

Migrating to Apache HBase
on Amazon S3 on Amazon

EMR
Guidelines and Best Practices

October 2018

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Introduction to Apache HBase 1

Introduction to Amazon EMR 2

Introduction to Amazon S3 3

Introduction to EMRFS 3

Running Apache HBase directly on Amazon S3 with Amazon EMR 3

Use cases for Apache HBase on Amazon S3 5

Planning the Migration to Apache HBase on Amazon S3 6

Preparation task 7

Selecting a Monitoring Strategy 7

Planning for Security on Amazon EMR and Amazon S3 9

Encryption 9

Authentication and Authorization 10

Network 12

Minimal AWS IAM Policy 13

Custom AMIs and Applying Security Controls to Harden your AMI 13

Auditing 14

Identifying Apache HBase and EMRFS Tuning Options 16

Apache HBase on Amazon S3 configuration properties 16

EMRFS Configuration Properties 36

Testing Apache HBase and EMRFS Configuration Values 40

Options to approach performance testing 40

Preparing the Test Environment 42

Preparing your AWS account for performance testing 42

Preparing Amazon S3 for your HBase workload 43

Amazon EMR Cluster Setup 44

Troubleshooting 48

Migrating and Restoring Apache HBase Tables on
Apache HBase on Amazon S3 48

Data Migration 48

Data Restore 50

Deploying into Production 51

Preparing Amazon S3 for Production load 52

Preparing the Production environment 52

Managing the Production Environment 52

Operationalization tasks 52

Conclusion 56

Contributors 56

Further Reading 56

Document Revisions 57

Appendix A: Command Reference 58

Restart HBase 58

EMRFS TTL sub-commands 58

Appendix B: AWS IAM Policy Reference 60

Minimal EMR Service Role Policy 60

Minimal Amazon EMR Role for Amazon EC2 (Instance Profile) Policy 63

Minimal Role Policy for User Launching Amazon EMR Clusters 65

Appendix C: Transparent Encryption Reference 68

Abstract
This whitepaper provides an overview of Apache HBase on Amazon S3 and
guides data engineers and software developers in the migration of an on-
premises or HDFS backed Apache HBase cluster to Apache HBase on Amazon
S3. The whitepaper offers a migration plan that includes detailed steps for each
stage of the migration, including data migration, performance tuning, and
operational guidance.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 1

Introduction
In 2006, Amazon Web Services (AWS) began offering IT infrastructure services
to businesses in the form of web services—now commonly known as cloud
computing. One of the key benefits of cloud computing is the opportunity to
replace up-front capital infrastructure expenses with low variable costs that
scale with your business. With the cloud, businesses no longer need to plan for
and procure servers and other IT infrastructure weeks or months in advance.
Instead, they can instantly spin up hundreds or thousands of servers in minutes
and deliver results faster. Today, AWS provides a highly reliable, scalable, low-
cost infrastructure platform in the cloud that powers hundreds of thousands of
businesses in 190 countries around the world.

Many businesses have been taking advantage of the unique properties of the
cloud by migrating their existing Apache Hadoop workloads, including Apache
HBase, to Amazon EMR and Amazon Simple Storage Service (Amazon S3). The
ability to separate your durable storage layer from your compute layer, have
flexible and scalable compute, and the ease of integration with other AWS
services provide immense benefits and opens up many opportunities to re-
imagine your data architectures.

Introduction to Apache HBase
Apache HBase is a massively scalable, distributed big data store in the Apache
Hadoop ecosystem. It is an open-source, non-relational, versioned database that
runs on top of the Apache Hadoop Distributed Filesystem (HDFS). It is built for
random, strictly consistent, real time access for tables with billions of rows and
millions of columns. It has tight integration with Apache Hadoop, Apache Hive,
Apache Phoenix, and Apache Pig, so you can easily combine massively parallel
analytics with fast data access through a variety of interfaces. The Apache
HBase data model, throughput, and fault tolerance are a good match for
workloads in ad tech, web analytics, financial services, applications using time-
series data, and many more.

Here are some of the features and benefits when you run Apache HBase:

• Strongly consistent reads and writes – when a writer returns, all of the
readers will see the same value.

https://aws.amazon.com/elasticmapreduce/details/hbase/
https://aws.amazon.com/elasticmapreduce/details/hadoop/
https://hive.apache.org/
https://phoenix.apache.org/
https://pig.apache.org/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 2

• Scalability – individual Apache HBase tables comprise billions of rows
and millions of columns. Apache HBase stores data in a sparse form to
conserve space. You can use column families and column prefixes to
organize your schemas and to indicate to Apache HBase that the
members of the family have a similar access pattern. You can also use
timestamps and versioning to retain old versions of cells.

• Graphs and timeseries – you can use Apache HBase as the foundation for
a more specialized data store. For example, you can use Titan for graph
databases and OpenTSDB for time series.

• Coprocessors – you can write custom business logic (similar to a trigger
or a stored procedure) that runs within Apache HBase and participates in
query and update processing (refer to Apache HBase Coprocessors to
learn more).

• OLTP and analytic workloads - you can run massively parallel analytic
workloads on data stored in Apache HBase tables by using tools such as
Apache Hive and Apache Phoenix. Apache Phoenix provides ACID
transaction capabilities via standard SQL and JDBC APIs. For details on
how to use Apache Hive with Apache HBase refer to Combine NoSQL
and Massively Parallel Analytics Using Apache HBase and Apache Hive
on Amazon EMR.

You also get easy provisioning and scaling, access to a pre-configured
installation of HDFS, and automatic node replacement for increased durability.

Introduction to Amazon EMR
Amazon EMR provides a managed Apache Hadoop framework that makes it
easy, fast, and cost-effective to process vast amounts of data across dynamically
scalable Amazon Elastic Compute Cloud (Amazon EC2) instances. You can also
run other popular distributed engines, such as Apache Spark, Apache Hive,
Apache HBase, Presto, and Apache Flink in Amazon EMR, and interact with
data in other AWS data stores, such as Amazon S3 and Amazon DynamoDB.
Amazon EMR securely and reliably handles a broad set of big data use cases,
including log analysis, web indexing, data transformations (ETL), streaming,
machine learning, financial analysis, scientific simulation, and bioinformatics.
For an overview of Amazon EMR, refer to Overview of Amazon EMR
Architecture and Overview of Amazon EMR.

http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/0.94/book/versions.html
http://thinkaurelius.github.io/titan/
http://opentsdb.net/
http://hbase.apache.org/book.html#cp
https://phoenix.apache.org/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/elasticmapreduce/details/hadoop
https://aws.amazon.com/elasticmapreduce/details/spark
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-arch.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-arch.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 3

Introduction to Amazon S3
Amazon Simple Storage Service (Amazon S3) is a durable, highly available, and
infinitely scalable object storage with a simple web service interface to store and
retrieve any amount of data from anywhere on the web.

With regard to Apache HBase and Apache Hadoop, storing data on Amazon S3
gives you more flexibility to run and shut down Apache Hadoop clusters when
you need to. Amazon S3 is commonly used as a durable store for HDFS
workloads. Due to the durability and performance scalability of Amazon S3,
Apache Hadoop workloads that store data on Amazon S3 no longer require the
3x replication as when the data is stored on HDFS. Moreover, you can resize
and shut down Amazon EMR clusters with no data loss or point multiple
Amazon EMR clusters at the same data in Amazon S3.

Introduction to EMRFS
The Amazon EMR platform consists of several layers, each with specific
functionality and capabilities. At the storage layer, in addition to HDFS and the
local file system, Amazon EMR offers the Amazon EMR File System (EMRFS),
an implementation of HDFS that all Amazon EMR clusters use for reading and
writing files to Amazon S3.

EMRFS features include data encryption, data authorization and consistent
view. Data encryption allows EMRFS to encrypt the objects it writes to Amazon
S3 and to decrypt them during reads. Data authorization allows EMRFS to use
different AWS Identify and Access Management (IAM) roles for EMRFS
requests to Amazon S3 based on cluster users, groups, or the location of EMRFS
data in Amazon S3. Consistent view allows Amazon EMR clusters to check for
list and read-after-write consistency for Amazon S3 objects written by or synced
with EMRFS. For more information, refer to Using EMR File System (EMRFS).

Running Apache HBase directly on Amazon S3 with
Amazon EMR
When you run Apache HBase on Amazon EMR version 5.2.0 or later, you can
enable HBase on Amazon S3. By using Amazon S3 as a data store for Apache
HBase, you can separate your cluster’s storage and compute nodes. This enables
you to save costs by sizing your cluster for your compute requirements instead

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 4

of paying to store your entire dataset with 3x replication in the on-cluster
HDFS.

Many customers have taken advantage of the numerous benefits of running
Apache HBase on Amazon S3 for data storage, including lower costs, data
durability, and easier scalability. Customers such as Financial Industry
Regulatory Agency (FINRA) have lowered their costs by 60% by moving to an
HBase on Amazon S3 architecture in addition to the numerous operational
benefits that come with decoupling storage from compute and using Amazon S3
as the storage layer.

Figure 1: HBase on S3 Architecture

An Apache HBase on Amazon S3 allows you to launch a cluster and immediately
start querying against data within Amazon S3. You don’t have to configure
replication between HBase on HDFS clusters or go through a lengthy snapshot
restore process to migrate the data off your HBase on HDFS cluster to another
HBase on HDFS cluster. Amazon EMR configures Apache HBase on Amazon S3
to cache data in-memory and on-disk in your cluster, delivering fast
performance from active compute nodes. You can quickly and easily scale out or
scale in compute nodes without impacting your underlying storage, or you can
terminate your cluster to save costs and quickly restore it without having to
recover using snapshots or other methods.

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-hbase-s3.html
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 5

Using Amazon EMR version 5.7.0 or later, you can set up a read-replica cluster,
which allows you to achieve higher read availability by distributing reads across
multiple clusters.

Use cases for Apache HBase on Amazon
S3
Apache HBase on Amazon S3 is recommended for applications that require high
availability of reads and do not require high availability of writes.

Apache HBase on Amazon S3 can be configured to achieve high requests per
second for Apache HBase’s API calls. This configuration, together with the
proper instance type and cluster size, allows you to find the optimal Apache
HBase on Amazon S3 configuration values to support similar requests per
second as your HDFS backed cluster. Moreover, as Amazon S3 is used as a
storage layer, you can decouple storage from compute, have the flexibility to
bring up/down clusters as needed, and considerably reduce costs of running
your Apache HBase cluster.

Applications that require high availability of reads are supported by Apache
HBase on Amazon S3 via Read Replica Clusters pointing to the same Amazon
S3 location. Although Apache HBase on Amazon S3 Read Replica Clusters are
not part of this whitepaper, see Further Reading for more details.

Since Apache HBase’s Write Ahead Log (WAL) is stored in the cluster, if your
application requires support for high availability of writes, Apache HBase on
HDFS is recommended. Specifically, you can set up Apache HBase on HDFS
with multi-master on an Amazon EC2 custom installation or set up Apache
HBase on HDFS on Amazon EMR with an HBase on HDFS replica cluster on
Amazon EMR.

Apache HBase on Amazon S3 is recommended if your application does not
require support for high availability of writes and can tolerate failures during
writes/updates. If you would like to mitigate the impact of Amazon EMR Master
node failures (or Availability Zone failures that can cause the termination of the
Apache HBase on Amazon S3 cluster or any temporary degradation of service
due to an Apache HBase RegionServer operational/transient issues), we

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 6

recommend that your pipeline architecture relies on a stream/messaging
platform upstream to the Apache HBase on Amazon S3 cluster.

We recommend that you always use the latest Amazon EMR release so you can
benefit from all changes and features continuously added to Apache HBase.

Planning the Migration to Apache HBase
on Amazon S3
To migrate an existing Apache HBase cluster to an Apache HBase on Amazon
S3 cluster, consider the following activities to help scope and optimize
performance for Apache HBase on Amazon S3:

• Select a strategy to monitor your Apache HBase cluster's performance

• Plan for security on Amazon EMR and Amazon S3

• Identify Apache HBase and EMRFS tuning options

• Test Apache HBase and EMRFS configuration values

• Prepare the test environment

o Prepare your AWS account for performance testing

o Prepare Amazon S3 for your Apache HBase workload

o Set up Amazon EMR cluster

o Troubleshoot

• Migrate and restore Apache HBase tables on HBase on Amazon S3

o Migrate data

o Restore data

• Deploy into production

o Prepare Amazon S3 for production load

o Prepare the production environment

• Manage the production environment

o Manage operationalization tasks

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 7

Preparation task
Before the migration starts, we recommend that you select a strategy to monitor
the performance of your cluster.

Selecting a Monitoring Strategy
We recommend you use an enterprise third-party monitoring agent or Ganglia
to guide you during the tuning of Apache HBase on Amazon S3. This agent is
helpful to understand the changes in performance when changing Apache
HBase properties during your tuning process. Moreover, this monitoring allows
quick detection of operational issues when the cluster is in production. In
addition to monitoring Apache HBase, we also recommend that you monitor
EMRFS Consistent View.

Monitoring Apache HBase, subsystems, and dependent systems
To measure the overall performance of Apache HBase, monitor metrics such as
those around Remote Procedure Calls (RPCs) and the Java virtual machine
(JVM) heap. In addition to Apache HBase metrics, collect metrics from
dependency systems, such as HDFS, the OS, and the network.

Monitoring the write path
To measure the performance of the write path, monitor the metrics for the
WAL, HDFS (on Apache HBase on Amazon S3 on Amazon EMR, WALs are on
HDFS), MemStore, flushes, compactions, garbage collections, and procedure
metrics of a related procedure.

Monitoring the read path
To measure the performance of the read path, monitor the metrics for the block
cache and the bucket cache. Specifically, monitor the number of evictions, GC
time, cache size, and cache hits/misses.

Monitoring with a third-party tool
Apache HBase supports exporting metrics via Java Management Extensions
(JMX). Most third-party monitoring agents can then be configured to collect
metrics via JMX. For more information refer to Using with JMX. The
Configuring HBase to expose metrics via JMX section will provide the

http://ganglia.info/
http://hbase.apache.org/book.html#_procedures
http://hbase.apache.org/book.html#_procedures
https://hbase.apache.org/metrics.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 8

configurations to export Apache HBase metrics via JMX on an Apache HBase
on Amazon S3 cluster.

Note that the Apache HBase Web UI allows you access to the available metrics.
In the UI, select a RegionServer or the Apache HBase Master, and then click the
“Metrics Dump” tab. This tab provides all available metrics collected from the
JMX bean and exposes the metrics in JSON format.

For more details on the metrics exposed by Apache HBase, refer to
MetricsRegionServerSource.java.

Use the following steps to add monitoring into your Amazon EMR Cluster:

• Create an Amazon EMR bootstrap action to set up the agent of any
enterprise monitoring tool used in your environment. (For more
information and example bootstrap actions, refer to Create Bootstrap
Actions to Install Additional Software.

• Create a dashboard in your enterprise monitoring tool with the metrics
to monitor per each Amazon EMR Cluster.

• Create unique tags for each cluster. This tagging avoids multiple clusters
writing to the same dashboard.

In addition to monitoring the Amazon EMR Cluster at every layer of the stack,
have the monitoring dashboard for your application’s API available for use
during the performance tests for Apache HBase. This dashboard keeps track of
the performance of the application APIs that rely on Apache HBase.

Monitoring Cluster components with Ganglia
The Ganglia open-source project is a scalable, distributed system designed to
monitor clusters and grids while minimizing the impact on their performance.
When you enable Ganglia on your cluster, you can generate reports and view the
performance of the cluster as a whole, as well as inspect the performance of
individual node instances. For more information about the Ganglia open-source
project, refer to http://ganglia.info/. For more information about using Ganglia
with Amazon EMR clusters, refer to Ganglia in Amazon EMR Documentation.

Configuring Ganglia is outside the scope of this whitepaper.

https://github.com/apache/hbase/blob/rel/1.4.6/hbase-hadoop-compat/src/main/java/org/apache/hadoop/hbase/regionserver/MetricsRegionServerSource.java
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
http://ganglia.info/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-ganglia.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 9

Note that Ganglia produces high amounts of data for large clusters. Consider
this information when sizing your cluster. If you choose to use Ganglia to
monitor your production cluster, make sure to thoroughly understand Ganglia
functionality and configuration properties.

Monitoring EMRFS Consistent View
See Configuring the capacity of the EMRFS metadata table to avoid request
throttling for more details on EMRFS Consistent View configurations and
monitoring options.

Planning for Security on Amazon EMR and
Amazon S3
Many customers in regulated industries, such as financial services or healthcare,
require security and compliance controls around their Amazon EMR clusters
and Amazon S3 data storage. It is important to consider these requirements as
part of an overall data strategy that adheres to any regulatory or internal data
security requirements in an industry, such as PCI or HIPAA. This section covers
a variety of security best practices around configuring your Amazon EMR
environment for HBase on Amazon S3.

Encryption
There are multiple ways to encrypt data-at-rest in your Amazon EMR clusters. If
you are using EMRFS to query data on Amazon S3, you can specify one of the
following options:

• SSE-S3: Amazon S3 manages encryption keys for you

• SSE-KMS: An AWS Key Management Service (KMS) customer master
key (CMK) encrypts your data server- side on Amazon S3.

• CSE-KMS/CSE-C: The encryption and decryption takes place client-
side on your Amazon EMR cluster and the encrypted object is stored on
Amazon S3. You can use keys provided by AWS KMS (CSE-KMS) or use
a custom Java class that provides the master key (CSE-C). When you
consider this encryption mode, you should think about the overall
ecosystem of tools you will use to access your data and if these tools
support CSE-KMS/CSE-C.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-s3

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 10

In the context of HBase on Amazon S3, many customers use SSE-S3 and SSE-
KMS as their methods of encryption because CSE encryption requires additional
key management.

Although the bulk of the data is stored on Amazon S3, you still need to consider
the following options for local disk encryption:

• Amazon EMR Security Configuration: Amazon EMR gives you the
ability to encrypt your storage volumes using local disk encryption. It
uses a combination of open-source HDFS encryption as well as LUKS
encryption. If you want to use this feature, you must specify an AWS
KMS key ARN or provide a custom Java class with the encryption
artifacts.

• Custom AMI: You can create a Custom AMI for Amazon EMR, and
specify an Amazon EBS volume encryption to encrypt both your boot
and storage volumes.

Amazon EMR security configurations allow you to choose a method for
encrypting data in-transit using Transport Layer Security (TLS). You can choose
to:

• manually create PEM certificates, zip them in a file, and reference from
Amazon S3, or

• implement a certificate custom provider in Java and specify the Amazon
S3 path to the JAR.

For more information on how these certificates are used with different big data
technologies, refer to In Transit Data Encryption with Amazon EMR. Note that
traffic between Amazon S3 and cluster nodes is encrypted using TLS. This
encryption is enabled automatically.

Authentication and Authorization
Authentication and authorization, are two crucial components that must be
considered when controlling access to data. Authentication is the verification of
an entity, whereas authorization is checking whether or not the entity actually
has access to the data or resources it is asking for. Another way of looking at it is
that authentication is the “are you really who you say you are” check and

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-localdisk
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-encryption-certificates
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-intransit

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 11

authorization is “do you have actually have access to what you're asking for”
check. For example, Alice can be authenticated as being Alice, but this does not
necessarily mean that Alice has authorization, or access, to look at Bob's bank
account.

Authentication on Amazon EMR
Kerberos, a network authentication protocol created by the Massachusetts
Institute of Technology (MIT), uses secret-key cryptography to provide strong
authentication and avoid sensitive information, such as passwords or other
credentials, being sent over the network in an unencrypted and exposed format.
With Kerberos, you maintain a set of services (known as a realm) and users that
need to authenticate (known as principals) and then provide a means for these
principals to authenticate. You can also integrate your Kerberos setup with
other realms. For example, you can have users authenticate from an Active
Directory domain or LDAP namespace and have a cross-realm trust set up such
that these authenticated users can be seamlessly authenticated to access your
Amazon EMR clusters.

Amazon EMR installs open source Apache Hadoop ecosystem applications on
your cluster, meaning that you can leverage the existing security features in
these products. For example, you can enable Kerberos authentication for YARN,
giving user-level authentication for applications running on YARN, such as
HBase.

You can configure Kerberos on an Amazon EMR cluster (known as Kerberizing)
to provide a means of authentication for users who use your clusters. We
recommend that you become familiar with Kerberos concepts before
configuring Kerberos on Amazon EMR. Refer to Use Kerberos Authentication
on the Amazon EMR documentation page. See Further Reading for blog posts
that show you how to configure Kerberos on your Amazon EMR Cluster.

Authorization on Amazon EMR
Authorization on Amazon EMR falls into three general categories:

• Object-level authorization against objects in Amazon S3.

• Component-specific functionality that is built-in (such as Apache HBase
Authorization).

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 12

• Tools that provide an intermediary access layer between users running
commands on Apache Hadoop components and the storage layer (such
as Apache Ranger). (This category is outside the scope of this
whitepaper.)

Object-level Authorization
Prior to Amazon EMR version 5.10.0, the AWS Identity and Access
Management (IAM) role attached to the Amazon EC2 instance profile role on
Amazon EMR clusters determined data access in Amazon S3. Data access to
Amazon S3 could only be granular at the cluster-level, making it difficult to have
multiple users with potentially different levels of access to data touching the
same cluster.

EMRFS fine-grained authorization was introduced with Amazon EMR versions
5.10.0 and later. This authorization allows you to specify the AWS IAM role to
assume at the user or group level when EMRFS is accessing Amazon S3. This
allows for fine-grained access control for Amazon S3 on multi-tenant Amazon
EMR clusters. In addition, it makes it easier to enable cross-account Amazon S3
access to data. For more information on how to configure your security
configurations and AWS IAM roles appropriately, refer to Configure AWS IAM
Roles for EMRFS Requests to Amazon S3 and Build a Multi-Tenant Amazon
EMR Cluster with Kerberos, Microsoft Active Directory Integration and AWS
IAM Roles for EMRFS.

HBase Authorization
Authorization on Apache HBase on Amazon S3 is feature-equivalent to Apache
HBase on HDFS, with the ability to set authorization rules at the table, column
and cell-level. Note that access to the Apache HBase web UIs is not restricted
even when Kerberos is used.

Network
The network topology is also important when designing for security and privacy.
We recommend placing your Amazon EMR clusters in private subnets, with
only outbound internet access via NAT.

Security groups control inbound and outbound access from your individual
instances. With Amazon EMR, you can use both Amazon EMR-managed
security groups as well as your own to control network access to your instance.
By applying the principle of least privilege to your security groups, you can lock

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-iam-roles.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-iam-roles.html
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-man-sec-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-man-sec-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-additional-sec-groups.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 13

down your Amazon EMR cluster to only the applications and/or individuals
who need access.

Minimal AWS IAM Policy
By default, the AWS IAM policies that are associated with Amazon EMR are
generally permissive in order to allow customers to easily integrate Amazon
EMR with other AWS services. When securing Amazon EMR, a best practice is
to start from the minimal set of permissions required for Amazon EMR to
function and add permissions as necessary. Since HBase on Amazon S3 depends
on Amazon S3 as a storage medium, it is important to ensure that bucket
policies are also scoped correctly, such that HBase on Amazon S3 can function
while also being secure.

The AWS IAM Policy Reference at the end of this paper includes three policies
that are scoped around what Amazon EMR minimally requires for basic
operation. These policies could be further minimized/restricted by removing
actions related to spot pricing and autoscaling.

Custom AMIs and Applying Security Controls to
Harden your AMI
Custom AMIs are another approach you can use to harden and secure your
Amazon EMR cluster. Amazon EMR uses an Amazon Linux Amazon Machine
Image (AMI) to initialize Amazon EC2 instances when you create and launch a
cluster. The AMI contains the Amazon Linux operating system, other software,
and configurations required for each instance to host your cluster applications.

By default, when you create a cluster, you don't need to think about the AMI.
When Amazon EC2 instances in your cluster launch, Amazon EMR starts with a
default Amazon Linux AMI that Amazon EMR owns, runs any bootstrap actions
you specify, and then installs and configures the applications and components
that you select.

Alternatively, if you use Amazon EMR version 5.7.0 or later, you can specify a
custom Amazon Linux AMI when you create a cluster and customize its root
volume size as well. When each Amazon EC2 instance launches, it starts with
your custom AMI instead of the Amazon EMR owned AMI.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 14

Specifying a custom AMI is useful for the following cases:

• Encrypt the Amazon EBS root device volumes (boot volumes) of Amazon
EC2 instances in your cluster. For more information, refer to Creating a
Custom AMI with an Encrypted Amazon EBS Root Device Volume.

• Pre-install applications and perform other customizations instead of
using bootstrap actions, which can improve cluster start time and
streamline the startup work flow.

• Implement more sophisticated cluster and node configurations than
bootstrap actions allow.

Using a custom AMI, as opposed to a bootstrap action, can allow you to have
your hardening steps pre-configured into the images you use, rather than
having to run the bootstrap action scripts on instance provision time. You don't
have to choose between the two—you can create a custom AMI for the common,
less likely to change security characteristics of your cluster and leverage
bootstrap actions to pull the latest configurations/scripts that might be cluster-
specific.

One approach many of our customers take is to apply the Center for Internet
Security (CIS) benchmarks to harden their Amazon EMR clusters. For more
details, refer to A step-by-step checklist to secure Amazon Linux. It is important
to verify each and every control for necessity and function test against your
requirements when applying these benchmarks to your clusters.

Auditing
The ability to audit compute environments is a key requirement for many
customers. There are a variety of ways that you can support this requirement
within Amazon EMR:

• For Amazon EMR version 5.14.0 and later, EMR File System (EMRFS),
Amazon EMR’s connector for Amazon S3, supports auditing of users
who ran queries that accessed data in Amazon S3 through EMRFS. This
feature is enabled by default and passes on user and group information
to audit logs like AWS CloudTrail, providing you with comprehensive
request tracking.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted
https://www.cisecurity.org/benchmark/amazon_linux/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 15

• If it exists, application-specific auditing can be configured and
implemented on Amazon EMR.

• You can use tools such as Apache Ranger to implement another layer of
auditing and authorization.

• AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service, is integrated with Amazon EMR. AWS
CloudTrail captures all API calls for Amazon EMR as events. The calls
captured include calls from the Amazon EMR console and code calls to
the Amazon EMR API operations. If you create a trail, you can enable
continuous delivery of AWS CloudTrail events to an Amazon S3 bucket,
including events for Amazon EMR.

• You can also audit the Amazon S3 objects that EMR is accessing via
Amazon S3 access logs. AWS CloudTrail only provides logs for AWS API
calls, so if a user runs a job that reads/writes data to Amazon S3, the
Amazon S3 data that was accessed by Amazon EMR won’t appear in
AWS CloudTrail. By using Amazon S3 access logs, you can
comprehensively monitor and audit access against your data in Amazon
S3 from anywhere, including Amazon EMR.

• Because you have full control over your Amazon EMR cluster, you can
always install your own third-party agents or tooling via bootstrap
actions or custom AMIs to help support your auditing requirements.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 16

Identifying Apache HBase and EMRFS
Tuning Options
Apache HBase on Amazon S3 configuration
properties
This section helps you optimize components that support the read/write path
for your application access patterns by identifying the components and
properties to configure. Specifically, the goal of tuning is to prepare the initial
configurations to influence cluster behavior, storage footprint behavior, and
individual components behavior that support the read and write paths.

The whitepaper covers only HBase tuning properties that were critical to many
HBase on Amazon S3 customers during migration. Make sure to test any
additional HBase configuration properties that have been tuned on your HDFS
backed cluster but not included in this section. You also need to tune EMRFS
properties to prepare your cluster for scale.

This whitepaper should be used together with existing resources or materials on
best practices and operational guidelines for HBase.

For a detailed description of the HBase properties mentioned on this document,
refer to HBase default configurations and HBase-default.xml (HBase 1.4.6). For
more details on the metrics mentioned on this document, refer to
MetricsRegionServerSource.java (HBase 1.4.6). To monitor changes to some of
the properties mentioned on this document, you require access to the Logs for
the master and specific Region Servers.

To access the HBase logs during tuning, you can use the HBase Web UI. First
select the HBase Master or the specific RegionServer, and then click the “Local
Logs” tab. Or, you can SSH to the particular instance that hosts the
RegionServer or HBase Master and visualize the last lines added to the logs
under /var/log/hbase.

Next, we identify the several settings on HBase and later on EMRFS to take into
consideration during the tuning stage of the migration.

https://hbase.apache.org/book.html
https://github.com/apache/hbase/blob/rel/1.4.6/hbase-common/src/main/resources/hbase-default.xml
https://github.com/apache/hbase/blob/rel/1.4.6/hbase-hadoop-compat/src/main/java/org/apache/hadoop/hbase/regionserver/MetricsRegionServerSource.java

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 17

For some of the HBase properties we propose a starting value or a setting, for
others you will need to iterate on a combination of configurations during
performance tests to find adequate values.

All of the configuration settings that you decide to set can be applied to your
Amazon EMR Cluster via a configuration object that the Amazon EMR service
uses to configure HBase and EMRFS when deploying a new cluster. For more
details, see Applying HBase and EMRFS Configurations to the Cluster.

Speeding up the Cluster initialization
Use the properties that follow when you want to speed up the cluster’s startup
time, speed up region assignments, and speed up region initialization time.
These properties are associated with the HBase Master and the HBase
RegionServer.

HBase master tuning

hbase.master.handler.count

• This property sets the number of RPC handlers spun up on the HBase
Master.

• The default value is 30.

• If your cluster has thousands of regions you will likely need to increase
this value. Monitor the queue size (ipc.queue.size), min and max
time in queue, total calls time, min and max processing time, and then
iterate on this value to find the best value for your use case.

• Customers at the 20000 region scale have configured this property to 4
times the default value.

HBase RegionServer tuning

hbase.regionserver.handler.count

• This property sets the number of RPC handlers created on
RegionServers to serve requests. For more information about this
configuration setting, refer to hbase.regionserver.handler.count.

http://hbase.apache.org/0.94/book/important_configurations.html#hbase.regionserver.handler.count

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 18

• The default value is 30.

• Monitor the number of RPC Calls Queued, the 99th percentile latency for
RPC calls to stay in queue, and RegionServer memory. Iterate on this
value to find the best value for your use case.

• Customers at the 20000 region scale have configured this property to 4
times the default value.

hbase.regionserver.executor.openregion.threads

• This property sets the number of concurrent threads for region opening.

• The default value is 3.

• Increase this value if the number of regions per RegionServer is high.

• For clusters with thousands of regions, it is not uncommon to see this
value at 10 to 20 times the default.

Preventing initialization loops
The default values of the properties that follow may be too conservative for
some use cases. Depending on the number of regions, number of RegionServers,
and the settings you have chosen to control initialization and assignment times,
the default values for the master timeout can prevent your cluster from starting
up.

Relevant Master initialization timeouts

hbase.master.initializationmonitor.timeout

• This property sets the amount of time to sleep in milliseconds before
checking the Master’s initialization status.

• The default value is 900000 (15 minutes).

• Monitor masterFinishedInitializationTime and the HBase Master
logs for a “master failed to complete initialization” timeout message.
Iterate on this value to find the best value for your use case.

hbase.master.namespace.init.timeout

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 19

• This property sets the time for the master to wait for the namespace
table to initialize.

• The default value is 300000 (5 minutes).

• Monitor the HBase Master logs for a “waiting for namespace table to be
assigned” timeout message. Iterate on this value to find the best value
for your use case.

Scaling to a high number of regions
This property allows the HBase Master to handle high number of regions.

• Set hbase.assignment.usezk to false

• For detailed information, refer to HBase ZK-less Region Assignment.

Getting a balanced Cluster after initialization
To ensure that the HBase Master only allocates regions when a target number of
RegionServers is available, tune the following properties:

hbase.master.wait.on.regionservers.mintostart
hbase.master.wait.on.regionservers.maxtostart

• These properties set the minimum and maximum number of
RegionServers the HBase Master will wait for before starting to assign
regions.

• By default, hbase.master.wait.on.regionservers.mintostart
is set to 1.

• An adequate value for the min and max is 90 to 95% of the total number
of RegionServers. A high value for both min and max results in a more
uniform distribution of regions across RegionServers.

hbase.master.wait.on.regionservers.timeout
hbase.master.wait.on.regionservers.interval

• The timeout property sets the time the master will wait for
RegionServers to check in. The default value is 4500.

https://blogs.apache.org/hbase/entry/hbase_zk_less_region_assignment

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 20

• The interval property sets the time period used by the master to
decide if no new RegionServers have checked in. The default value is
1500.

• These properties are especially relevant for a cluster with a large number
of regions.

• If your use case requires aggressive initialization times, these properties
can be set to lower values so that the condition that is dependent on
these properties is evaluated earlier.

• Customers at the 20000 region scale and with a requirement of low
initialization time, have set timeout to 400 and interval to 300.

• For more information on the condition used by the master to trigger
allocation, refer to HBASE-6389.

Preventing timeouts during Snapshot operations
Tune the following properties to prevent timeouts during snapshot operations:

hbase.snapshot.master.timeout.millis

• This property sets the time the master will wait for a snapshot to
conclude. This property is especially relevant for tables with a large
number of regions.

• The default value is 300000 (5 minutes).

• Monitor the logs for snapshot timeout messages and iterate on this
value.

• Customers at the 20000 region scale have set this property to 1800000
(30 minutes).

hbase.snapshot.thread.pool.max

• This property sets the number of threads used by the snapshot manifest
loader operation.

• Default value is 8.

https://issues.apache.org/jira/browse/HBASE-6389

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 21

• This value depends on the instance type and the number of regions in
your cluster. Monitor snapshot average time, CPU usage and your
application API to ensure the value you choose does not impact
application requests.

• Customers at the 20000 region scale have used 2 to 8 times the default
value for this property.

If you will be performing online snapshots while serving traffic, set the following
properties to prevent timeouts during the online snapshot operation.

hbase.snapshot.region.timeout

• Sets the timeout for RegionServers to keep threads in the snapshot
request pool waiting.

• Default value is 300000 (5 minutes).

• This property is especially relevant for tables with a large number of
regions.

• Monitor memory usage on the RegionServers, monitor the logs for
snapshot timeout messages and iterate on this value. Increasing this
value consumes memory on the Region Servers.

• Customers at the 20000 region scale have used 1800000 (30 minutes)
for this property.

hbase.snapshot.region.pool.threads

• Sets the number of threads or snapshotting regions on the RegionServer.

• Default value is 10.

• If you decide to increase the value for this property, consider setting a
lower value for hbase.snapshot.region.timeout.

• Monitor snapshot average time, CPU usage, and your application API to
ensure the value you choose does not impact application requests.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 22

Running the balancer for specific periods to minimize the impact of region
movements on snapshots
Controlling the operation of the Balancer is crucial for smooth operation of the
cluster. These properties provide control over the balancer.

hbase.balancer.period
hbase.balancer.max.balancing

• The hbase.balancer.period property configures when the balancer
runs, and the hbase.balancer.max.balancing property configures
how long the balancer runs.

• These properties are especially relevant if you programmatically take
snapshots of the data every few hours because the snapshot operation
will fail if regions are being moved. You can monitor the snapshot
average time to have more insight into the snapshot operation.

At a high level, balancing requires flushing data, closing the region, moving the
region and then opening it on a new RegionServer. For this reason, for busy
clusters, consider running the balancer every couple of hours and configure the
balancer to only run for one hour.

Tuning the Balancer
Consider the following additional properties when configuring the balancer:

• hbase.master.loadbalancer.class

• hbase.balancer.period

• hbase.balancer.max.balancing

We recommend that you test your current LoadBalancer settings, and then
iterate on the configurations. The default LoadBalancer is the Stochastic
Balancer. If you choose to use the default LoadBalancer, refer to
StochasticLoadBalancer for more details on the various factors and costs
associated with this balancer. Most use cases can use the default values.

Access Pattern considerations and read/write path tuning
This section covers tuning the diverse HBase components that support the
read/update/write paths.

https://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 23

To properly tune the components that support the read/update/write paths, you
start by identifying the overall access pattern of your application.

If the access pattern is read-heavy, then you can reduce the resources allocated
to the write path. The same guidelines apply for write-heavy access patterns. For
mixed access patterns, you should strive for a balance.

Tuning the Read Path
This section identifies the properties used t when tuning the read path. The
properties that follow are beneficial on both random-read and sequential-read
access patterns.

Tuning the Size of the BucketCache
The BucketCache is central to HBase on Amazon S3. The properties that follow
set the overall size of the BucketCache per instance and allocate a percentage of
the total size of the BucketCache to specialized areas, such as single access
BucketCache, multiple access BucketCache and in-memory BucketCache. For
more details, refer to HBASE-18533.

The goal of this section is to configure the BucketCache to support your access
pattern. For an access pattern of random reads and sequential reads, it is
recommended to cache all data in the BucketCache, which is stored in disk. In
other words, each instance allocates part of its disk to the bucket cache so that
the total size of the BucketCache across all the instances in the cluster equals the
size of the data on Amazon S3.

To configure the BucketCache, tune the following properties:

hbase.bucketcache.size

• As a baseline, set the BucketCache to a value equal to the size of data you
would like cached.

• This property impacts Amazon S3 traffic. If the data is not in the cache,
HBase must retrieve the data from Amazon S3.

• If the BucketCache size is smaller than the amount of data being cached,
it may cause many cache evictions which will also increase overhead on
Garbage Collection (GC). Moreover, it will increase Amazon S3 traffic.

https://issues.apache.org/jira/browse/HBASE-18533

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 24

Set the BucketCache size to the total size of the dataset required for your
application’s read access pattern.

• Take into account the available disk resources when setting this
property. HBase on Amazon S3 uses HDFS for the write path so the total
disk available for the BucketCache must consider any storage required
by Apache Hadoop/OS/HDFS. See the Amazon EMR Cluster Setup
section for recommendations on sizing the cluster local storage for the
BucketCache, choosing storage type and its mix (multiple disk versus a
single large disk).

• Monitor GC, cache evictions metrics, cache hit ratio, cache miss ratio
(you can use HBase UI to quickly access these metrics) to support the
process of choosing the best value. Moreover, take into consideration the
application SLA requirements to increase or decrease the BucketCache
size. Iterate on this value to find the best value for your use case.

hbase.bucketcache.single.factor
hbase.bucketcache.multi.factor
hbase.bucketcache.memory.factor

• Note that the bucket areas follow the same areas as LRU cache. A block
initially read from Amazon S3 is populated in the single-access area
(hbase.bucketcache.single.factor) and consecutive accesses
promote that block into the multi-access area
(hbase.bucketcache.multi.factor). The in-memory area is
reserved for blocks loaded from column families flagged
as IN_MEMORY (hbase.bucketcache.memory.factor).

• By default, these areas are sized at 25%, 50%, 25% of the total
BucketCache size, respectively.

• Tune this value according to the access pattern of your application.

• This property impacts Amazon S3 traffic. For example, if single access is
more prevalent than multi access, you can reduce the size allocated to
multi access. If multi access is common, ensure that multi access areas
are big enough to avoid cache evictions.

hbase.rs.cacheblocksonwrite

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 25

• This property forces all blocks that are written to be added to the cache
automatically. Set this property to true.

• This property is especially relevant to read-heavy workloads and setting
it to true will populate the cache and reduce Amazon S3 traffic when a
read request to the data is issued. Setting this to false in read-heavy
workloads will result in reduced read performance and increased
Amazon S3 activity.

• HBase on Amazon S3 uses the file base BucketCache together with on-
heap cache, BlockCache. This setup is commonly referred as a combined
cache. The BucketCache only stores data blocks and the BlockCache
stores bloom filters and indices. The physical location of the file base
BucketCache is the disk, and the location of the BlockCache is the heap.

Pre-warming the BucketCache
HBase provides additional properties that control the prefetch of blocks when a
region is opening. This is a form of cache pre-warming and recommended for
HBase on Amazon S3, especially for read access patterns. Pre-warming the
BucketCache results in reduced Amazon S3 traffic for subsequent requests.
Disabling pre-warming in read-heavy workloads results in reduced read
performance and increased Amazon S3 activity.

To configure HBase to prefetch blocks, set the following properties:

hbase.rs.prefetchblocksonopen

• This property controls whether the server should asynchronously load
all of the blocks when a store file is opened (data, meta and index). Note
that enabling this property contributes to the time the RegionServer
takes to open a region and therefore initialize.

• Set this value to true to apply the property to all tables. This can also be
applied per CF instead of using a global setting. You should prefer this
over enabling it cluster-wide.

• If you set hbase.rs.prefetchblocksonopen to true, the properties
that follow increase the number of threads and the size of the queue for
the pre-fetch operation:

o Set hbase.bucketcache.writer.queuelength to 1024 as a
starting value. The default value is 64.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 26

o Set hbase.bucketcache.writer.threads to 6 as a starting value.
The default value is 3.

o The values should be configured together and take into
consideration the instance type for the RegionServer and the
number of regions per RegionServer. By increasing the number of
threads, you may be able to choose a lower value for
hbase.bucketcache.writer.queuelength.

o Property hbase.rs.prefetchblocksonopen will control how
fast you get data from Amazon S3 during the pre-fetch.

o Monitor HBase logs to understand how fast the bucket cache is
being initialized and monitor cluster resources to see the impact of
the properties on memory and CPU. Iterate on these values to find
the best value for your use case.

o For more details, refer to HBASE-15240.

Modifying the Table Schema to Support Pre-warming
Finally, prefetching can be applied globally or per column family. In addition,
the IN_MEMORY region of the BucketCache can be applied per column family.

You must change the schema of the tables to set these properties. For each
column family and for the access patterns, you must identify which column
families should always be placed in memory and which column families that
benefit from prefetching. For example, if one column family is never read by the
HBase read path (only read by an ETL job), you can save resources on the
cluster and avoid using the PREFETCH_BLOCKS_ON_OPEN Key or the
IN_MEMORY for that column family. To modify an existing table to use
PREFETCH_BLOCKS_ON_OPEN or IN_MEMORY keys see the following
examples:

hbase shell
hbase(main):001:0> alter 'MyTable', NAME => 'myCF',
PREFETCH_BLOCKS_ON_OPEN => 'true'
hbase(main):002:0> alter 'MyTable', NAME => 'myCF2', IN_MEMORY
=> 'true'

Tuning the Updates/Write Path

https://issues.apache.org/jira/browse/HBASE-15240

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 27

This section shows you how to tune and size the MemStore to avoid having
frequent flushes and small HFiles. As a result, the frequency of compactions and
Amazon S3 traffic is reduced.

hbase.regionserver.global.memstore.size

• This property sets the maximum size of all MemStores in a
Regionserver.

• The memory allocated to the MemStores is kept in the main memory of
the RegionServers.

• If the value of hbase.regionserver.global.memstore.size is
exceeded, updates are blocked, and flushes are forced until the total size
of all the MemStores in a RegionServer is at or below the value of
hbase.regionserver.global.memstore.size.lower.limit.

• The default value is 0.4 (40% of the heap).

• For write-heavy access patterns, you can increase this value to increase
the heap area dedicated to all MemStores.

• Consider the number of regions per Region Server and the number of
column families with high write activity when setting this value.

• For read-heavy access patterns, this setting can be decreased to free up
resources that support the read path.

hbase.hregion.memstore.flush.size

• This property sets the flush size per MemStore.

• Depending on the SLA of your API, the flush size may need to be higher
than the flush size configured on the source cluster.

• This setting impacts the traffic to Amazon S3, the size of HFiles, and the
impact of compactions in your cluster. The higher you set the value, the
fewer Amazon S3 operations are required, and the higher the size of
each resulting HFile.

• This value is dependent on the total number of regions per RegionServer
and the number of column families with high write activity.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 28

• Use 536870912 bytes (512 MB) as the starting value, then monitor the
frequency of flushes, the Memstore Flush Queue Size, and Application
APIs response time. If frequency of flushes and queue size is high,
increase this setting.

hbase.regionserver.global.memstore.size.lower.limit

• When the size of all Memstores exceed this value, flushes are forced.
This property prevents the Memstore from being blocked for updates.

• By default, this property is set to 0.95, 95% of the value set for
hbase.regionserver.global.memstore.size.

• This value depends on the number of Regions per RegionServer and the
write activity in your cluster.

• You might want to decrease this value if as soon as the Memstores reach
this safety threshold, the write activity quickly fills the missing 0.05 and
the MemStore is blocked for writes.

• Monitor the frequency of flushes, the Memstore Flush Queue Size, and
Application APIs response time. If frequency and queue size is high,
increase this setting.

hbase.hregion.memstore.block.multiplier

• This property is a safety threshold and controls spikes in write traffic.

• Specifically, this property sets the threshold at which writes are blocked.
If the MemStore reaches
hbase.hregion.memstore.block.multiplier times
hbase.hregion.memstore.flush.size bytes writes are blocked.

• In case of spikes in traffic, this property prevents the Memstore from
continuing to grow and in this way prevents HFiles with large sizes.

• The default value is 4.

• If your traffic has a constant pattern, consider keeping the default value
for this property and tune only
hbase.hregion.memstore.flush.size.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 29

hbase.hregion.percolumnfamilyflush.size.lower.bound.min

• For the tables that have multiple column families, this property forces
HBase to only flush the MemStores of each column family that exceed
hbase.hregion.percolumnfamilyflush.size.lower.bound.m
in.

• The default value for this property is 16777216 bytes.

• This setting impacts the traffic to Amazon S3. A higher value reduces
traffic to Amazon S3.

• For write-heavy access patterns with multiple column families, this
property should be changed to a value higher than the default of
16777216 bytes but less than half of the value of
hbase.hregion.memstore.flush.size.

hfile.block.cache.size

• This property sets the percentage of the heap to be allocated to the
BlockCache.

• Use the default value of 0.4 for this property.

• By default, the BucketCache stores data blocks, and the BlockCache
stores bloom filters and indices.

• You will need to allocate enough of the heap to cache indices and bloom
filters, if applicable. To measure HFile indices and bloom filters sizes,
access the web UI of one of the RegionServers.

• Iterate on this value to find the best value for your use case.

hbase.hstore.flusher.count

• This property controls the number of threads available to flush writes
from memory to Amazon S3.

• The default value is 2.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 30

• This setting impacts the traffic to Amazon S3. A higher value reduces the
MemStore flush queue and speeds up writes to Amazon S3. This setting
is valuable for write-heavy environments. The value is dependent on the
instance type used by the cluster.

• Test the value and gradually increase it to 10.

• Monitor the MemStore flush queue size, the 99th percentile for flush
time, and application API response times. Iterate on this value to find
the best value for your use case.

Note: Small clusters with high region density and high write activity should also
tune HDFS properties that allow the HDFS NameNode and the HDFS
DataNode to scale. Specifically, properties dfs.datanode.handler.count
and dfs.namenode.handler.count should be increased to at least 3x their
default value of 10.

Region size considerations
Since this process is a migration, set the region size to the same region size on
your HDFS backed cluster.

As a reference, on HBase on Amazon S3, customer regions fall into these
categories: small-sized regions (1-10GB), mid-sized regions (10-50GB), and
large-sized regions (50-100GB).

Controlling the Size of Regions and Region Splits
This property sets the size of the regions in your cluster. This property should be
configured together with the property
hbase.regionserver.region.split.policy which is not covered on this
whitepaper.

• Use your current cluster’s value for hbase.hregion.max.filesize

o As a starting point you can use the value in your HDFS backed
cluster.

• Set hbase.regionserver.region.split.policy to the same
policy in your HDFS backed cluster

o This property controls when a region should be split.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 31

o The default value is
org.apache.hadoop.hbase.regionserver.SteppingSplit
Policy.

• Set hbase.regionserver.regionSplitLimit to the same value in
your HDFS backed cluster.

o This property acts as a guideline/limit for the RegionServer to stop
splitting.

o Its default value is 1000.

Tuning HBase Compactions
This section shows you how to configure properties that control major
compactions, reduce the frequency of minor compactions, and control the size
of HFiles to reduce Amazon S3 traffic.

Controlling Major Compactions
In production environments, we recommend you disable major compaction.
However, there should always be a process to run major compactions. Some
customers opt to have an application that incrementally runs major
compactions in the background, in a table, or RegionServer basis.

Set hbase.hregion.majorcompaction to 0 to disable automatically
scheduled major compactions.

Reduce the frequency of minor compactions and control the size of HFiles to reduce
Amazon S3 traffic
The following properties are dependent on the MemStore size, flush size, and
the need to control the frequency of minor compactions.

The properties that follow should be set according to response time needs and
average size of generated StoreFiles during a MemStore flush.

To control the behavior of minor compactions, tune these properties:

hbase.hstore.compaction.min.size

• If a StoreFile is smaller than the value set by this property, the StoreFile
will be selected for compaction. If StoreFiles have a size equal or larger

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 32

than the value of hbase.hstore.compaction.min.size,
hbase.hstore.compaction.ratio is used to determine if the files
are eligible for compaction.

• By default, this value is set to 134217728 bytes.

• This setting depends on the frequency of flushes, the size of StoreFiles
generated by flushes, and hbase.hregion.memstore.flush.size.

• This setting impacts the traffic to Amazon S3. The higher you set the
value, the more frequent minor compactions will occur, and therefore
trigger Amazon S3 activity.

• For write-heavy environments with many small StoreFiles, you may
want to decrease this value to reduce the frequency of minor
compactions and therefore Amazon S3 activity.

• Monitor the frequency of compactions, the overall StoreFile size, and
iterate on this value to find the best value for your use case.

hbase.hstore.compaction.max.size

• If a StoreFile is larger than the value set by this property, the StoreFile is
not selected for compaction.

• This value setting depends on the size of the HFiles generated by flushes
and the frequency of minor compactions.

• If you increase this value, you will have fewer, larger StoreFiles and
increased Amazon S3 activity. If you decrease this value you will have
more, smaller StoreFiles, and reduced Amazon S3 activity.

• Monitor the frequency of compactions, the compaction output size, the
overall StoreFile size, and iterate on this value.

hbase.hstore.compaction.ratio

Accept the default of 1.0 as a starting value for this property. For more details
on this property, refer to hbase-default.xml.

https://github.com/apache/hbase/blob/rel/1.4.6/hbase-common/src/main/resources/hbase-default.xml

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 33

hbase.hstore.compactionThreshold

• If a store reaches hbase.hstore.compactionThreshold, a
compaction is run to re-write the StoreFiles into one.

• A high value will result in less frequent minor compactions, larger
StoreFiles, longer minor compactions, and less Amazon S3 activitiy.

• The default value is 3.

• Start with a value of 6, monitor Compaction Frequency, the average size
of StoreFiles, compaction output size, compaction time, and iterate on
this value to get the best value for your use case.

hbase.hstore.blockingStoreFiles

• This property sets the total number of StoreFiles a single store can have
before updates are blocked for this region. If this value is exceeded,
updates are blocked until a compaction concludes or
hbase.hstore.blockingWaitTime is exceeded.

• For write-heavy workloads, use two to three times the default value as a
starting value.

• The default value is 16.

• Monitor the frequency of flushes, blocked requests count, and
compaction time to set the proper value for this property.

Minor and major compactions will flush the BucketCache. For more details,
refer to HBASE-1597.

Controlling the storage footprint locally and on Amazon S3
At a high level, on HBase on Amazon S3, WALs are stored on HDFS. When a
compaction occurs, previous HFiles are moved to the archive and only deleted if
they are not associated with a snapshot. HBase relies on a Cleaner Chore that is
responsible for deleting unnecessary HFiles and expired WALs.

https://issues.apache.org/jira/browse/HBASE-1597

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 34

Ensuring the Cleaner Chore is always running
With HBase 1.4.6 (Amazon EMR version 5.17.0 and later), we recommend that
you deploy the cluster with the cleaner enabled. This is the default behavior. The
property that sets this behavior is hbase.master.cleaner.interval.

We recommend that you use the latest Amazon EMR release. For versions prior
to Amazon EMR 5.17.0, see the Operational Considerations section for the
HBase shell commands that control the cleaner behavior.

To enable the cleaner globally, set the hbase.master.cleaner.interval
to 1.

Speeding up the Cleaner Chore
HBASE-20555, HBASE-20352 and HBASE-17215 add additional control to the
Cleaner Chore that deletes expired WALs (HLogCleaner) and expired archived
HFiles (HFileCleaner). These controls are available on HBase 1.4.6 (Amazon
EMR version 5.17.0) and later.

The number of threads allocated to the preceding properties should be
configured together and take into consideration the capacity and instance type
of the Amazon EMR Master node.

hbase.regionserver.hfilecleaner.large.thread.count

• This property sets the number of threads allocated to clean expired large
HFiles.

• hbase.regionserver.thread.hfilecleaner.throttle sets the
size that distinguishes between a small and large file. The default value
is 64 MB.

• The value for this property is dependent on the number of flushes, write
activity in the cluster, and snapshot deletion frequency.

• The higher the write and snapshot deletion activity, the higher the value
should be.

• By default, this property is set to 1.

• Monitor the size of the HBase root directory on Amazon S3 and iterate
on this value to find the best value for your use case. Consider the
Amazon EMR Master CPU resources and the values set for the other

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html#emr-hbase-s3-performance
https://issues.apache.org/jira/browse/HBASE-20555
https://issues.apache.org/jira/browse/HBASE-20352
https://issues.apache.org/jira/browse/HBASE-17215

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 35

configuration properties identified in this section. For more information,
see the Enabling Amazon S3 metrics for the HBase on Amazon S3 root
directory section.

hbase.regionserver.hfilecleaner.small.thread.count

• This property sets the number of threads allocated to clean expired small
HFiles.

• The value for this property is dependent on the number of flushes, write
activity in the cluster, and snapshot deletion frequency.

• By default, this property is set to 1.

• The higher the write and snapshot deletion activity, the higher the value
should be.

• Monitor the size of the HBase root directory on Amazon S3 and iterate
on this value to find the best value for your use case. Consider the
Amazon EMR Master CPU resources and the values set for the other
configuration properties identified in this section.

hbase.cleaner.scan.dir.concurrent.size

• This property sets the number of threads to scan the oldWALs
directories.

• The value for this property is dependent on the write activity in the
cluster.

• By default, this property is set to ¼ of all available cores.

• Monitor HDFS use and iterate on this value to find the best value for
your use case. Consideration the Amazon EMR Master CPU resources
and the values set for the other configuration properties identified in
this section.

hbase.oldwals.cleaner.thread.size

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 36

• This property sets the number of threads to clean the WALs under the
oldWALs directory.

• The value for this property is dependent on the write activity in the
cluster.

• By default, this property is set to 2.

• Monitor HDFS use and iterate on this value to find the best value for
your use case. Consider the Amazon EMR Master CPU resources and the
values set for the other configuration properties identified in this
section.

For more details on how to set the configuration properties to clean expired
WALs, refer to HBASE-20352.

Porting existing settings to HBase on Amazon S3
Some properties you have tuned in your on-premesis cluster but were not
included in the Apache HBase tuning section. These configurations include the
heap size for HBase and supporting Apache Hadoop components, Apache
HBase Split Policy, Apache Zookeeper timeouts, and so on. For these
configuration properties, use a the value in your HDFS backed cluster as a
starting point. Follow the same process to iterate and determine the best value
that supports your use case.

EMRFS Configuration Properties
We strongly recommend that Amazon Clusters using Apache HBase on Amazon
S3 are configured with EMRFS Consistent View. To enable EMRFS Consistent
View, Amazon EMR uses an Amazon DynamoDB table, the EMRFS metadata
table, to store object metadata and track consistency with Amazon S3. This table
is created automatically for you or you can point the cluster to use a previously
created EMRFS metadata table. When Consistent view is enabled, EMRFS adds
information about the objects it writes to Amazon S3 to the Amazon DynamoDB
table. When EMRFS deletes an object, a listing still remains in the metadata
with a deleted state that can be purged via the EMRFS CLI or a TTL.

For every Amazon S3 operation, EMRFS checks the metadata for information
about the set of objects in consistent view. If EMRFS finds that Amazon S3 is
inconsistent during one of these operations, it retries the operation according to
parameters defined in emrfs-site configuration properties. After EMRFS

https://issues.apache.org/jira/browse/HBASE-20352

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 37

exhausts the retries, it either throws a ConsistencyException or logs the
exception and continues the workflow.

For detailed information on how EMRFS Consistent View tracks objects on
Amazon S3, refer to Understanding How EMRFS Consistent View Tracks
Objects in Amazon S3. For more information on the EMRFS CLI commands,
refer to EMRFS CLI Reference.

For more details about the EMRFS properties included in this section, refer to
Configure Consistent View.

Setting the total number of connections used by EMRFS to read/write data
from/to Amazon S3
With HBase on Amazon S3, access to data is done via EMRFS. This means that
tasks such as an Apache HBase Region opening, MemStore flushes and
compactions all will trigger a request to Amazon S3. To support workloads for a
large number of regions and datasets, you must tune the total number of
connections to Amazon S3 that EMRFS can make (fs.s3.maxConnections).

To tune fs.s3.maxConnections, account for the average size of the HFiles,
number of regions, the frequency of minor compactions, and the overall read
and write throughput the cluster is experiencing.

fs.s3.maxConnections

• The default value for HBase on Amazon S3 is 10000. This value should
be set to more than 10000 for clusters with a large number of regions
(2500+), large datasets (1TB+), high minor compactions activity, and
intense read/write activity.

• Monitor the logs for the ERROR message “Unable to execute HTTP
request: Timeout waiting for connection” and iterate on this value. See
more details about this error message in the Troubleshooting section.

• Several customers at the +50TB/20k regions scale set this property to
50000.

Setting the behavior of EMRFS in case inconsistencies are detected
The options that follow control the behavior in case EMRFS detects an
inconsistency on Amazon S3. Specifically,

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-files-tracked.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-files-tracked.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-cli-reference.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-configure-consistent-view.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 38

fs.s3.consistent.retryPeriodSeconds sets the initial back0ff time and
fs.s3.consistent.retryCount sets the maximum number of retries when
an inconsistency is detected. After the initial backoff time, the value of
fs.s3.consistent.retryPeriodSeconds grows exponentially during
subsequent retries.

Set fs.s3.consistent.retryPeriodSeconds to 1 and set
fs.s3.consistent.retryCount to 20.

Configuring the capacity of the EMRFS metadata table to avoid request
throttling
The following properties set the read and write throughput capacity used by the
Amazon DynamoDB table that supports the EMRFS Consistent View.

fs.s3.consistent.metadata.read.capacity
fs.s3.consistent.metadata.write.capacity

• Accept the default as a starting value.

• Monitor the read and write capacity plus number of throttled requests
and iterate on these values.

• See the Monitoring the EMRFS metadata Table section for more details
on monitoring.

Updating the read and write capacity of the EMRFS metadata after initial creation
Once the Amazon DynamoDB table that supports EMRFS consistent view is
created, you can perform any changes to the read and write capacity throughput
via the Amazon DynamoDB API instead of the EMRFS properties.

Monitoring the EMRFS metadata table
This section provides more details on how to monitor the EMRFS metadata
table via Amazon DynamoDB Web UI and Amazon CloudWatch.

The Amazon DynamoDB Web UI and Amazon CloudWatch expose metrics on
the IOPS consumed by each operation and the number of requests that are
throttled. We recommend that you monitor these metrics and update the read
and write capacity allocated to the table accordingly. For more information,
refer to Monitoring Tools and Monitoring with Amazon CloudWatch.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/monitoring-automated-manual.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/monitoring-cloudwatch.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 39

Preventing the EMRFS Metadata table from growing indefinitely
To avoid the Amazon DynamoDB table that support EMRFS metadata grows
infinitely, we recommend that you enable time to live (TTL) Support for the
table. This support is only be applied to objects deleted from the metadata.

To enable TTL for each metadata object marked as delete, apply the following
emrfs-site.xml properties and execute the configuration steps to enable TTL
support. The Amazon EMR Cluster Setup section provides you with details on
how to properly apply any settings to emrsfs-site.xml via classifications.

Editing Emrfs-site.xml
Set fs.s3.consistent.metadata.delete.ttl.enabled to true.

Set fs.s3.consistent.metadata.delete.ttl.expiration.seconds
to 3600 (1h).

Enabling TTL Support for the Amazon DynamoDB table
As soon as the metadata table is created, enable TTL on attribute deletionTTL.
This step must only be performed once and can be done via the Web UI or
command line. For more details on configuring the Amazon DynamoDB table to
support the TTL property, refer to New – Manage Amazon DynamoDB Items
Using Time to Live (TTL).

Isolating the EMRFS metadata table from other clusters
We recommend that each Apache HBase on Amazon S3 root directory uses a
single Amazon DynamoDB table. Associating one Amazon DynamoDB table
with a single cluster provides you full control over the Amazon DynamoDB’s
table provisioned capacity. In opposition, sharing a single Amazon DynamoDB
table with multiple clusters can exhaust the table’s provisioned capacity as
multiple clusters are consuming the table’s resources.

To provide a custom name to the EMRFS Metadate table, set
fs.s3.consistent.metadata.tableName to a custom name.

https://aws.amazon.com/blogs/aws/new-manage-dynamodb-items-using-time-to-live-ttl/
https://aws.amazon.com/blogs/aws/new-manage-dynamodb-items-using-time-to-live-ttl/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 40

Testing Apache HBase and EMRFS
Configuration Values
Options to approach performance testing
During the testing phase, we recommend that you use the metrics for the
relevant HBase sub components together with the overall response times of
your application to gauge the impact of the changes made to HBase properties.

We also recommend that you start by testing the HBase configuration settings
that contribute to a healthy cluster state at your dataset scale (fast initialization
times, balanced cluster, and so on), and then focus on testing the configuration
property values for the read and write/update paths.

We provide guidelines on how to size the cluster compute and local storage
resources. The R5/R5d instance types are good candidates for a starting point as
they are memory-optimized instances.

As you focus on tuning the read and write/update paths, we recommend you
iterate on the number of regions per RegionServer (cluster size). As a starting
value, you can use the same region density as in your HDFS-backed cluster and
iterate according to the behavior indicated by the metrics for the RegionServers
resources and HBase read/write path components. For more details, see Sizing
Compute Capacity, Selecting an Instance Type. Also, consider costs while you
iterate on instance size and type. Refer to the AWS Simple Monthly Calculator
to quickly help you estimate costs for the different clusters of your test
environment.

To test the HBase configuration values you have selected as a starting value, use
one of the following options.

Traffic Segmentation
If the use case permits and the application traffic can be segmented by
API/Table, consider creating empty tables pre-partitioned with the same
number of regions as the original and then have the test cluster receive 10-50%
of the production traffic. Although this won’t be an accurate representation of
the production load, you will be able to iterate faster on the configurations for
most HBase components. This way, as soon as the HBase configuration values

https://calculator.s3.amazonaws.com/index.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 41

have been identified for the smaller cluster/set up, you can deploy a new cluster,
gradually increase the traffic load, and iterate again on the configurations.

Dataset Segmentation
Dataset segmentation is especially relevant for datasets on the terabyte and
petabyte scale. If you choose this option and the use case permits, we
recommend that you use between 10 to 30% of the overall dataset and iterate to
find the HBase configuration values that contribute to a stable cluster and good
response time for your application’s APIs. Alternatively, you can focus on a few
tables at first. As soon as you are satisfied with the performance with a subset of
the dataset or some of the tables, you can deploy to a new cluster pointing to the
full data set and iterate again on the configurations.

We provide steps on how to migrate and restore the full datasets in the next
section.

For both options, when you have identified a set of HBase properties that can be
adjusted to improve stability and performance, you can apply the configurations
to each node of the cluster with a script and then restart HBase. For more
details on the steps to restart HBase, see the Rolling Restart section.

When you are satisfied with the cluster behavior and application response times
with segmented traffic and dataset, you can also iterate on the instance size and
instance type for both the Amazon EMR Master and Amazon EMR Core/Task
Nodes. When you are ready to do so, you can terminate the test cluster, update
the Amazon EMR Configuration Settings, and deploy a new cluster. See the
Cluster termination without data loss section to follow the correct cluster
termination procedure.

Finally, when you are ready to test with the full production traffic and full
production dataset, size the cluster accordingly using the metrics for the
previous tests as a reference. Then, migrate the data and redeploy a new
Amazon EMR Cluster.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 42

Preparing the Test Environment
Preparing your AWS account for performance
testing
To identify the optimal configuration of your HBase on Amazon S3 cluster, you
will need to iterate on several configuration values during a testing stage. Not
only will you make changes to HBase configurations but also to the type and
family of the cluster's Amazon EC2 instances.

To avoid any impact on existing workloads on the account used for testing or
production, we recommend that you raise the limits identified in this section
according to your testing or production account needs.

Increasing Amazon EC2 and Amazon EBS Limits
To avoid any delays during performance tests, raise the following limits in your
AWS account since you may need to deploy several clusters at the same time
(replicas, clusters pointing to different HBase root directories, and so on). If
your cluster size is small, the default values may be sufficient. For more details
about the current limits applied into your account, refer to Trusted Advisor
(Login Required). If your cluster is expected to have more than 100 instances,
open an AWS Support Case (Login Required) to have the following Amazon EC2
and Amazon EBS limits increased:

• R5/R5d family: increase the limit to 200% of your clusters estimated
size for xl, 2xl and 4xl.

• Total volume storage of General Purpose SSD (gp2) volumes: increase
the limit with additional capacity (4x the total dataset size).

For example: if dataset is 40TB, the SSD available (instance store or
Amazon EBS Volumes) must be at least 40TB. Account for additional
storage because you may need to deploy several clusters at the same
time (replicas, clusters pointing to different Apache HBase root
directories). See the Sizing Local Storage section for more details.

Increasing AWS KMS limits
Amazon S3 encryption works with EMRFS objects read from and written to
Amazon S3. If you do not have a security requirement for data at-rest, then you

https://console.aws.amazon.com/trustedadvisor/home?region=us-east-1
https://console.aws.amazon.com/trustedadvisor/home?region=us-east-1
https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase&type=service_limit_increase
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 43

can skip this section. If your cluster is small, the default values may be
sufficient. For additional details about AWS KMS limits, refer to Requests per
second limit for each AWS KMS API operation.

Increasing Amazon DynamoDB limits
EMRFS Consistent View relies on an Amazon DynamoDB table that Amazon
EMR creates automatically for you. Some of the limits to consider are the
default limits for tables per account and default limits for provisioned
throughput per account. For additional details about these Amazon DynamoDB
limits, refer to Provisioned Throughput Default Limits and Tables Per Account.

Preparing Amazon S3 for your HBase workload
Amazon S3 can scale to support very high request rates to support your HBase
on Amazon S3 cluster. It’s valuable to understand the exact performance
characteristics of your HBase workloads when migrating to a new storage layer,
especially when moving to an object store such as Amazon S3.

Amazon S3 automatically scales to high request rates and currently supports up
to 3500 PUT/POST/DELETE requests per second and 5500 GET requests per
second per prefix in a bucket. If your request rate grows steadily, Amazon S3
automatically scales beyond these rates as needed.

If you expect the request rate per prefix to be higher than the preceding request
rate, or if you expect the request rate to rapidly increase instead of gradually
increase, the Amazon S3 bucket must be prepared to support the workloads of
your HBase on Amazon S3 Cluster. For more details on how to prepare the
Amazon S3 bucket, see the Preparing Amazon S3 for production load section.
This helps minimize throttling on Amazon S3. To understand how you can
recognize that Amazon S3 is throttling the requests from your cluster, see the
Troubleshooting section.

Enabling Amazon S3 metrics for the HBase on Amazon S3 root
directory
The Amazon CloudWatch request metrics for Amazon S3 enable the collection
of Amazon S3 API metrics for a specific bucket. These metrics provide a good
understanding of the TPS driven by your HBase cluster and they can be helpful
to identify any operational issues.

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second-table
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second-table
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#default-limits-capacity-units-provisioned-throughput
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#limits-tables

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 44

Note: Amazon CloudWatch metrics incur a cost. For more information, refer to
How Do I Configure Request Metrics for an S3 Bucket? and Monitoring Metrics
with Amazon CloudWatch.

Enabling Amazon S3 lifecycle rules to end and clean up incomplete
multipart uploads
HBase on Amazon S3 via EMRFS uses Amazon S3 Multipart API. The Multipart
upload API enables EMRFS to upload large objects in parts. For more details on
the Multipart API, refer to Multipart Upload Overview.

Note: After you initiate a multipart upload and upload one or more parts, you
must either complete or abort the multipart upload to stop storage charges of
the uploaded parts. Only after you either complete or abort a multipart upload
will Amazon S3 free up the parts storage and stop charging you for the parts
storage.

Amazon S3 provides a lifecycle rule that, when configured, automatically
removes incomplete multipart uploads. For complete steps on how to create a
Bucket Lifecycle Policy and apply it to the HBase root directory bucket, refer to
Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy.
Alternatively, you can use the AWS Console and configure the Lifecycle policy.
For more details, refer to Amazon S3 Lifecycle Management Update – Support
for Multipart Uploads and Delete Markers. We recommend that you configure
the lifecycle policy to end and clean up incomplete multipart uploads after 3
days.

Amazon EMR Cluster Setup
Selecting an Amazon EMR Release
We strongly recommended that you use the latest release of Amazon EMR when
possible. Refer to Amazon EMR 5.x Release Versions to find the software
versions available at the latest Amazon EMR release. For more details, refer to
Migrating from Previous HBase Versions.

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-metrics.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudwatch-monitoring.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudwatch-monitoring.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config
https://aws.amazon.com/blogs/aws/s3-lifecycle-management-update-support-for-multipart-uploads-and-delete-markers/
https://aws.amazon.com/blogs/aws/s3-lifecycle-management-update-support-for-multipart-uploads-and-delete-markers/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-migrate.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 45

We also recommend that you deploy the cluster with only the required
applications. This is especially important in production so you can properly use
the full resources of the cluster.

Applying HBase and EMRFS Configurations to the Cluster
Amazon EMR allows the configuration of applications by supplying a JSON
object with any changes to default values. For more information, refer to
Configuring Applications.

Applying HBase configurations
This section includes guidelines on how to construct the JSON object that can
be supplied to the cluster during cluster deployment. Most of these properties
are configured on the hbase-site.xml file.

Other settings of HBase, such as Region and Master server heap size and
logging settings, have their own configuration file and their own classification
when setting up the JSON object.

For an example JSON object to configure the properties written to hbase-
site.xml, see Configure HBase. In addition to hbase-site classification, you
may need to use classification hbase-log4j to change values in HBase's
hbase-log4j.properties file and classification hbase-env to change
values in HBase’s environment.

Configuring HBase to expose metrics via JMX
An example JSON object to configure HBase to expose metrics via JMX can be
found below.

[
 {
 "Classification": "hbase-env",
 "Properties": {
 },
 "Configurations": [
 {
 "Classification": "export",
 "Properties": {
 "HBASE_REGIONSERVER_OPTS": " -
Dcom.sun.management.jmxremote.ssl=false -

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-configure.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 46

Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=10102",
 "HBASE_MASTER_OPTS": “-
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=10101"
 },
 "Configurations": [
]
 }
]
 }
]

Configuring the Log Level for HBase

 {
 "Classification": "hbase-log4j",
 "Properties": {
 "log4j.logger.org.apache.hadoop.hbase": "DEBUG"
 }
 }

Applying EMRFS configurations
For an example JSON object to configure the EMRFS properties, refer to
Configure Consistent View.

Sizing the cluster compute and local storage resources
Sizing Compute Capacity, Selecting an Instance Type
When sizing your cluster, you can consider having a large cluster with a smaller
instance type or having a small cluster with a more powerful instance type. We
recommend extensive testing to find the correct instance type for your
application SLA. As a starting point, you can use the latest generation of
memory optimized instance types (R5/R5d) and the same region density per
RegionServer as in your HDFS backed cluster. R5d instances share the same
specifications as R5 instances, and also include up to 3.6TB of local NVMe
storage. For more details on these instance types, refer to Now Available: R5,
R5d, and z1d Instances. As you progress to tune the read and write path, first

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-configure-consistent-view.html
https://aws.amazon.com/blogs/aws/now-available-r5-r5d-and-z1d-instances/
https://aws.amazon.com/blogs/aws/now-available-r5-r5d-and-z1d-instances/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 47

establish a configuration that supports the SLA of your application. Then,
increase the region density by reducing the number of nodes in the cluster.

Sizing Local Storage
The disk requirements of the cluster depend on your application SLA and access
patterns. As a rule of thumb, read intensive applications benefit from caching
data on the BucketCache. For this reason, the disk size should be large enough
to cover all caching requirements, HDFS requirements (write path), and OS and
Apache Hadoop requirements.

Storage options on Amazon EMR
On Amazon EMR, you have the option to choose an Amazon EBS volume or the
instance store. The AMI used by your cluster dictates whether the root device
volume uses the instance store or an Amazon EBS volume. Some AMIs use
Amazon EC2 instance store, and some use Amazon EBS. When you configure
instance types in Amazon EMR, you can add Amazon EBS volumes, which
contribute to the total capacity together with instance store (if present) and the
default Amazon EBS volume. Amazon EBS provides the following volume types:
General Purpose (SSD), Provisioned IOPS (SSD), Throughput Optimized
(HDD), Cold (HDD), and Magnetic. They differ in performance characteristics
and price to support multiple analytic and business needs. For a detailed
description of storage options on Amazon EMR, refer to Instance Store and
Amazon EBS.

Selecting and Sizing Local Storage for the BucketCache
Most HBase workloads perform well with General Purpose volumes (GP2)
volumes. The volume mix per Amazon EMR Core instances can be either two or
more large volumes, or multiple small volumes, in addition to the root volume.
Note that when your instance has multiple volumes, the BucketCache is divided
across n-1 volumes. The first volume stores logs and temporary data. See the
Tuning the Size of the BucketCache section for details on how to choose a
starting value for the size of the BucketCache and the stark disk requirements
for your Amazon EMR Core/Task nodes.

Applying Security Configurations to Amazon EMR and EMRFS
You can use Security Configurations to apply the configurations that support at-
rest data encryption, in-transit data encryption, and authentication. For more
details, see Create a Security Configuration.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-create-security-configuration.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 48

Depending on the strategy you choose for authorizing access to HBase, HBase
configurations can be applied via the same process included in the Applying
HBase and EMRFS Configurations to the Cluster.

Due to performance issues reported when Block encryption is using 3DES,
Transparent Encryption is preferred over encrypting block data transfer. For
more details on Transparent Encryption, see the Transparent Encryption
Reference section.

Troubleshooting
Error message excerpt Description/Solution

Please reduce your request rate.
(Service: Amazon S3; Status Code:
503; Error Code: SlowDown…)

Amazon S3 is throttling requests from your cluster
due to an excessive number of transaction per
second to specific object prefixes.
Find the request rate and prepare the Amazon S3
bucket for that request rate. Use the metrics for the
Amazon S3 bucket location for the HBase root
directory to review the number of requests for the
previous hour (request rate). See the Preparing
Amazon S3 for your HBase workload and Preparing
Amazon S3 for Production load sections for details on
how to prepare the Amazon S3 bucket location for
the HBase root directory for your request rate.

Unable to execute HTTP request:
Timeout waiting for connection
from pool

Increase the value of the fs.s3.maxConnections
property.
See the Setting the total number of connections used
by EMRFS to read/write data from/to Amazon S3
section for more details on how to tune this property.

Migrating and Restoring Apache HBase
Tables on Apache HBase on Amazon S3
Data Migration
This paper covers using the ExportSnapshot tool to migrate the data. For
additional options, see Tips for Migrating to Apache HBase on Amazon S3 from
HDFS.

https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/
https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 49

Creating a Snapshot
To create a snapshot, perform the following commands from the HBase shell:

hbase shell
hbase(main):001:0>disable 'table_name'
hbase(main):002:0>snapshot 'table_name',
'table_name_snapshot_date'
hbase(main):003:0>enable 'table_name'

If you are taking the snapshot from a production HBase cluster and cannot
afford service disruption, you do not need to disable the table to take a
snapshot. There is minimal performance degradation if you keep the table
active. However, there may be some inconsistencies between the state of the
table at the end of the snapshot operation and the snapshot contents.

If you can afford service disruption in your production HBase cluster, disabling
the table guarantees that the snapshot is fully consistent with the state of the
disabled table.

Validating the Snapshot
As soon as the snapshot is concluded, use the following command to check that
the snapshot was successful.

hbase org.apache.hadoop.hbase.snapshot.SnapshotInfo -stats -
snapshot table_name_snapshot_date
Snapshot Info
--
 Name: table_name_snapshot_date
 Type: FLUSH
 Table: table_name
 Format: 2
Created: 2018-03-29T16:02:06
 Owner:

10 HFiles (0 in archive), total size 48.8 K (100.00% 48.8 K
shared with the source table)
0 Logs, total size 0

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 50

Exporting a Snapshot to Amazon S3
Next, use org.apache.hadoop.HBase.snapshot.ExportSnapshot to copy
the data over to the Apache HBase root directory on Amazon S3.

hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot
<snapshot_name> -copy-to s3://<HBase_on_S3_root_dir>/

As an example, the export of 40TB of data with 4x10GB Direct Connect takes
approximately four to five hours.

Data Restore
Creating an empty table
If you are restoring data from a snapshot, first create an empty table and then
issue a snapshot restore instead of a snapshot clone. A snapshot clone
(clone_snapshot) produces an actual copy of the files. A snapshot restore
(restore_snapshot) creates links to the files copied to the Amazon S3 root
directory.

hbase shell
hbase(main):001:0> create ‘table-name’,’cf1’
hbase(main):002:0> disable ‘table-name’

Syncing the EMRFS metadata table with Amazon S3
The first step in restoring a table from a snapshot is to SSH into the Amazon
EMR Master and perform an emrfs sync. You can also use an Amazon EMR
Step to run this command. This command adds the objects in the Hbase root
directory to the EMRFS metadata table.

emrfs sync s3://{bucket}/{HBase-root}/ --read-consumption
<value> --write-consumption <value>

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 51

Validating the metadata items “deletionTTL” attribute
Next, run the following command to verify that all entries in the metadata have
the “deletionTTL” attribute properly set.

emrfs validate-ttl –m <MetadataTableName>

If some entries are missing a TTL, the output of the emrfs validate-ttl
command includes entries that have “MISSING TTL FIELD” messages. In this
case, run the following command to populate the TTL for entries that already
exist in the metadata table:

emrfs populate-ttl –m <MetadataTableName> --read-consumption
<value> --write-consumption <value>

Note: Given that there is no traffic or activity on the HBase cluster, the value of
–-read-consumption and --write-consumption can match the capacity
allocated to the Amazon DynamoDB table that supports the metadata.

Restoring the snapshot from the HBase shell
After creating an empty table and loading all of the objects under the Hbase on
Amazon S3 root directory to the EMRFS metadata, you can restore the
snapshot.

hbase(main):004:0> restore_snapshot ‘table-name-snapshot’
hbase(main):005:0> enable ‘table-name’

Deploying into Production
After you complete the steps in this section, you are ready to migrate the full
dataset from your HDFS-backed cluster to HBase on Amazon S3 and restore it
to an HBase on Amazon S3 cluster running in your AWS production account.

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 52

Preparing Amazon S3 for Production load
Analyze the Amazon Cloudwatch metrics for Amazon S3 captured for the HBase
root directory in the development account and confirm the number of requests
per Amazon S3 API as noted in the Preparing the Test Environment section.

If you expect a rapid increase in the request rate for the HBase on Amazon S3
root directory bucket in the production account to more than the rates in the
Preparing the Test Environment section,open a support case to prepare for the
workload and to avoid any temporary limits on your request rate. You do not
need to open a support case for request rates lower than those in the Preparing
the Test Environment section.

Preparing the Production environment
Follow all the steps in the Preparing the Test Environment to prepare your
Production Environment with the configuration settings you have found during
the testing phase.

To migrate and restore the full dataset into the production environment, follow
the steps in the Migrating and Restoring HBase Tables on HBase on Amazon S3
section.

Managing the Production Environment
Operationalization tasks
Node Decommissioning
When a node is gracefully decommissioned by the YARN Resource Manager
(during a user initiated shrink operation or node failures such as bad disk), the
regions are first closed and then shut down by the RegionServer. You can also
gracefully decommission a RegionServer on any active node by stopping the
daemon manually. This step may be required while troubleshooting a particular
RegionServer in the cluster.

sudo stop hbase-regionserver

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 53

During shutdown, the RegionServer’s Znode expires. The HMaster notices this
event and considers that RegionServer as a crashed server. The HMaster then
reassigns the regions the RegionServer used to serve to other online
RegionServers. Depending on the prefetch settings, the RegionServer warms the
cache on the new RegionServer that is now assigned to serve the region.

Rolling Restart
A rolling restart restarts HMaster process on the master node and
HRegionServer process on all the core nodes.

Check for any inconsistencies and make sure that the HBase balancer is turned
off so that the load balancer does not interfere with region deployments.

Use the shell to disable HBase balancer:

hbase(main):001:0> balance_switch false
true
0 row(s) in 0.2970 seconds

The following is a sample script that performs a rolling restart on an Apache
HBase cluster. This script should be executed on the Amazon EMR Master node
that has the Amazon EC2 Key Pair (.pem extension) file to login to the Amazon
EMR Core nodes.

#!/bin/bash
sudo stop hbase-master; sudo start hbase-master
for node in $(yarn node -list | grep -i ip- | cut -f2 -d: | cut
-f2 -d'G' | xargs) ; do
 ssh -i ~/hadoop.pem -t -o "StrictHostKeyChecking no"
hadoop@$node "sudo stop hbase-regionserver;sudo start hbase-
regionserver"
done
sudo stop hbase-master; sudo start hbase-master #Restart HMaster
again to clear out dead servers list and reenable the balancer
hbase hbck #Run hbck utility to make sure HBase is consistent

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 54

Cluster resize
Nodes can be added or removed from the HBase clusters on Amazon S3 by
performing a resize operation on the cluster. If an AutoScaling policy was set
based on a specific CloudWatch metric (such as IsIdle), the resize operation
happens based on that policy. All these operations are performed gracefully.

Backup and Restore
With HBase on Amazon S3 you can still consider taking snapshots of your tables
every few hours (and deleting them after some days) so you have a point in time
recovery option available to you. See also the Running the balancer for specific
periods to minimize the impact of region movements on snapshots section.

Cluster termination without data loss
If you want to terminate the current cluster and build a new one on the same
Amazon S3 root directory, we recommend that you disable all of the tables in
the current cluster. This ensures that all of the data that have not been written
to S3 yet are flushed from MemStore cache to Amazon S3 in the form of new
store files. To do so, the script below uses an existing script
(/usr/lib/hbase/bin/disable_all_tables.sh) to disable the tables.

#!/bin/bash
clusterID=$(cat /mnt/var/lib/info/job-flow.json | jq -r
".jobFlowId")
#call disable_all_tables.sh
bash /usr/lib/hbase/bin/disable_all_tables.sh
#Store the output of "list" command in a temp file
echo "list" | hbase shell > tableListSummary.txt
#fetch only the list of tables and store it in an another temp
file
tail -1 tableListSummary.txt | tr ',' '\n' | tr -d '"' | tr -d [
| tr -d] | tr -d ' ' > tableList.txt

#prepare for iteration
while true; do
 while read line; do
 flag="N"
 echo "is_enabled '$line'" | hbase shell > bool.txt
 bool=$(tail -3 bool.txt | head -1)
 if ["$bool" = "true"]; then

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 55

 flag="Y"
 break
 fi
 done < tableList.txt
echo "flag: "$flag
if ["$flag" = "N"]; then
 aws emr terminate-clusters --cluster-ids $clusterID
 break
else
 echo "Tables aren't disabled yet. Sleeping for 5 seconds
to try again"
fi
sleep 5
done

#cleanup temporary files
rm tableListSummary.txt tableList.txt bool.txt

The above script can be place on a file and named
disable_and_terminate.sh. Note that the script does not exist on the
instance. You can add an Amazon EMR step to first copy the script to the
instance and then run the step to disable and terminate the cluster. To run the
script, you can use the Amazon EMR Step properties below.

Name="Disable all tables",Jar="command-
runner.jar",Args=["/bin/bash","/home/hadoop/disable_and_terminat
e.sh"]

OS and Apache HBase patching
Similar to AMI upgrades on Amazon EC2, the Amazon EMR service team plans
for application upgrades with every new Amazon EMR version release. This
removes any OS and Apache HBase patching activities from your team. The
latest version of Amazon EMR (5.17.0 as of this paper) runs Apache HBase
version 1.4.6. Details of each Amazon EMR version release can be found on
Amazon EMR 5.x Release Versions.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 56

Conclusion
This paper includes steps to help you migrate from Apache HBase on HDFS to
Apache HBase on Amazon S3 on Amazon EMR. The migration plan provided
detailed steps and HBase properties to configure when migrating to HBase on
Amazon S3 on Amazon EMR.

Using the various best practices and recommendations highlighted in this
whitepaper, we encourage you to test several values for HBase configuration
properties so your HBase on Amazon S3 on Amazon EMR cluster supports the
performance requirements of your application and use case.

Contributors
The following individuals contributed to this document:

• Francisco Oliveira, Senior Big Data Consultant, Amazon Web Services

• Tony Nguyen, Senior Big Data Consultant, Amazon Web Services

• Veena Vasudevan, Big Data Support Engineer, Amazon Web Services

Further Reading
For additional information, see the following:

• HBase on Amazon S3 Documentation

• Tips for Migrating to Apache HBase on Amazon S3 from HDFS

• Low-Latency Access on Trillions of Records: FINRA’s Architecture
Using Apache HBase on Amazon EMR with Amazon S3

• Setting up Read Replica Clusters with HBase on Amazon S3

• Use Kerberos Authentication to Integrate Amazon EMR with Microsoft
Active Directory

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html
https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/setting-up-read-replica-clusters-with-hbase-on-amazon-s3/
https://aws.amazon.com/blogs/big-data/use-kerberos-authentication-to-integrate-amazon-emr-with-microsoft-active-directory/
https://aws.amazon.com/blogs/big-data/use-kerberos-authentication-to-integrate-amazon-emr-with-microsoft-active-directory/

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 57

Document Revisions
Date Description

October 2018 First publication

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 58

Appendix A: Command Reference
Restart HBase
Commands to run on the master:
 sudo stop hbase-master

 sudo stop hbase-rest

 sudo stop hbase-thrift

 sudo stop zookeeper-server

 sudo start hbase-master

 sudo start hbase-rest

 sudo start hbase-thrift

 sudo start zookeeper-server

Commands to run in all core nodes
 sudo stop hbase-regionserver

 sudo start hbase-regionserver

EMRFS TTL sub-commands

emrfs populate-ttl [options]
Populate TTL attribute for tombstoned entries.
Options:
-m <value> | --metadata-name <value>
name of the metadata
--read-consumption <value>
amount of dynamodb read capacity to consume, limited by table maximum
--write-consumption <value>
amount of dynamodb write capacity to consume, limited by table maximum

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 59

emrfs validate-ttl [options]
Validate that TTL attributes are set correctly. This command will go through the
EMRFS Amazon DynamoDB table and validate that the deletionTTL is set
properly.
Options:
-m <value> | --metadata-name <value>
name of the metadata

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 60

Appendix B: AWS IAM Policy Reference
The policies that follow are annotated with comments - remove the comments
prior to use.

Minimal EMR Service Role Policy
{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Resource": "*",

 "Action": [

 "ec2:AuthorizeSecurityGroupEgress",

 "ec2:AuthorizeSecurityGroupIngress",

 "ec2:CancelSpotInstanceRequests",

 "ec2:CreateNetworkInterface",

 "ec2:CreateSecurityGroup",

 "ec2:CreateTags",

 "ec2:DeleteNetworkInterface", // This is only needed if you are

launching clusters in a private subnet.

 "ec2:DeleteTags",

 "ec2:DeleteSecurityGroup", // This is only needed if you are

using Amazon managed security groups for private subnets. You can omit this

action if you are using custom security groups.

 "ec2:DescribeAvailabilityZones",

 "ec2:DescribeAccountAttributes",

 "ec2:DescribeDhcpOptions",

 "ec2:DescribeImages",

 "ec2:DescribeInstanceStatus",

 "ec2:DescribeInstances",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeNetworkInterfaces",

 "ec2:DescribePrefixLists",

 "ec2:DescribeRouteTables",

 "ec2:DescribeSecurityGroups",

 "ec2:DescribeSpotInstanceRequests",

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 61

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeSubnets",

 "ec2:DescribeTags",

 "ec2:DescribeVpcAttribute",

 "ec2:DescribeVpcEndpoints",

 "ec2:DescribeVpcEndpointServices",

 "ec2:DescribeVpcs",

 "ec2:DetachNetworkInterface",

 "ec2:ModifyImageAttribute",

 "ec2:ModifyInstanceAttribute",

 "ec2:RequestSpotInstances",

 "ec2:RevokeSecurityGroupEgress",

 "ec2:RunInstances",

 "ec2:TerminateInstances",

 "ec2:DeleteVolume",

 "ec2:DescribeVolumeStatus",

 "ec2:DescribeVolumes",

 "ec2:DetachVolume",

 "iam:GetRole",

 "iam:GetRolePolicy",

 "iam:ListInstanceProfiles",

 "iam:ListRolePolicies",

 "s3:CreateBucket",

 "sdb:BatchPutAttributes",

 "sdb:Select",

 "cloudwatch:PutMetricAlarm",

 "cloudwatch:DescribeAlarms",

 "cloudwatch:DeleteAlarms",

 "application-autoscaling:RegisterScalableTarget",

 "application-autoscaling:DeregisterScalableTarget",

 "application-autoscaling:PutScalingPolicy",

 "application-autoscaling:DeleteScalingPolicy",

 "application-autoscaling:Describe*"

]

 },

 {

 "Effect": "Allow",

 "Resource":

["arn:aws:s3:::examplebucket/*","arn:aws:s3:::examplebucket2/*"], // Here you

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 62

can specify the list of buckets which are going to be storing cluster logs,

bootstrap action script, custom JAR files, input & output paths for EMR steps

 "Action": [

 "s3:GetBucketLocation",

 "s3:GetBucketCORS",

 "s3:GetObjectVersionForReplication",

 "s3:GetObject",

 "s3:GetBucketTagging",

 "s3:GetObjectVersion",

 "s3:GetObjectTagging",

 "s3:ListMultipartUploadParts",

 "s3:ListBucketByTags",

 "s3:ListBucket",

 "s3:ListObjects",

 "s3:ListBucketMultipartUploads"

]

 },

 {

 "Effect": "Allow",

 "Resource": "arn:aws:sqs:*:123456789012:AWS-ElasticMapReduce-*", //

This will allow EMR to only perform actions (Creating queue, receiving messages,

deleting queue, etc) on SQS queues whose names are prefixed with the literal

string AWS-ElasticMapReduce-

 "Action": [

 "sqs:CreateQueue",

 "sqs:DeleteQueue",

 "sqs:DeleteMessage",

 "sqs:DeleteMessageBatch",

 "sqs:GetQueueAttributes",

 "sqs:GetQueueUrl",

 "sqs:PurgeQueue",

 "sqs:ReceiveMessage"

]

 },

 {

 "Effect": "Allow",

 "Action": "iam:CreateServiceLinkedRole", // EMR needs permissions

to create this service-linked role for launching EC2 spot instances

 "Resource": "arn:aws:iam::*:role/aws-service-

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 63

role/spot.amazonaws.com/AWSServiceRoleForEC2Spot*",

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": "spot.amazonaws.com"

 }

 }

 },

 {

 "Effect": "Allow",

 "Action": "iam:PassRole", // We are passing the custom EC2 instance

profile (defined below) which has bare minimum permissions

 "Resource": [

 "arn:aws:iam::*:role/Custom_EMR_EC2_role",

 "arn:aws:iam::*:role/EMR_AutoScaling_DefaultRole"

]

 }

]

}

Minimal Amazon EMR Role for Amazon EC2
(Instance Profile) Policy
{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Resource": "*",

 "Action": [

 "ec2:Describe*",

 "elasticmapreduce:Describe*",

 "elasticmapreduce:ListBootstrapActions",

 "elasticmapreduce:ListClusters",

 "elasticmapreduce:ListInstanceGroups",

 "elasticmapreduce:ListInstances",

 "elasticmapreduce:ListSteps"

]

 },

 {

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 64

 "Effect": "Allow",

 "Resource": [// Here you can specify the list of buckets which

are going to be accessed by applications (Spark, Hive, etc) running on the nodes

of the cluster

 "arn:aws:s3:::examplebucket1/*",

 "arn:aws:s3:::examplebucket1*",

 "arn:aws:s3:::examplebucket2/*",

 "arn:aws:s3:::examplebucket2*"

],

 "Action": [

 "s3:GetBucketLocation",

 "s3:GetBucketCORS",

 "s3:GetObjectVersionForReplication",

 "s3:GetObject",

 "s3:GetBucketTagging",

 "s3:GetObjectVersion",

 "s3:GetObjectTagging",

 "s3:ListMultipartUploadParts",

 "s3:ListBucketByTags",

 "s3:ListBucket",

 "s3:ListObjects",

 "s3:ListBucketMultipartUploads",

 "s3:PutObject",

 "s3:PutObjectTagging",

 "s3:HeadBucket",

 "s3:DeleteObject"

]

 },

 {

 "Effect": "Allow",

 "Resource": "arn:aws:sqs:*:123456789012:AWS-ElasticMapReduce-*", //

This will allow EMR to only perform actions (Creating queue, receiving messages,

deleting queue, etc) on SQS queues whose names are prefixed with the literal

string AWS-ElasticMapReduce-

 "Action": [

 "sqs:CreateQueue",

 "sqs:DeleteQueue",

 "sqs:DeleteMessage",

 "sqs:DeleteMessageBatch",

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 65

 "sqs:GetQueueAttributes",

 "sqs:GetQueueUrl",

 "sqs:PurgeQueue",

 "sqs:ReceiveMessage"

]

 }

]

}

Minimal Role Policy for User Launching Amazon
EMR Clusters
// This policy can be attached to an AWS IAM user who will be launching EMR

clusters. It provides minimum access to the user to launch, monitor and

terminate EMR clusters

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "Statement1",

 "Effect": "Allow",

 "Action": "iam:CreateServiceLinkedRole",

 "Resource": "*",

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": [

 "elasticmapreduce.amazonaws.com",

 "elasticmapreduce.amazonaws.com.cn"

]

 }

 }

 },

 {

 "Sid": "Statement2",

 "Effect": "Allow",

 "Action": [

 "iam:GetPolicyVersion",

 "ec2:AuthorizeSecurityGroupIngress",

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 66

 "ec2:DescribeInstances",

 "ec2:RequestSpotInstances",

 "ec2:DeleteTags",

 "ec2:DescribeSpotInstanceRequests",

 "ec2:ModifyImageAttribute",

 "cloudwatch:GetMetricData",

 "cloudwatch:GetMetricStatistics",

 "cloudwatch:ListMetrics",

 "ec2:DescribeVpcAttribute",

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeAvailabilityZones",

 "ec2:CreateRoute",

 "ec2:RevokeSecurityGroupEgress",

 "ec2:CreateSecurityGroup",

 "ec2:DescribeAccountAttributes",

 "ec2:ModifyInstanceAttribute",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeRouteTables",

 "ec2:AuthorizeSecurityGroupEgress",

 "ec2:TerminateInstances", //This action can be scoped in similar

manner like it has been done below for "elasticmapreduce:TerminateJobFlows"

 "iam:GetPolicy",

 "ec2:CreateTags",

 "ec2:DeleteRoute",

 "iam:ListRoles",

 "ec2:RunInstances",

 "ec2:DescribeSecurityGroups",

 "ec2:CancelSpotInstanceRequests",

 "ec2:CreateVpcEndpoint",

 "ec2:DescribeVpcs",

 "ec2:DescribeSubnets",

 "elasticmapreduce:*"

],

 "Resource": "*"

 },

 {

 "Sid": "Statement3",

 "Effect": "Allow",

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 67

 "Action": [

 "elasticmapreduce:TerminateJobFlows"

],

 "Resource":"*",

 "Condition": {

 "StringEquals": {

 "elasticmapreduce:ResourceTag/custom_key": "custom_value" //

Here you can specify the key value pair of your custom tag so that this IAM user

can only delete the clusters which are appropriately tagged by the user

 }

 }

 },

 {

 "Sid": "Statement4",

 "Effect": "Allow",

 "Action": "iam:PassRole",

 "Resource": [

 "arn:aws:iam::*:role/Custom_EMR_Role",

 "arn:aws:iam::*:role/Custom_EMR_EC2_role",

 "arn:aws:iam::*:role/EMR_AutoScaling_DefaultRole"

]

 }

]

}

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 68

Appendix C: Transparent Encryption
Reference
To configure Transparent Encryption, use the following EMR Configuration
JSON:

[{"classification":"hdfs-encryption-
zones","properties":{"/user/hbase":"hbase-key"}}]

In addition to the classification above, you must disable HDFS Opensource
Security. By default, EMR Security Configurations for at-rest Encryption for
Local Disks tie Open-source HDFS Encryption with LUKs encryption.

If you need to configure Transparent Encryption and your application is latency
sensitive, do not enable at-rest encryption via EMR Security Configuration. You
can configure LUKS via a bootstrap action.

To check that WALs are being encrypted, use the following commands:

sudo –u hdfs hdfs dfs -ls /user/HBase/WAL/ip-xx-xx-x-
xx.ec2.internal,16020,1520373175110

sudo –u hdfs hdfs crypto -getFileEncryptionInfo -path
/user/HBase/WAL/WALs/ip-xx-xx-x-
xx.ec2.internal,16020,1520373175110/ip-xx-xx-x-
xx.ec2.internal%2C16020%2C1520373175110.1520373184129

To verify that the oldWALs are being encrypted, the output to the last command
should be the following:

{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16},
cryptoProtocolVersion:
CryptoProtocolVersion{description='Encryption zones', version=2,
unknownValue=null}, edek:
7c3c2fcf8337f14bbf815697686de5a696c6670c0f41eb71678b53ee5326c33e

Amazon Web Services – Migrating to Apache HBase on Amazon S3 on Amazon EMR

Page 69

, iv: eac6cf91bdd2eee8496f1ddb19b4fcf8, keyName: HBase-key,
ezKeyVersionName: hbase-key@0}

Note: The default configurations grant access to the DECRYPT_EEK operation
on all keys (/etc/hadoop-kms/conf/kms-acls.xml).

For more details, see Transparent Encryption in HDFS on Amazon EMR and
Transparent Encryption in HDFS.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-encryption-tdehdfs.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html

	Introduction
	Introduction to Apache HBase
	Introduction to Amazon EMR
	Introduction to Amazon S3
	Introduction to EMRFS
	Running Apache HBase directly on Amazon S3 with Amazon EMR

	Use cases for Apache HBase on Amazon S3
	Planning the Migration to Apache HBase on Amazon S3
	Preparation task
	Selecting a Monitoring Strategy
	Monitoring Apache HBase, subsystems, and dependent systems
	Monitoring the write path
	Monitoring the read path
	Monitoring with a third-party tool
	Monitoring Cluster components with Ganglia
	Monitoring EMRFS Consistent View

	Planning for Security on Amazon EMR and Amazon S3
	Encryption
	Authentication and Authorization
	Authentication on Amazon EMR
	Authorization on Amazon EMR
	Object-level Authorization
	HBase Authorization

	Network
	Minimal AWS IAM Policy
	Custom AMIs and Applying Security Controls to Harden your AMI
	Auditing

	Identifying Apache HBase and EMRFS Tuning Options
	Apache HBase on Amazon S3 configuration properties
	Speeding up the Cluster initialization
	HBase master tuning
	HBase RegionServer tuning

	Preventing initialization loops
	Relevant Master initialization timeouts

	Scaling to a high number of regions
	Getting a balanced Cluster after initialization
	Preventing timeouts during Snapshot operations
	Running the balancer for specific periods to minimize the impact of region movements on snapshots
	Tuning the Balancer

	Access Pattern considerations and read/write path tuning
	Tuning the Read Path
	Tuning the Size of the BucketCache
	Pre-warming the BucketCache
	Modifying the Table Schema to Support Pre-warming

	Tuning the Updates/Write Path

	Region size considerations
	Controlling the Size of Regions and Region Splits

	Tuning HBase Compactions
	Controlling Major Compactions
	Reduce the frequency of minor compactions and control the size of HFiles to reduce Amazon S3 traffic

	Controlling the storage footprint locally and on Amazon S3
	Ensuring the Cleaner Chore is always running
	Speeding up the Cleaner Chore

	Porting existing settings to HBase on Amazon S3

	EMRFS Configuration Properties
	Setting the total number of connections used by EMRFS to read/write data from/to Amazon S3
	Setting the behavior of EMRFS in case inconsistencies are detected
	Configuring the capacity of the EMRFS metadata table to avoid request throttling
	Updating the read and write capacity of the EMRFS metadata after initial creation
	Monitoring the EMRFS metadata table

	Preventing the EMRFS Metadata table from growing indefinitely
	Editing Emrfs-site.xml
	Enabling TTL Support for the Amazon DynamoDB table

	Isolating the EMRFS metadata table from other clusters

	Testing Apache HBase and EMRFS Configuration Values
	Options to approach performance testing
	Traffic Segmentation
	Dataset Segmentation

	Preparing the Test Environment
	Preparing your AWS account for performance testing
	Increasing Amazon EC2 and Amazon EBS Limits
	Increasing AWS KMS limits
	Increasing Amazon DynamoDB limits

	Preparing Amazon S3 for your HBase workload
	Enabling Amazon S3 metrics for the HBase on Amazon S3 root directory
	Enabling Amazon S3 lifecycle rules to end and clean up incomplete multipart uploads

	Amazon EMR Cluster Setup
	Selecting an Amazon EMR Release
	Applying HBase and EMRFS Configurations to the Cluster
	Applying HBase configurations
	Configuring HBase to expose metrics via JMX
	Configuring the Log Level for HBase
	Applying EMRFS configurations

	Sizing the cluster compute and local storage resources
	Sizing Compute Capacity, Selecting an Instance Type
	Sizing Local Storage
	Storage options on Amazon EMR
	Selecting and Sizing Local Storage for the BucketCache

	Applying Security Configurations to Amazon EMR and EMRFS

	Troubleshooting

	Migrating and Restoring Apache HBase Tables on Apache HBase on Amazon S3
	Data Migration
	Creating a Snapshot
	Validating the Snapshot
	Exporting a Snapshot to Amazon S3

	Data Restore
	Creating an empty table
	Syncing the EMRFS metadata table with Amazon S3
	Validating the metadata items “deletionTTL” attribute
	Restoring the snapshot from the HBase shell

	Deploying into Production
	Preparing Amazon S3 for Production load
	Preparing the Production environment

	Managing the Production Environment
	Operationalization tasks
	Node Decommissioning
	Rolling Restart
	Cluster resize
	Backup and Restore
	Cluster termination without data loss
	OS and Apache HBase patching

	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Appendix A: Command Reference
	Restart HBase
	Commands to run on the master:
	Commands to run in all core nodes

	EMRFS TTL sub-commands
	emrfs populate-ttl [options]
	emrfs validate-ttl [options]

	Appendix B: AWS IAM Policy Reference
	Minimal EMR Service Role Policy
	Minimal Amazon EMR Role for Amazon EC2 (Instance Profile) Policy
	Minimal Role Policy for User Launching Amazon EMR Clusters

	Appendix C: Transparent Encryption Reference

