
Running Containerized
Microservices on AWS

November 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Componentization Via Services 2

Organized Around Business Capabilities 4

Products Not Projects 6

Smart Endpoints and Dumb Pipes 8

Decentralized Governance 9

Decentralized Data Management 11

Infrastructure Automation 13

Design for Failure 15

Evolutionary Design 18

Conclusion 21

Contributors 21

Abstract
This whitepaper is intended for architects and developers who want to run

containerized applications at scale in production on Amazon Web Services

(AWS). This document provides guidance for application lifecycle management,

security, and architectural software design patterns for container-based

applications on AWS.

We also discuss architectural best practices for adoption of containers on AWS,

and how traditional software design patterns evolve in the context of containers.

We leverage Martin Fowler’s principles of microservices and map them to the

twelve-factor app pattern and real-life considerations. After reading this paper,

you will have a starting point for building microservices using best practices and

software design patterns.

Amazon Web Services – Running Containerized Microservices on AWS

Page 1

Introduction
As modern, microservices-based applications gain popularity, containers are an

attractive building block for creating agile, scalable, and efficient microservices

architectures. Whether you are considering a legacy system or a greenfield

application for containers, there are well-known, proven software design

patterns that you can apply.

Microservices are an architectural and organizational approach to software

development in which software is composed of small, independent services that

communicate over well-defined APIs. These services are owned by small, self-

contained teams. Microservices architectures make applications easier to scale

and faster to develop. This enables innovation and accelerates time-to-market

for new features. Containers provide isolation and packaging for software.

Consider using containers to achieve more deployment velocity and resource

density.

As proposed by Martin Fowler,1 the characteristics of a microservices

architecture include the following:

• Componentization via services

• Organized around business capabilities

• Products not projects

• Smart endpoints and dumb pipes

• Decentralized governance

• Decentralized data management

• Infrastructure automation

• Design for failure

• Evolutionary design

These characteristics tell us how a microservices architecture is supposed to

behave. To help achieve these characteristics, many development teams have

adopted the twelve-factor app pattern methodology.2 The twelve factors are a

set of best practices for building modern applications that are optimized for

cloud computing. The twelve factors cover four key areas: deployment, scale,

portability, and architecture:

https://12factor.net/

Amazon Web Services – Running Containerized Microservices on AWS

Page 2

1. Codebase - One codebase tracked in revision control, many deploys

2. Dependencies - Explicitly declare and isolate dependencies

3. Config - Store configurations in the environment

4. Backing services - Treat backing services as attached resources

5. Build, release, run - Strictly separate build and run stages

6. Processes - Execute the app as one or more stateless processes

7. Port binding - Export services via port binding

8. Concurrency - Scale out via the process model

9. Disposability - Maximize robustness with fast startup and graceful

shutdown

10. Dev/prod parity - Keep development, staging, and production as similar

as possible

11. Logs - Treat logs as event streams

12. Admin processes - Run admin/management tasks as one-off processes

After reading this whitepaper, you will know how to map the microservices

design characteristics to twelve-factor app patterns, down to the design pattern

to be implemented.

Componentization Via Services
In a microservices architecture, software is composed of small independent

services that communicate over well-defined APIs. These small components are

divided so that each of them does one thing, and does it well, while cooperating

to deliver a full-featured application. An analogy can be drawn to the Walkman

portable audio cassette players that were popular in the 1980s: batteries bring

power, audio tapes are the medium, headphones deliver output, while the main

tape player takes input through key presses. Using them together plays music.

Similarly, microservices need to be decoupled, and each should focus on one

functionality. Additionally, a microservices architecture allows for replacement

or upgrade. Using the Walkman analogy, if the headphones are worn out, we

can replace them without replacing the tape player. If an order management

service in our store-keeping application is falling behind and performing too

slowly, we can swap it for a more performant, more streamlined component.

Amazon Web Services – Running Containerized Microservices on AWS

Page 3

Such a permutation would not affect or interrupt other microservices in the

system.

Through modularization, microservices offer developers the freedom to design

each feature as a black box. That is, microservices hide the details of their

complexity from other components. Any communication between services

happens by using well-defined APIs to prevent implicit and hidden

dependencies.

Decoupling increases agility by removing the need for one development team to

wait for another team to finish work that the first team depends on. When

containers are used, container images can be swapped for other container

images. These can be either different versions of the same image or different

images altogether—as long as the functionality and boundaries are conserved.

Containerization is an operating-system-level virtualization method for

deploying and running distributed applications without launching an entire

virtual machine (VM) for each application. Container images allow for

modularity in services. They are constructed by building functionality onto a

base image. Developers, operations teams, and IT leaders should agree on base

images that have the security and tooling profile that they want. These images

can then be shared throughout the organization as the initial building block.

Replacing or upgrading these base images is as simple as updating the FROM

field in a Dockerfile and rebuilding, usually through a Continuous

Integration/Continuous Delivery (CI/CD) pipeline.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in componentization:

• Dependencies (explicitly declare and isolate dependencies) –

Dependencies are self-contained within the container and not shared

with other services.

• Disposability (maximize robustness with fast startup and graceful

shutdown) – Disposability is leveraged and satisfied by containers that

are easily pulled from a repository and discarded when they stop

running.

Amazon Web Services – Running Containerized Microservices on AWS

Page 4

• Concurrency (scale out via the process model) – Concurrency consists

of tasks or pods (made of containers working together) that can be auto

scaled in a memory- and CPU-efficient manner.

As each business function is implemented as its own service, the number of

containerized services grows. Each service should have its own integration and

its own deployment pipeline. This increases agility. Since containerized services

are subject to frequent deployments, you need to introduce a coordination layer

that that tracks which containers are running on which hosts. Eventually, you

will want a system that provides the state of containers, the resources available

in a cluster, etc.

Container orchestration and scheduling systems allow you to define

applications, by assembling a set of containers that work together. You can

think of the definition as the blueprint for your applications. You can specify

various parameters, such as which containers to use and which repositories they

belong in, which ports should be opened on the container instance for the

application, and what data volumes should be mounted.

Container management systems allow you to run and maintain a specified

number of instances of a container set—containers that are instantiated

together and collaborate using links or volumes. (Amazon ECS refers to these as

Tasks, Kubernetes refers to them as Pods.) Schedulers maintain the desired

count of container sets for the service. Additionally, the service infrastructure

can be run behind a load balancer to distribute traffic across the container set

associated with the service.

Organized Around Business Capabilities
Defining exactly what constitutes a microservice is very important for

development teams to agree on. What are its boundaries? Is an application a

microservice? Is a shared library a microservice?

Before microservices, system architecture would be organized around

technological capabilities such as user interface, database, and server-side logic.

In a microservices-based approach, as a best practice, each development team

owns the lifecycle of its service all the way to the customer. For example, a

recommendations team might own development, deployment, production

support, and collection of customer feedback.

Amazon Web Services – Running Containerized Microservices on AWS

Page 5

In a microservices-driven organization, small teams act autonomously to build,

deploy, and manage code in production. This allows teams to work at their own

pace to deliver features. Responsibility and accountability foster a culture of

ownership, allowing teams to better align to the goals of their organization and

be more productive.

Microservices are as much an organizational attitude as a technological

approach. This principle is known as Conway’s Law:

"Organizations which design systems ... are constrained to produce

designs which are copies of the communication structures of these

organizations." — M. Conway3

When architecture and capabilities are organized around atomic business

functions, dependencies between components are loosely coupled. As long as

there is a communication contract between services and teams, each team can

run at its own speed. With this approach, the stack can be polyglot, meaning

that developers are free to use the programming languages that are optimal for

their component. For example, the user interface can be written in JavaScript or

HTML5, the backend in Java, and data processing can be done in Python.

This means that business functions can drive development decisions.

Organizing around capabilities means that each API team owns the function,

data, and performance completely.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in organizing around capabilities:

• Codebase (one codebase tracked in revision control, many deploys) –

Each microservice owns its own codebase in a separate repository and

throughout the lifecycle of the code change.

• Build, release, run (strictly separate build and run stages) – Each

microservice has its own deployment pipeline and deployment

frequency. This allows the development teams to run microservices at

varying speeds so they can be responsive to customer needs.

• Processes (execute the app as one or more stateless processes) – Each

microservice does one thing and does that one thing really well. The

https://en.wikipedia.org/wiki/Organizational_structure

Amazon Web Services – Running Containerized Microservices on AWS

Page 6

microservice is designed to solve the problem at hand in the best

possible manner.

• Admin processes (run admin/management tasks as one-off

processes) – Each microservice has its own administrative or

management tasks so that it functions as designed.

To achieve a microservices architecture that is organized around business

capabilities, use popular design patterns:

• Command – This pattern helps encapsulate a request as an object,

thereby letting you parameterize clients with different requests, queue or

log requests, and support undoable operations.

• Adapter – This pattern helps match the impedance of an old

component to a new system.

• Singleton –This pattern is for an application that needs one, and only

one, instance of an object.

• Chain of responsibility – This pattern helps avoid coupling the

sender of a request to its receiver by giving more than one object a

chance to handle the request.

• Composite – This pattern helps an application manipulate a

hierarchical collection of "primitive" and "composite" objects. A service

could be a composite of other smaller functions.

Products Not Projects
Companies that have mature applications with successful software adoption and

who want to maintain and expand their user base will likely be more successful

if they focus on the experience for their customers and end users.

To stay healthy, simplify operations, and increase efficiency, your engineering

organization should treat software components as products that can be

iteratively improved and that are constantly evolving. This is in contrast to the

strategy of treating software as a project, which is completed by a team of

engineers and then handed off to an operations team that is responsible for

running it. When software architecture is broken into small microservices, it

becomes possible for each microservice to be an individual product. For internal

microservices, the end user of the product is another team or service. For an

external microservice, the end user is the customer.

Amazon Web Services – Running Containerized Microservices on AWS

Page 7

The core benefit of treating software as a product is improved end-user

experience. When your organization treats its software as an always-improving

product rather than a one-off project, it will produce code that is better

architected for future work. Rather than taking shortcuts that will cause

problems in the future, engineers will plan software so that they can continue to

maintain it in the long run. Software planned in this way is easier to operate,

maintain, and extend. Your customers appreciate such dependable software

because they can trust it.

Additionally, when engineers are responsible for building, delivering, and

running software they gain more visibility into how their software is performing

in real-world scenarios, which accelerates the feedback loop. This makes it

easier to improve the software or fix issues.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in adopting a product mindset for delivering software:

• Build, release, run – Engineers adopt a “devops” culture that allows

them to optimize all three stages.

• Config – Engineers build better configuration management for software

due to their involvement with how that software is used by the customer.

• Dev/prod parity – Software treated as a product can be iteratively

developed in smaller pieces that take less time to complete and deploy

than long-running projects, which allows development and production

to be closer in parity.

Adopting a product mindset is driven by culture and process—two factors that

drive change. The goal of your organization’s engineering team should be to

break down any walls between the engineers who build the code and the

engineers who run the code in production. The following concepts are crucial:

• Automated provisioning – Operations should be automated rather

than manual. This increases velocity as well as integrates engineering

and operations.

• Self-service – Engineers should be able to configure and provision

their own dependencies. This is enabled by containerized environments

that allow engineers to build their own container that has anything they

require.

Amazon Web Services – Running Containerized Microservices on AWS

Page 8

• Continuous Integration – Engineers should check in code frequently

so that incremental improvements are available for review and testing as

quickly as possible.

• Continuous Build and Delivery – The process of building code

that’s been checked in and delivering it to production should be

automated so that engineers can release code without manual

intervention.

Containerized microservices help engineering organizations implement these

best practice patterns by creating a standardized format for software delivery

that allows automation to be built easily and used across a variety of different

environments, including local, quality assurance, and production.

Smart Endpoints and Dumb Pipes
As your engineering organization transitions from building monolithic

architectures to building microservices architectures, it will need to understand

how to enable communications between microservices. In a monolith, the

various components are all in the same process. In a microservices

environment, components are separated by hard boundaries. At scale, a

microservices environment will often have the various components distributed

across a cluster of servers so that they are not even necessarily collocated on the

same server.

This means there are two primary forms of communication between services:

• Request/Response – One service explicitly invokes another service by

making a request to either store data in it or retrieve data from it. For

example, when a new user creates an account, the user service makes a

request to the billing service to pass off the billing address from the

user’s profile so that that billing service can store it.

• Publish/Subscribe – Event-based architecture where one service

implicitly invokes another service that was watching for an event. For

example, when a new user creates an account, the user service publishes

this new user signup event and the email service that was watching for it

is triggered to email the user asking them to verify their email.

One architectural pitfall that generally leads to issues later on is attempting to

solve communication requirements by building your own complex enterprise

Amazon Web Services – Running Containerized Microservices on AWS

Page 9

service bus for routing messages between microservices. It is much better to use

a message broker such as Kafka, or Amazon Simple Notification Service

(Amazon SNS) and Amazon Simple Queue Service (Amazon SQS).

Microservices architectures favor these tools because they enable a

decentralized approach in which the endpoints that produce and consume

messages are smart, but the pipe between the endpoints is dumb. In other

words, concentrate the logic in the containers and refrain from leveraging (and

coupling to) sophisticated buses and messaging services.

The core benefit of building smart endpoints and dumb pipes is the ability to

decentralize the architecture, particularly when it comes to how endpoints are

maintained, updated, and extended. One goal of microservices is to enable

parallel work on different edges of the architecture that will not conflict with

each other. Building dumb pipes enables each microservice to encapsulate its

own logic for formatting its outgoing responses or supplementing its incoming

requests.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in building smart endpoints and dumb pipes:

• Port Binding – Services bind to a port to watch for incoming requests

and send requests to the port of another service. The pipe in between is

just a dumb network protocol such as HTTP.

• Backing services – Dumb pipes allow a background microservice to

be attached to another microservice in the same way that you attach a

database.

• Concurrency – A properly designed communication pipeline between

microservices allows multiple microservices to work concurrently. For

example, several observer microservices may respond and begin work in

parallel in response to a single event produced by another microservice.

Decentralized Governance
As your organization grows and establishes more code-driven business

processes, one challenge it could face is the necessity to scale the engineering

team and enable it to work efficiently in parallel on a large and diverse

codebase. Additionally, your engineering organization will want to solve

problems using the best available tools.

Amazon Web Services – Running Containerized Microservices on AWS

Page 10

Decentralized governance is an approach that works well alongside

microservices to enable engineering organizations to tackle this challenge.

Traffic lights are a great example of decentralized governance. City traffic lights

may be timed individually or in small groups, or they may react to sensors in the

pavement. However, for the city as a whole, there is no need for a “master”

traffic control center in order to keep cars moving. Separately implemented

local optimizations work together to provide a city-wide solution. Decentralized

governance helps remove potential bottlenecks that would prevent engineers

from being able to develop the best code to solve business problems.

When a team kicks off its first greenfield project it is generally just a small team

of a few people working together on a common codebase. After the greenfield

project has been completed, the business will quickly discover opportunities to

expand on their first version. Customer feedback generates ideas for new

features to add and ways to expand the functionality of existing features. During

this phase, engineers will start growing the codebase and your organization will

start dividing the engineering organization into service-focused teams.

Decentralized governance means that each team can use its expertise to choose

the best tools to solve their specific problem. Forcing all teams to use the same

database, or the same runtime language, isn’t reasonable because the problems

they’re solving aren’t uniform. However, decentralized governance is not

without boundaries. It is helpful to use standards throughout the organization,

such as a standard build and code review process because this helps each team

continue to function together.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in enabling decentralized governance:

• Dependencies – Decentralized governance allows teams to choose

their own dependencies, so dependency isolation is critical to make this

work properly.

• Build, release, run – Decentralized governance should allow teams

with different build processes to use their own toolchains, yet should

allow releasing and running the code to be seamless, even with differing

underlying build tools.

• Backing services – If each consumed resource is treated as if it was a

third-party service, then decentralized governance allows the

Amazon Web Services – Running Containerized Microservices on AWS

Page 11

microservice resources to be refactored or developed in different ways,

as long as they obey an external contract for communication with other

services.

Centralized governance was favored in the past because it was hard to efficiently

deploy a polyglot application. Polyglot applications need different build

mechanisms for each language and an underlying infrastructure that can run

multiple languages and frameworks. Polyglot architectures had varying

dependencies, which could sometimes have conflicts.

Containers solve these problems by allowing the deliverable for each individual

team to be a common format: a Docker image that contains their component.

The contents of the container can be any type of runtime written in any

language. However, the build process will be uniform because all containers are

built using the common Dockerfile format. In addition, all containers can be

deployed the same way and launched on any instance since they carry their own

runtime and dependencies with them.

An engineering organization that chooses to employ decentralized governance

and to use containers to ship and deploy this polyglot architecture will see that

their engineering team is able to build performant code and iterate more

quickly.

Decentralized Data Management
Monolithic architectures often use a shared database, which can be a single data

store for the whole application or many applications. This leads to complexities

in changing schemas, upgrades, downtime, and dealing with backward

compatibility risks. A service-based approach mandates that each service get its

own data storage and doesn’t share that data directly with anybody else.

All data-bound communication should be enabled via services that encompass

the data. As a result, each service team chooses the most optimal data store type

and schema for their application. The choice of the database type is the

responsibility of the service teams. It is an example of decentralized decision-

making with no central group enforcing standards apart from minimal guidance

on connectivity. AWS offers many fully managed storage services, such as object

store, key-value store, file store, block store, or traditional database. You have

many options, including Amazon Simple Storage Service (Amazon S3), Amazon

Amazon Web Services – Running Containerized Microservices on AWS

Page 12

DynamoDB, Amazon Relational Database Service (Amazon RDS), and Amazon

Elastic Block Store (Amazon EBS).

Decentralized data management enhances application design by allowing the

best data store for the job to be used. This also removes the arduous task of a

shared database upgrade, which could be weekends-worth of downtime and

work, if all goes well. Since each service team owns its own data, its decision

making becomes more independent. The teams can be self-composed and

follow their own development paradigm.

A secondary benefit of decentralized data management is the disposability and

fault tolerance of the stack. If a particular data store is unavailable, the complete

application stack does not become unresponsive. Instead, the application goes

into a degraded state, losing some capabilities while still servicing requests. This

enables the application to be fault tolerant by design.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in organizing around capabilities:

• Disposability (maximize robustness with fast startup and graceful

shutdown) – The services should be robust and not dependent on

externalities. This principle further allows for the services to run in a

limited capacity if one or more components fail.

• Backing services (treat backing services as attached resources) – A

backing service is any service that the app consumes over the network

such as data stores, messaging systems, etc. Typically, backing services

are managed by operations. The app should make no distinction

between a local and an external service.

• Admin processes (run admin/management tasks as one-off

processes) – The processes required to do the app’s regular business, for

example, running database migrations. Admin processes should be run

in a similar manner, irrespective of environments.

To achieve a microservices architecture with decoupled data management,

popular design patterns can be used:

• Controller – Helps direct the request to the appropriate data store

using the appropriate mechanism.

Amazon Web Services – Running Containerized Microservices on AWS

Page 13

• Proxy – Helps provide a surrogate or placeholder for another object to

control access to it.

• Visitor – Helps represent an operation to be performed on the

elements of an object structure.

• Interpreter – Helps map a service to data store semantics.

• Observer – Helps define a one-to-many dependency between objects

so that when one object changes state, all of its dependents are notified

and updated automatically.

• Decorator – Helps attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative to sub-classing for

extending functionality.

• Memento – Helps capture and externalize an object's internal state so

that the object can be returned to this state later.

Infrastructure Automation
Contemporary architectures, whether monolithic or based on microservices,

greatly benefit from infrastructure-level automation. With the introduction of

virtual machines, IT teams were able to easily replicate environments and create

templates of operating system states that they wanted. The host operating

system became immutable and disposable. With cloud technology, the idea

bloomed and scale was added to the mix. There is no need to predict the future

when you can simply provision on demand for what you need and pay for what

you use. If an environment isn’t needed anymore, you can shut down the

resources.

One useful mental image for infrastructure-as-code is to picture an architect’s

drawing come to life. Just as a blueprint with walls, windows, and doors can be

transformed into an actual building, so load balancers, databases, or network

equipment can be written in source code and then instantiated.

Microservices not only need disposable infrastructure-as-code, they also need to

be built, tested, and deployed automatically. Continuous integration and

continuous delivery are important for monoliths, but they are indispensable for

microservices. Each service needs its own pipeline, one that can accommodate

the various and diverse technology choices made by the team.

Amazon Web Services – Running Containerized Microservices on AWS

Page 14

An automated infrastructure provides repeatability for quickly setting up

environments. These environments can each be dedicated to a single purpose:

development, integration, user acceptance testing (UAT) or performance

testing, and production. Infrastructure that is described as code and then

instantiated can easily be rolled back. This drastically reduces the risk of change

and, in turn, promotes innovation and experiments.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in evolutionary design:

• Codebase (one codebase tracked in revision control, many deploys) –

Because the infrastructure can be described as code, treat all code

similarly and keep it in the service repository.

• Config (store configurations in the environment) – The environment

should hold and share its own specificities.

• Build, release, run (strictly separate build and run stages) – One

environment for each purpose.

• Disposability (maximize robustness with fast startup and graceful

shutdown) – This factor transcends the process layer and bleeds into

such downstream layers as containers, virtual machines, and virtual

private cloud.

• Dev/prod parity – Keep development, staging, and production as

similar as possible.

Successful applications use some form of infrastructure-as-code. Resources

such as databases, container clusters, and load balancers can be instantiated

from description.

To wrap the application with a CI/CD pipeline, you should choose a code

repository, an integration pipeline, an artifact-building solution, and a

mechanism for deploying these artifacts. A microservice should do one thing

and do it well. This implies that when you build a full application, there will

potentially be a large number of services. Each of these need their own

integration and deployment pipeline. Keeping infrastructure automation in

mind, architects who face this challenge of proliferating services will be able to

find common solutions and replicate pipelines that have made a particular

service successful.

Amazon Web Services – Running Containerized Microservices on AWS

Page 15

Ultimately, the goal is to allow developers to push code updates and have the

updated application sent to multiple environments in minutes. There are many

ways to successfully deploy in phases, including the blue/green and canary

methods. With the blue/green deployment, two environments live side by side,

with one of them running a newer version of the application. Traffic is sent to

the older version until a switch happens that routes all traffic to the new

environment. You can see an example of this happening in this reference

architecture:4

Figure 1: Blue/green deployment

In this case, we use a switch of target groups behind a load balancer in order to

redirect traffic from the old to the new resources. Another way to achieve this is

to use services fronted by two load balancers and operate the switch at the DNS

level.

Design for Failure

“Everything fails all the time.” – Werner Vogels

This adage is not any less true in the container world than it is for the cloud.

Achieving high availability is a top priority for workloads, but remains an

arduous undertaking for development teams. Modern applications running in

containers should not be tasked with managing the underlying layers, from

physical infrastructure like electricity sources or environmental controls all the

https://github.com/awslabs/ecs-blue-green-deployment
https://github.com/awslabs/ecs-blue-green-deployment

Amazon Web Services – Running Containerized Microservices on AWS

Page 16

way to the stability of the underlying operating system. If a set of containers

fails while tasked with delivering a service, these containers should be re-

instantiated automatically and with no delay. Similarly, as microservices

interact with each other over the network more than they do locally and

synchronously, connections need to be monitored and managed. Latency and

timeouts should be assumed and gracefully handled. More generally,

microservices need to apply the same error retries and exponential backoff as

advised with applications running in a networked environment.5

Designing for failure also means testing the design and watching services cope

with deteriorating conditions. Not all technology departments need to apply this

principle to the extent that Netflix does,6, 7 but we encourage you to test these

mechanisms often.

Designing for failure yields a self-healing infrastructure that acts with the

maturity that is expected of recent workloads. Preventing emergency calls

guarantees a base level of satisfaction for the service-owning team. This also

removes a level of stress that can otherwise grow into accelerated attrition.

Designing for failure will deliver greater uptime for your products. It can shield

a company from outages that could erode customer trust.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in designing for failure:

• Disposability (maximize robustness with fast startup and graceful

shutdown) – Produce lean container images and strive for processes that

can start and stop in a matter of seconds.

• Logs (treat logs as event streams) – If part of a system fails,

troubleshooting is necessary. Ensure that material for forensics exists.

• Dev/prod parity – Keep development, staging, and production as

similar as possible.

We recommend that container hosts be part of a self-healing group. Ideally,

container management systems are aware of different data centers and the

microservices that span across them, mitigating possible events at the physical

level.

Amazon Web Services – Running Containerized Microservices on AWS

Page 17

Containers offer an abstraction from operating system management. You can

treat container instances as immutable servers. Containers will behave

identically on a developer’s laptop or on a fleet of virtual machines in the cloud.

One very useful container pattern for hardening an application’s resiliency is the

circuit breaker. In this approach, an application container is proxied by a

container in charge of monitoring connection attempts from the application

container. If connections are successful, the circuit breaker container remains in

closed status, letting communication happen. When connections start failing,

the circuit breaker logic triggers. If a pre-defined threshold for failure/success

ratio is breached, the container enters an open status that prevents more

connections. This mechanism offers a predictable and clean breaking point, a

departure from partially failing situations that can render recovery difficult. The

application container can move on and switch to a backup service or enter a

degraded state.

Modern container management services allow developers to retrieve near real-

time, event-driven updates on the state of containers. Docker supports multiple

logging drivers (list as of Docker v17.06): 8

Driver Description

none No logs will be available for the container and Docker logs will not return any

output.

json-file The logs are formatted as JSON. The default logging driver for Docker.

syslog Writes logging messages to the syslog facility. The syslog daemon must be

running on the host machine.

journald Writes log messages to journald. The journald daemon must be running on the

host machine.

gelf Writes log messages to a Graylog Extended Log Format (GELF) endpoint such as

Graylog or Logstash.

fluentd Writes log messages to fluentd (forward input). The fluentd daemon must be

running on the host machine.

awslogs Writes log messages to Amazon CloudWatch Logs.

splunk Writes log messages to splunk using the HTTP Event Collector.

etwlogs Writes log messages as Event Tracing for Windows (ETW) events. Only available

on Windows platforms.

gcplogs Writes log messages to Google Cloud Platform (GCP) Logging.

Amazon Web Services – Running Containerized Microservices on AWS

Page 18

Sending these logs to the appropriate destination becomes as easy as specifying

it in a key/value manner. You can then define appropriate metrics and alarms in

your monitoring solution. Another way to collect telemetry and troubleshooting

material from containers is to link a logging container to the application

container in a pattern generically referred to as sidecar. More specifically, in the

case of a container working to standardize and normalize the output, the pattern

is known as an adapter.

Containers can also be leveraged to ensure that various environments are as

similar as possible. Infrastructure-as-code can be used to turn infrastructure

into templates and easily replicate one footprint.

Evolutionary Design
In modern systems architecture design, you need to assume that you don’t have

all the requirements up-front. As a result, having a detailed design phase at the

beginning of a project becomes impractical. The services have to evolve through

various iterations of the software. As services are consumed there are learnings

from real-world usage that help evolve their functionality.

An example of this could be a silent, in-place software update on a device. While

the feature is rolled out, an alpha/beta testing strategy can be used to

understand the behavior in real-time. The feature can be then rolled out more

broadly or rolled back and worked on using the feedback gained.

Using deployment techniques such as a canary release,9 a new feature can be

tested in an accelerated fashion against its target audience. This provides early

feedback to the development team.

As a result of the evolutionary design principle, a service team can build the

minimum viable set of features needed to stand up the stack and roll it out to

users. The development team doesn’t need to cover edge cases to roll out

features. Instead, the team can focus on the needed pieces and evolve the design

as customer feedback comes in. At a later stage, the team can decide to refactor

after they feel confident that they have enough feedback.

Here are the key factors from the twelve-factor app pattern methodology that

play a role in infrastructure automation:

Amazon Web Services – Running Containerized Microservices on AWS

Page 19

• Codebase (one codebase tracked in revision control, many deploys) –

Helps evolve features faster since new feedback can be quickly

incorporated.

• Dependencies (explicitly declare and isolate dependencies) – Enables

quick iterations of the design since features are tightly coupled with

externalities.

• Configuration (store configurations in the environment) – Everything

that is likely to vary between deploys (staging, production, developer

environments, etc.). Config varies substantially across deploys, code

does not. With configurations stored outside code, the design can evolve

irrespective of the environment.

• Build, release, run (strictly separate build and run stages) – Help roll

out new features using various deployment techniques. Each release has

a specific ID and can be used to gain design efficiency and user feedback.

The following software design patterns can be used to achieve an evolutionary

design:

• Sidecar extends and enhances the main service.

• Ambassador creates helper services that send network requests on

behalf of a consumer service or application.

• Chain provides a defined order of starting and stopping containers.

• Proxy provides a surrogate or placeholder for another object to control

access to it.

• Strategy defines a family of algorithms, encapsulates each one, and

makes them interchangeable. Strategy lets the algorithm vary

independently from the clients that use it.

• Iterator provides a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

Containers provide additional tools to evolve design at a faster rate with image

layers.

As the design evolves, each image layer can be added, keeping the integrity of

the layers unaffected. Using Docker, an image layer is a change to an image, or

an intermediate image. Every command (FROM, RUN, COPY, etc.) in the

https://12factor.net/codebase

Amazon Web Services – Running Containerized Microservices on AWS

Page 20

Dockerfile causes the previous image to change, thus creating a new layer.

Docker will build only the layer that was changed and the ones after that. This is

called layer caching. Using layer caching deployment times can be reduced.

Deployment strategies such as a Canary release provide added agility to evolve

design based on user feedback. Canary release is a technique that’s used to

reduce the risk inherent in a new software version release. In a canary release,

the new software is slowly rolled out to a small subset of users before it’s rolled

out to the entire infrastructure and made available to everybody. In the diagram

that follows, a canary release can easily be implemented with containers using

AWS primitives. As a container announces its health via a health check API, the

canary directs more traffic to it. The state of the canary and the execution is

maintained -using Amazon DynamoDB, Amazon Route 53, Amazon

CloudWatch, Amazon Elastic Container Service (Amazon ECS), and AWS Step

Functions.

Figure 2: Canary deployment with containers

Finally, usage monitoring mechanisms ensure that development teams can

evolve the design as the usage patterns change with variables.

Amazon Web Services – Running Containerized Microservices on AWS

Page 21

Conclusion
Microservices can be designed using the twelve-factor app pattern methodology

and software design patterns enable you to achieve this easily. These software

design patterns are well known. If applied in the right context, they can enable

the design benefits of microservices. AWS provides a wide range of primitives

that can be used to enable containerized microservices.

Contributors
The following individuals contributed to this document:

• Asif Khan, Technical Business Development Manager, Amazon Web

Services

• Pierre Steckmeyer, Solutions Architect, Amazon Web Service

• Nathan Peck, Developer Advocate, Amazon Web Services

Notes
1 https://martinfowler.com/articles/microservices.html

2 https://12factor.net/

3 https://en.wikipedia.org/wiki/Conway's_law

4 https://github.com/awslabs/ecs-blue-green-deployment

5 https://docs.aws.amazon.com/general/latest/gr/api-retries.html

6 https://github.com/netflix/chaosmonkey

7 https://github.com/Netflix/SimianArmy

8 https://docs.docker.com/engine/admin/logging/overview/

9 Canary deployment is a technique to reduce the risk of introducing a new

software version in production by slowly rolling out the change to a small

subset of users before rolling it out to the entire infrastructure and making it

available to everybody. See

https://martinfowler.com/bliki/CanaryRelease.html

https://martinfowler.com/articles/microservices.html
https://12factor.net/
https://en.wikipedia.org/wiki/Conway's_law
https://github.com/awslabs/ecs-blue-green-deployment
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://github.com/netflix/chaosmonkey
https://github.com/Netflix/SimianArmy
https://docs.docker.com/engine/admin/logging/overview/
https://martinfowler.com/bliki/CanaryRelease.html

	Abstract
	Introduction
	Componentization Via Services
	Organized Around Business Capabilities
	Products Not Projects
	Smart Endpoints and Dumb Pipes
	Decentralized Governance
	Decentralized Data Management
	Infrastructure Automation
	Design for Failure
	Evolutionary Design
	Conclusion
	Contributors

