/systems-manager/parameter-store/
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
http://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-multiple.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-multiple.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-configuring-access-iam-create.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-configuring-access-iam-create.html
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
https://aws.amazon.com/blogs/mt/replacing-a-bastion-host-with-amazon-ec2-systems-manager/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-configuration-manage.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-configuration-manage.html
https://aws.amazon.com/blogs/security/how-to-remediate-amazon-inspector-security-findings-automatically/
https://aws.amazon.com/blogs/security/how-to-remediate-amazon-inspector-security-findings-automatically/
http://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-sharing.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-sharing.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html
https://aws.amazon.com/blogs/compute/managing-secrets-for-amazon-ecs-applications-using-parameter-store-and-iam-roles-for-tasks/
https://aws.amazon.com/blogs/compute/managing-secrets-for-amazon-ecs-applications-using-parameter-store-and-iam-roles-for-tasks/
https://en.wikipedia.org/wiki/Lint_(software)
https://docs.chef.io/rubocop.html

Amazon Web Services – Infrastructure as Code

Page 34

52 https://docs.chef.io/foodcritic.html

53 https://docs.chef.io/chefspec.html

54 https://docs.chef.io/kitchen.html

55 https://aws.amazon.com/cloudwatch/

56 https://aws.amazon.com/dynamodb/

57 https://aws.amazon.com/ec2/

58 https://aws.amazon.com/elasticloadbalancing/

59 https://aws.amazon.com/lambda/

60
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2
Instance.html

61 http://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html

62 http://docs.aws.amazon.com/sns/latest/api/API_Publish.html

63 https://aws.amazon.com/config/

64 http://docs.aws.amazon.com/config/latest/developerguide/evaluate-
config_develop-rules.html

65 https://aws.amazon.com/premiumsupport/trustedadvisor/

66 https://www.youtube.com/watch?v=esEFaY0FDKc

67 https://www.youtube.com/watch?v=DurzNeBQ-WU

68 https://aws.amazon.com/devops/

69 https://aws.amazon.com/devops/continuous-integration/

70 https://aws.amazon.com/devops/continuous-delivery/

71 https://aws.amazon.com/blogs/devops/

72 https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf

73 https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf

74
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practic
es.pdf

75
https://d0.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Complia
nce_Whitepaper.pdf

https://docs.chef.io/foodcritic.html
https://docs.chef.io/chefspec.html
https://docs.chef.io/kitchen.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2Instance.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2Instance.html
http://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://aws.amazon.com/config/
http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html
http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://www.youtube.com/watch?v=esEFaY0FDKc
https://www.youtube.com/watch?v=DurzNeBQ-WU
https://aws.amazon.com/devops/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/blogs/devops/
https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf

Amazon Web Services – Infrastructure as Code

Page 35

76 https://aws.amazon.com/premiumsupport/

77 https://aws.amazon.com/premiumsupport/trustedadvisor/

https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/trustedadvisor/

	Abstract
	Introduction to Infrastructure as Code
	The Infrastructure Resource Lifecycle
	Resource Provisioning
	AWS CloudFormation
	Template Anatomy
	Change Sets
	Reusable Templates
	Template Linting
	Best Practices

	Summary

	Configuration Management
	Amazon EC2 Systems Manager
	Document Structure
	Best Practices

	AWS OpsWorks for Chef Automate
	Workflow
	Compliance
	Visibility
	Recipe Anatomy
	Recipe Linting and Testing
	Linting with Rubocop and Foodcritic
	Unit Testing with ChefSpec
	Integration Testing with Test Kitchen

	Best Practices

	Summary

	Monitoring and Performance
	Amazon CloudWatch
	Amazon CloudWatch
	Amazon CloudWatch Logs
	Amazon CloudWatch Events
	Best Practices

	Summary

	Governance and Compliance
	AWS Config
	AWS Config Rules
	Rule Structure
	Best Practices

	Summary

	Resource Optimization
	AWS Trusted Advisor
	Checks
	Best Practices

	Summary

	Next Steps
	Conclusion
	Contributors
	Resources

