

Practicing Continuous
Integration and Continuous

Delivery on AWS
Accelerating Software Delivery with DevOps

June 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWSôs

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWSôs products or services, each of which is provided ñas isò

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

The Challenge of Software Delivery 1

What is Continuous Integration and Continuous Delivery/Deployment? 2

Continuous Integration 2

Continuous Delivery and Deployment 2

Continuous Delivery Is Not Continuous Deployment 3

Benefits of Continuous Delivery 3

Automate the Software Release Process 4

Improve Developer Productivity 4

Improve Code Quality 4

Deliver Updates Faster 4

Implementing Continuous Integration and Continuous Delivery 5

A Pathway to Continuous Integration/Continuous Delivery 5

Teams 9

Testing Stages in Continuous Integration and Continuous Delivery 11

Building the Pipeline 14

Pipeline Integration with AWS CodeBuild 22

Pipeline Inte gration with Jenkins 23

Deployment Methods 24

All at Once (In-Place Deployment) 25

Rolling Deployment 26

Immutable and Blue/Green Deployment 26

Database Schema Changes 27

Summary of Best Practices 27

Conclusion 29

Further Reading 29

Contributors 30

Abstract
This paper explains the features and benefits of using continuous integration,

continuous delivery (CI/CD) , and Amazon Web Services (AWS) tooling in your

software development environment. Continuous integration and continuous

delivery are best practices and a vital part of a DevOps initiative.

Amazon Web Services ï Practicing CI/CD on AWS

Page 1

The Challenge of Software Delivery
Enterprises today face the challenge of rapidly changing competitive

landscapes, evolving security requirements, and performance scalability.

Enterprises must bridge the gap between operations stability and rapid feature

development. Continuous integration and continuous delivery (CI/CD) is a

practice that enables rapid software changes while maintaining system stability

and security.

Amazon realized early on that the business needs of delivering features for

Amazon.com retail customers, Amazon subsidiaries, and Amazon Web Services

(AWS) would require new and innovative ways of delivering software. At the

scale of a company like Amazon, thousands of independent software teams must

be able to work in parallel to deliver software quickly, securely, reliably, and

with zero tolerance for outages.

By learning how to deliver software at high velocity, Amazon and other forward -

thinking organizations pioneered DevOps.1 DevOps is the combination of

cultural philosophies, practices, and tools that increases an organizationôs

ability to deliver applications and services at high velocity . Using DevOps

principles, organizations can evolve and improve products at a faster pace than

organizations that use traditional software development and infrastructure

management processes. This speed enables organizations to better serve their

customers and compete more effectively in the market.

Some of these principles, such as two-pizza teams2 and microservices/service

oriented architecture (SOA), are out of scope of this whitepaper. In this

whitepaper we discuss the CI/CD capability that Amazon has built and

continuously improved . CI/CD is key to delivering software features rapidly and

reliably.

AWS now offers these CI/CD capabilities as a set of developer services: AWS

CodeStar,3 AWS CodeCommit,4 AWS CodePipeline,5 AWS CodeBuild,6 and

AWS CodeDeploy.7 Developers and IT operations professionals practicing

DevOps can use these services to rapidly and safely securely deliver software.

Together, they help you securely store and apply version control to your

application's source code. You can use AWS CodeStar to rapidly orchestrate an

end-to-end software release workflow using these services. For an existing

environment, AWS CodePipeline has the flexibility to integrate each service

https://aws.amazon.com/codestar/
https://aws.amazon.com/codestar/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codedeploy/

Amazon Web Services ï Practicing CI/CD on AWS

Page 2

independently with your existing tools. These are highly available, easily

integrated services that can be accessed through the AWS Management Console,

AWS APIs, and AWS SDKs like any other AWS service.

What is Continuous Integration and

Continuous Delivery/Deployment?
This section discusses the practices of continuous integration and continuous

delivery. We explain the difference between continuous delivery and continuous

deployment.

Continuous Integration

Continuous integration (CI) is a software development practice where

developers regularly merge their code changes into a central repository, after

which automated builds and tests are run. CI most often refers to the build or

integration stage of the software release process and requires both an

automation component (e.g., a CI or build service) and a cultural component

(e.g., learning to integrate frequently). The key goals of CI are to find and

address bugs more quickly, improve software quality, and reduce the time it

takes to validate and release new software updates.

Continuous integration focuses on smaller commits and smaller code changes to

integrate. A developer commits code at regular intervals, at minimum once a

day. The developer pulls code from the code repository to ensure the code on

the local host is merged before pushing to the build server. At this stage the

build server runs the various tests and either accepts or rejects the code commit.

The basic challenges of implementing CI include more frequent commits to the

common codebase, maintaining a single source code repository, automating

builds, and automating testing. Additional challenges include testing in similar

environments to production, providing visibility of the process to the team, and

allowing developers to easily obtain any version of the application.

Continuous Delivery and Deployment

Continuous delivery (CD) is a software development practice where code

changes are automatically built, tested, and prepared for production release. It

Amazon Web Services ï Practicing CI/CD on AWS

Page 3

expands on continuous integration by deploying all code changes to a testing

environment, a production environment, or both after the build stage has been

completed. Continuous delivery can be fully automated with a workflow process

or partially automated with manual steps at cr itical points. When continuous

delivery is properly implemented, developers always have a deployment-ready

build artifact that has passed through a standardized test process.

With continuous deployment, revisions are deployed to a production

environment au tomatically without explicit approval from a developer, making

the entire software release process automated. This, in turn, allows for a

continuous customer feedback loop early in the product lifecycle.

Continuous Delivery Is Not Continuous Deployment

One misconception about continuous delivery is that it means every change

committed is applied to production immediately after passing automated tests.

However, the point of continuous delivery is not to apply every change to

production immediately, but to ensure that every change is ready to go to

production.

Before deploying a change to production, you can implement a decision process

to ensure that the production deployment is authorized and audited. This

decision can be made by a person and then executed by the tooling.

Using continuous delivery the decision to go live becomes a business decision,

not a technical one. The technical validation happens on every commit.

Rolling out a change to production is not a disruptive event. Deployment

doesnôt require the technical team to stop working on the next set of changes,

and it doesnôt need a project plan, handover documentation, or a maintenance

window. Deployment becomes a repeatable process that has been carried out

and proven multiple times in testing environments. 8

Benefits of Continuous Delivery
CD provides numerous benefits for your software development team including

automating the process, improving developer productivity, improving code

quality, and delivering updates to your customers faster.

Amazon Web Services ï Practicing CI/CD on AWS

Page 4

Automate the Software Release Process

CD provides a method for your team to check in code that is automatically built,

tested, and prepared for release to production so that your software delivery is

efficient, resilient, rapid , and secure.

Improve Developer Productivity

CD practices help your teamôs productivity by freeing developers from manual

tasks, untangling complex dependencies, and returning focus to delivering new

features in software. Instead of integrating their code with other parts of the

business and spending cycles on how to deploy this code to a platform,

developers can focus on coding logic that delivers the features you need.

Improve Code Quality

CD can help you discover and address bugs early in the delivery process before

they grow into larger proble ms later. Your team can easily perform additional

types of code tests because the entire process has been automated. With the

discipline of more testing more frequently , teams can iterate faster with

immediate feedback on the impact of changes. This enables teams to drive

quality code with a high assurance of stability and security. Developers will

know through immediate feedback whether the new code works and whether

any breaking changes or bugs were introduced. Mistakes caught early on in the

development process are the easiest to fix.

Deliver Updates Faster

CD helps your team deliver updates to customers quickly and frequently. When

CI/CD is implemented, the velocity of the entire team, including the release of

features and bug fixes, is increased. Enterprises can respond faster to market

changes, security challenges, customer needs, and cost pressures. For example,

if a new security feature is required, your team can implement CI/CD with

automated testing to introduce the fix quickly and reliably to production

systems with high confidence. What used to take weeks and months can now be

done in days or even hours.

Amazon Web Services ï Practicing CI/CD on AWS

Page 5

Implementing Continuous Integration and

Continuous Delivery
In th is section we discuss the ways in which you can begin to implement a

CI/CD model in your organization. This whitepaper doesnôt discuss how an

organization with a mature DevOps and cloud transformation model builds and

uses a CI/CD pipeline . To help you on your DevOps journey, AWS has a

number of certified DevOps Partners9 who can provide resources and tooling.

For more information on preparing for a move to the AWS Cloud, see the AWS

Cloud Transformation Maturity whitepaper .10

A Pathway to Continuous Integration/Continuous

Delivery

CI/CD can be pictured as a pipeline (see Figure 1), where new code is submitted

on one end, tested over a series of stages (source, build, staging, and

production) , and then published as production -ready code. If your o rganization

is new to CI/CD it can approach this pipeline in an iterative fashion. This means

that you should start small, and iterate at each stage so that you can understand

and develop your code in a way that will help your organization grow.

Figure 1 : CI/CD pipeline

Each stage of the CI/CD pipeline is structured as a logical unit in the delivery

process. In addition, each stage acts as a gate that vets a certain aspect of the

code. As the code progresses through the pipeline, the assumption is that the

quality of the code is higher in the later stages because more aspects of it

continue to be verified. Problems uncovered in an early stage stop the code from

progressing through the pipeline. Results from the tests are immediately sent to

the team, and all further builds and releases are stopped if software does not

pass the stage.

https://aws.amazon.com/devops/partner-solutions/
https://d0.awsstatic.com/whitepapers/AWS-Cloud-Transformation-Maturity-Model.pdf
https://d0.awsstatic.com/whitepapers/AWS-Cloud-Transformation-Maturity-Model.pdf

Amazon Web Services ï Practicing CI/CD on AWS

Page 6

These stages are suggestions. You can adapt the stages based on your business

need. Some stages can be repeated for multiple types of testing, security, and

performance. Depending on the complexity of your project and the structure of

your teams, some stages can be repeated several times at different levels. For

example, the end product of one team can become a dependency in the project

of the next team. This means that the first teamôs end product is subsequently

staged as an artifact in the next teamôs project.

The presence of a CI/CD pipeline will have a large impact on maturing the

capabilities of your organization . The organization should start with small steps

and not try to build a fully mature pipeline, with multiple environments, many

testing phases, and automation in all stages at the start. Keep in mind that even

organizations that have highly mature CI/CD environment s still need to

continuously improve their pipeline s.

Building a CI/CD -enabled organization is a journey, and there are many

destinations along the way. In the next section we discuss a possible pathway

that your organization could take, starting with continuous i ntegration through

the levels of continuous delivery.

Continuous Integration

Figure 2 : Continuous i ntegration ðsource and build

The first phase in the CI/CD journey is to develop maturity in continuous

integration. You should make sure that all of the developers regularly commit

their code to a central repository (such as one hosted in CodeCommit or

GitHub) and merge all changes to a release branch for the application. No

developer should be holding code in isolation. If a feature branch is needed for a

certain period of time, it should be kept up to date by merging from upstream as

Amazon Web Services ï Practicing CI/CD on AWS

Page 7

often as possible. Frequent commits and merges with complete unit s of work

are recommended for the team to develop discipline and are encouraged by the

process. A developer who merges code early and often will likely have fewer

integration issues down the road.

You should also encourage developers to create unit tests as early as possible for

their applications and to run these tests before pushing the code to the central

repository. Errors caught early in the software development process are the

cheapest and easiest to fix.

When the code is pushed to a branch in a source code repository, a workflow

engine monitoring that branch will send a command to a builder tool to build

the code and run the unit tests in a controlled environment. The build process

should be sized appropriately to handle all activities, including pushes and tests

that might happen during the commit stage, for fast feedback. Other quality

checks, such as unit test coverage, style check, and static analysis, can happen at

this stage as well. Finally, the builder to ol creates one or more binary builds and

other artifacts, like images, stylesheets, and documents, for the application .

Continuous Delivery: Creating a Staging Environment

Figure 3 : Continuous delivery ðstaging

Continuous delivery (CD) is the next phase and entails deploying the application

code in a staging environment, which is a replica of the production stack, and

running more functional tests. The staging environment could be a static

environment premade for testing, or you could provision and confi gure a

Amazon Web Services ï Practicing CI/CD on AWS

Page 8

dynamic environment with committed infrastructure and configuration code for

testing and deploying the application code.

Continuous Delivery: Creating a Production Environment

Figure 4 : Continuous delivery ðproduction

After the staging environment is built using infrastructure as code (IaC), a

production environment can be built very quickly in the same way.

Continuous Deployment

Figure 5 : Continuous deployment

The final phase in the CI/CD pipeline is continuous deployment, which may

include full automation of the entire software release process including

deployment to the production environment. In a fully mature CI/CD

Amazon Web Services ï Practicing CI/CD on AWS

Page 9

environment , the path to the production environment is fully automated, which

allows code to be deployed with high confidence.

Maturity and Beyond

As your organization matures, it will continue to develop the CI/CD model to

include more of the following improvements:

¶ More staging environments for specific performance, compliance,

security, and user interface (UI) tests

¶ Unit tests of infrastructure and configuration code along with the

application code

¶ Integration with other system s and processes such as code review, issue

tracking , and event notification

¶ Integration with database schema migration (if applicable)

¶ Addition al steps for auditing and business approval

Even the most mature organizations that have complex multi-environment

CI/CD pipelines continue to look for improvements. DevOps is a journey, not a

destination. Feedback about the pipeline is continuously collected, and

improvements in speed, scale, security, and reliability are achieved as a

collaboration between the different parts of the development teams.

Teams

AWS recommends organizing three developer teams for implementing a CI/CD

environment: an applicatio n team, an infrastructure team, and a tools team (see

Figure 6). This organization represents a set of best practices that have been

developed and applied in fast-moving startups, large enterprise organizations,

and in Amazon itself. The teams should be no larger than groups that two pizzas

can feed, or about 10-12 people. This follows the communication rule that

meaningful conversations hit limits as group sizes increase and lines of

communication multiply .11

Amazon Web Services ï Practicing CI/CD on AWS

Page 10

Figure 6: Application, i nfras tructure, and tools teams

Application Team

The application team creates the application. Application developers own the

backlog, stories, and unit tests, and they develop features based on a specified

application target. This teamôs organizational goal is to minimize the time these

developers spend on non-core application tasks.

In addition to having functional programming skills in the application language,

the application team should have platform skills and an understanding of

system configuration. This will enable them to focus solely on developing

features and hardening the application.

Infrastructure Team

The infrastructure team writes the code that both creates and configures the

infrastructure needed to run the application. This team might use native AWS

tools, such as AWS CloudFormation , or generic tools, such as Chef, Puppet, or

Ansible. The infrastructure team is responsible for specifying what resources are

needed, and it works closely with the application team. The infrastructure team

might consist of only one or two people for a small application .

The team should have skills in infrastructure provisioning methods, such as

AWS CloudFormation or Hashi Corp Terraform. The team should also develop

configuration automation skills with tools such as Chef, Ansible, Puppet, or Salt.

Amazon Web Services ï Practicing CI/CD on AWS

Page 11

Tools Team

The tools team builds and manages the CI/CD pipeline. They are responsible for

the infrastructure and tools that make up the pipeline . They are not part of the

two-pizza team, however they create a tool that is used by the application and

infrastructure teams in the organization. The organization needs to

continuously mature its tools team, so that the tools team stays one step ahead

of the maturing application and i nfrastructure teams.

The tools team must be skilled in building and integrating all parts of the CI/CD

pipeline . This includes building source control repositories, workflow engines,

build environments, testing frameworks, and artifact repositories. This team

may choose to implement software such as AWS CodeStar, AWS CodePipeline,

AWS CodeCommit, AWS CodeDeploy, and AWS CodeBuild, along with Jenki ns,

GitH ub, Artifactory, TeamCenter, and other similar tools. Some organizations

might call this a DevOps team, but we discourage this. Instead, we encourage

thinking of DevOps as the sum of the people, processes, and tools in software

delivery.

Testing Stages in Continuous Integration and

Continuous Delivery

The three CI/CD teams should incorporate testing into the software

development lifecycle at the different stages of the CI/CD pipeline. Overall,

testing should start as early as possible. The testing pyramid, shown below, is a

concept provided by Mike Cohn in Succeeding with Agile.12 It shows the various

software tests in relation to their cost and speed at which they run.

Amazon Web Services ï Practicing CI/CD on AWS

Page 12

Figure 7 : CI/CD testing pyramid

Unit tests are on the bottom of the pyramid. They are both the fastest to run and

the least expensive. Therefore, unit tests should make up the bulk of your

testing strategy. A good rule of thumb is about 70 percent. Unit tests should

have near-complete code coverage because bugs caught in this phase can be

fixed quickly and cheaply.

Service, component, and integration tests are above unit tests on the pyramid.

These tests require detailed environment s and, therefore, are more costly in

infrastructure requirements and slower to run . Performance and compliance

tests are the next level. They require production -quality environments and are

more expensive yet. UI and user acceptance tests are at the top of the pyramid

and require production -quality environments as well.

All of these tests are part of a complete strategy to assure high-quality software.

However, for speed of development, emphasis is on the number of tests and the

coverage in the bottom half of the pyramid.

In the following sections we discuss the CI/CD stages.

Setting up the Source

At the beginning of the project itôs essential to set up a source where you can

store your raw code and configuration and schema changes. In the source stage,

Amazon Web Services ï Practicing CI/CD on AWS

Page 13

choose a source code repository such as one hosted in GitHub or AWS

CodeCommit.

Setting Up and Executing Builds

Build automation is essential to the CI process. When setting up build

automation, the first task is to choose the right build tool. There are many build

tools, such as Ant, Maven, and Gradle for Java; Make for C/C++; Grunt for

JavaScript; and Rake for Ruby. The build tool that will work best for you will

depend on the programming language of your project and the skill set of your

team. After you choose the build tool, all the dependencies need to be clearly

defined in the build scripts, along with the build steps. Itôs also a best practice to

version the final build artifacts, which makes it easier to deploy and to keep

track of issues.

In the bui ld stage, the build tools will take as input any change to the source

code repository, build the software, and run the following types of tests:

Unit Test ing ï Tests a specific section of code to ensure the code does what it

is expected to do. The unit testing is performed by software developers during

the development phase. At this stage, a static code analysis, data flow analysis,

code coverage, and other software verification pro cesses can be applied.

Static Code Analysis ï This test is performed without actually executing the

application after the build and unit test ing. This analysis can help to find coding

errors and security holes, and it also can ensure conformance to coding

guidelines.

Staging

In the staging phase, full environments are created that mirror the eventual

production environment . The following tests are performed:

Integration Testing ï Verifies the interfaces between components against

software design. Integration t esting is an iterative process and facilitates

building robust interfaces and system integrity.

Component Testing ï Tests message passing between various components

and their outcomes. A key goal of this testing could be idempotency in

component testing. Tests can include extremely large data volumes, or edge

situations and abnormal inputs.

Amazon Web Services ï Practicing CI/CD on AWS

Page 14

System Testing ï Tests the system end-to-end and verifies if the software

satisfies the business requirement. This might include testing the UI, API,

backend logic, and end state.

Performance Testing ï Determines the responsiveness and stability of a

system as it performs under a particular workload. Performance testing also is

used to investigate, measure, validate, or verify other quality attributes of the

system, such as scalability , reliability , and resource usage. Types of performance

tests might include load test s, stress tests, and spike tests. Performance tests are

used for benchmarking against predefined criteria.

Compliance Testing ï Checks whether the code change complies with the

requirements of a nonfunctional specification and/or regulations . I t determines

if you are implementing and meeting the defined standards.

User Acceptance Testing ï Validates the end-to-end business flow. This

testing is executed by an end user in a staging environment and

confirm s whether the system meets the requirements of the requirement

specification. Typically, customers employ alpha and beta testing methodologies

at this stage.

Production

Finally , after passing the previous tests, the staging phase is repeated in a

production environment. In t his phase, a final Canary test can be completed

by deploying the new code only on a small subset of servers or even one server,

or one Region before deploying code to the entire production environment.

Specifics on how to safely deploy to production are covered in the Deployment

Methods section.

Next, we discuss building the pipeline to incorporate these stages and tests.

Building the Pipeline

This section discusses building the pipeline. Start by establishing a pipeline with

just the components needed for CI and then transition later to a continuous

delivery pipeline with more components and stages. This section also discusses

how you can consider using AWS Lambda functions and manual approvals for

large projects, plan for multiple teams, branches, and Regions.

Amazon Web Services ï Practicing CI/CD on AWS

Page 15

Starting with a Minimum Viable Pipeline for Continuous Integration

Your organizationôs journey toward continuous delivery begins with a minimum

viable pipeline (MVP). As discussed in Continuous Delivery Maturity , teams can

start with a very simple process, such as implementing a pipeline that performs

a code style check or a single unit test without deployment.

A key component is a continuous delivery orchestration tool. To help you build

this pipeline, Amazon developed AWS CodeStar.

Figure 8: AWS CodeStar Setup Page

AWS CodeStar uses AWS CodePipeline, AWS CodeBuild, AWS CodeCommit,

and AWS CodeDeploy with an integrated setup process, tools, templates, and

dashboard. AWS CodeStar provides everything you need to quickly develop,

build, and deploy application s on AWS. This allows you to start releasing code

faster. Customers who are already familiar with the AWS Management Console

and seek a higher level of control can manually configure their developer tools

of choice and can provision individual AWS s ervices as needed.

https://aws.amazon.com/codestar

Amazon Web Services ï Practicing CI/CD on AWS

Page 16

Figure 9: AWS CodeStar Dashboard

AWS CodePipeline is a CI/CD service that can be used through AWS CodeStar

or through the AWS Management Console for fast and reliable application and

infrastructure updates. AWS CodePipeline builds, tests, and deploys your code

every time there is a code change, based on the release process models you

define. This enables you to rapidly and reliably deliver features and updates.

You can easily build out an end-to-end solution by using our pre-built plugins

for popular third -party services like GitHub or by integrating your own custom

plugins into any stage of your release process. With AWS CodePipeline, you only

pay for what you use. There are no upfront fees or long-term commitments.

The steps of AWS CodeStar and AWS CodePipeline map directly to the source,

build, staging, and production CI/CD stages. While continuous delivery is

desirable, you could start out with a simple two -step pipeline that checks the

source repository and performs a build action :

Amazon Web Services ï Practicing CI/CD on AWS

Page 17

Figure 10: AWS CodePipeline ðsource and build stages

For AWS CodePipeline, the source stage can accept inputs from GitHub, AWS

CodeCommit, and Amazon Simple Storage Service (S3). Automating the build

process is a critical first step for implementing continuous delivery and moving

toward continuous deployment. Eliminating human in volvement in producing

build artifacts removes the burden from your team, minimizes errors

introduced by manual packaging, and allows you to start packaging consumable

artifacts more often.

AWS CodePipeline works seamlessly with AWS CodeBuild, a fully managed

build service, so you can easily set up a build step within your pipeline that

packages your code and runs unit tests. With AWS CodeBuild, you donôt need to

provision, manage, or scale your own build servers. AWS CodeBuild scales

continuously and processes multiple builds concurrently so your builds are not

left waiting in a queue. AWS CodePipeline also integrates with build servers

such as Jenkins, Solano CI, and TeamCity.

For example, in the build stage below, three actions (unit testing, code style

checks, and code metrics collection) run in parallel. Using AWS CodeBuild,

these steps can be added as new projects without any further effort in building

or installing build servers to handle the load.

Amazon Web Services ï Practicing CI/CD on AWS

Page 18

Figure 11: AWS CodePipeline ð build func tionality

Amazon Web Services ï Practicing CI/CD on AWS

Page 19

The source and build stages shown in Figure 10, along with supporting

processes and automation, support your teamôs transition toward a Continuous

Integration. At this level of maturity, developers need to regularly pay attention

to build and test results. They need to grow and maintain a healthy unit test

base as well. This, in turn, will bolster the entire teamôs confidence in the CI/CD

pipeline and further its adoption.

Continuous Delivery Pipeline

After the continuous integration pipeline has been

implemented and supporting processes have been

established, your teams can start transitioning toward the

continuous delivery pipeline . This transition requires

teams to automate both building and deploying

applications.

A Continuous Delivery pipeline is characterized by the

presence of Staging and Production steps, where the

Production step is performed after a manual approval.

In the same manner as the Continuous Integration

pipeline was built , your teams can gradually start

building a Continuous Delivery pipeline by writing their

deployment scripts.

Depending on the needs of an application, some of the

deployment steps can be abstracted by existing AWS

services. For example, AWS CodePipeline directly

integrates with AWS CodeDeploy, a service that

automates code deployments to Amazon EC2 instances

and instances running on-premises, AWS OpsWorks, a

configuration management service that helps you operate

applications using Chef, and to AWS Elastic Beanstalk, a

service for deploying and scaling web applications and

services.

AWS has detailed documentation on how to implement

and integrate AWS CodeDeploy with your infrastructure

and pipeline.13

http://docs.aws.amazon.com/codepipeline/latest/userguide/getting-started-w.html#getting-started-w-create-deployment

Amazon Web Services ï Practicing CI/CD on AWS

Page 20

After your team successfully automates the deployment of the application,

deployment stages can be expanded with various tests. For example:

Figure 1 2: AWS CodePipeline ðcode tests in deployment stages

You can add other out -of-the-box integrations with services like Ghost

Inspector, Runscope, Apica, and others.

Adding Lambda Actions

AWS CodeStar and AWS CodePipeline support integration with AWS Lambda .14

This integration enables implementing a broad set of tasks, such as creating

custom resources in your environment, integrating with third -party systems

(such as Slack), and performing checks on your newly deployed environment.

Lambda functions can be used in CI/CD pipelines to do the following tasks:

¶ Roll out changes to your environment by applying or updating an AWS

CloudFormation template.

¶ Create resources on demand in one stage of a pipeline using AWS

CloudFormation an d delete them in another stage.

¶ Deploy application versions with zero downtime in AWS Elastic

Beanstalk with a Lambda function that swaps CNAME values.

¶ Deploy to Amazon EC2 Container Service (ECS) Docker instances.

¶ Back up resources before building or deploying by creating an AMI

snapshot.

¶ Add integration with third -party products to your pipeline, such as

posting messages to an IRC client.

https://docs.aws.amazon.com/codepipeline/latest/userguide/how-to-lambda-integration.html

Amazon Web Services ï Practicing CI/CD on AWS

Page 21

Manual Approvals

Add an approval action to a stage in a pipeline at the point where you want the

pipeline execution to stop so that someone with the required AWS Identity and

Access Management (IAM) permissions can approve or reject the action.

If the action is approved, the pipeline execution resumes. If the action is

rejectedðor if no one approves or rejects the action within seven days of the

pipeline reaching the action and stoppingðthe result is the same as an action

failing, and the pipeline execution does not continue.

Figure 1 3: AWS CodeDeploy ðmanual approvals

Deploying Infrastructure Code Changes in a CI/CD Pipeline

AWS CodePipeline lets you select AWS CloudFormation as a deployment action

in any stage of your pipeline. You can then choose the specific action you would

like AWS CloudFormation to perform, such as creating or deleting stacks and

creating or executing change sets. A stack is an AWS CloudFormation concept

and represents a group of related AWS resources. While there are many ways of

provisioning Infrastructure as Code, AWS CloudFormation is a comprehensive

tool recommended by AWS as a scalable, complete solution that can describe

the most comprehensive set of AWS resources as code. We recommend using

AWS CloudFormation in a n AWS CodePipeline project to track infrastructure

changes and tests.15

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3952
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#d0e3929
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html

Amazon Web Services ï Practicing CI/CD on AWS

Page 22

CI/CD for Serverless Applications

You can also use AWS CodeStar, AWS CodePipeline, AWS CodeBuild, and AWS

CloudFormation to build CI/CD pipelines for serverless applications. These are

applications based on AWS Lambda, which are composed of Lambda functions

triggered by events. If you are a serverless application developer, you can use

the combination of AWS CodePipeline, AWS CodeBuild, and AWS

CloudFormation to automate the building, testing, and deployment of serverless

application s that are expressed in templates built with the AWS Serverless

Application Model. For more information, see t he AWS Lambda

documentation for Automating Deployment of Lambda -based Applications.16

Pipelines for Multiple Teams, Branches, and Regions

For a large project, itôs not uncommon for multiple project teams to work on

different components. If multiple teams use a single code repository, it can be

mapped so that each team has its own branch, plus there should be an

integration or release branch for the final merge of the project. If a service-

oriented or microservice architecture is used, each team could have its own code

repository.

In the first scenario, if a single pipeline is used itôs possible that one team could

affect the other teamsô progress by blocking the pipeline. We recommend that

you create specific pipelines for the team branches and another release pipeline

for the final product delivery.

Pipeline Integration with AWS CodeBuild

AWS CodeBuild is designed to enable your organization to build a highly

available build process with almost unlimited scale. AWS CodeBuild provides

quickstart environments for a number of popular languages plus the ability to

run any Docker container that you specify.

With the advantages of tight integration with AWS CodeCommit, AWS

CodePipeline, and AWS CodeDeploy, as well as Git and CodePipeline Lambda

actions, the CodeBuild tool is highly flexible.

Software can be built through the inclusion of a buildspec.yml file that identifies

each of the build steps, including pre - and post- build actions, or specified

actions through the CodeBuild tool.

http://docs.aws.amazon.com/lambda/latest/dg/automating-deployment.html

Amazon Web Services ï Practicing CI/CD on AWS

Page 23

You can view detailed history of each build using the CodeBuild dashboard.

Events are stored as Amazon CloudWatch Logs log files.

Figure 1 4: CloudWatch Logs log files in AWS CodeBuild

Pipeline Integration with Jenkins

You can use the Jenkins build tool to create delivery pipelines. These pipelines

use standard jobs that define steps for implementing continuous delivery

stages.17 However, this approach might not be optimal for larger projects

because the current state of the pipeline doesnôt persist between Jenkins

restarts, implementing manual approval is not straightforward, and tracking the

state of a complex pipeline can be complicated.

Instead, we recommend that you implement continuous delivery with Jenkins

by using the AWS Code Pipeline Plugin.18 The Pipeline plugin allows complex

workflows to be described using Groovy-like domain -specific language and can

https://wiki.jenkins-ci.org/display/JENKINS/AWS+CodePipeline+Plugin

Amazon Web Services ï Practicing CI/CD on AWS

Page 24

be used to orchestrate complex pipelines. The Pipeline pluginôs functionality can

be enhanced by the use of satellite plugins such as Pipeline Stage View Plugin,

which visualizes the current progress of stages defined in a pipeline, or Pipeline

Multibranch Plugin, which groups builds from different branches.

We recommend that you store your pipeline configuration in Jenkinsfile and

have it checked into a source code repository. This allows for tracking changes

to pipeline code and becomes even more important when working with the

Pipeline Multibranch Plugin. We also recommend that you divide your pipeline

into stages. This logically groups the pipeline steps and also enables the Pipeline

Stage View Plugin to visualize the current state of the pipeline.

Figure 15 shows a sample Jenkins pipeline, with four defined stages visualized

by the Pipeline Stage View Plugin.

Figure 1 5: Defined stages of Jenkins pipeline visualized by the

Pipeline Stage View Plugin

Deployment Methods
You can consider multiple deployment strategies and variations for rolling out

new versions of software in a Continuous Delivery process. This section

discusses the most common deployment methods: all at once (deploy in place),

rolling, immutable, and blue/green. We indicate which of these methods are

supported by AWS CodeDeploy and AWS Elastic Beanstalk.

The following table summarizes the characteristics of each deployment method.

