
Security Overview of
AWS Lambda

An In-Depth Look at Lambda Security

March 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents AWS’s current product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS’s products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. AWS’s responsibilities and liabilities to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

About AWS Lambda .. 1

Benefits of Lambda .. 2

Cost for Running Lambda-Based Applications ... 3

The Shared Responsibility Model ... 4

Lambda Runtime Environment.. 5

Isolation Between Functions and Between MicroVMs .. 6

Storage and State .. 7

Invoke Data Path ... 8

Runtime Maintenance in Lambda ... 9

Monitoring and Auditing Lambda Functions ... 10

Amazon CloudWatch ... 10

Amazon CloudTrail ... 10

AWS X-Ray .. 10

AWS Config .. 10

Architecting and Operating Lambda Functions .. 11

Lambda and Compliance .. 12

Conclusion ... 12

Contributors ... 13

Further Reading ... 13

Document Revisions.. 13

Appendix – Lambda EC2 & Firecracker Models .. 14

Abstract

This whitepaper presents a deep dive of the AWS Lambda service through a security

lens. It provides a well-rounded picture of the service, which can be useful for new

adopters, as well as deepening understanding of AWS Lambda for current users.

The intended audience for this whitepaper is Chief Information Security Officers

(CISOs), information security groups, security analysts, enterprise architects,

compliance teams, and any others interested in understanding the underpinnings of

AWS Lambda.

Amazon Web Services Security Overview of AWS Lambda

 Page 1

Introduction

Today, more workloads are using AWS Lambda to achieve scalability, performance,

and cost efficiency, without managing the underlying infrastructure. These workloads

scale to thousands of concurrent requests per second, making AWS Lambda one of the

many important services that is offered by AWS today. AWS Lambda is used by

hundreds of thousands of AWS customers to serve trillions of requests every month.

A broad variety of customers, from media and entertainment to financial services and

other regulated industries, are taking notice of AWS Lambda. These customers are

more interested in decreasing time to market, optimizing costs, and improving agility by

focusing on what they do best: running their business. Lambda has become the obvious

choice for mission critical applications in many industries.

The managed runtime environment model of AWS Lambda intentionally hides many

implementation details from the user, making some of the existing best practices for

cloud security irrelevant, and creating the need for new best practices. This paper

presents those best practices, including information on the underpinnings of Lambda,

providing a detailed view to developers, security analysts, compliance teams, and other

stakeholders.

About AWS Lambda

AWS Lambda is an event-driven, serverless compute service that extends other AWS

services with custom logic, or creates other backend services that operate with scale,

performance, and security. Lambda can automatically run code in response to multiple

events, such as HTTP requests through Amazon API Gateway, modifications to objects

in Amazon S3 buckets, table updates in Amazon DynamoDB, and state transitions in

AWS Step Functions. You can also run code directly from any web or mobile app.

Lambda runs code on a highly available compute infrastructure, and performs all of the

administration of the underlying platform, including server and operating system

maintenance, capacity provisioning and automatic scaling, patching, code monitoring,

and logging.

With Lambda, you can just upload your code and configure when to invoke it; Lambda

takes care of everything else required to run your code with high availability. Lambda

integrates with many other AWS services and enables you to create serverless

applications or backend services, ranging from periodically triggered, simple automation

tasks to full-fledged microservices applications.

https://aws.amazon.com/lambda/
https://aws.amazon.com/serverless/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/step-functions/

Amazon Web Services Security Overview of AWS Lambda

 Page 2

Lambda can also be configured to access resources within your Amazon Virtual Private

Cloud, and by extension, your on-premises resources.

You can easily wrap up Lambda with a strong security posture using AWS Identity and

Access Management (IAM), and other techniques discussed in this whitepaper, to

maintain a high level of security and auditing, and to meet your compliance needs.

Benefits of Lambda

Customers who want to unleash the creativity and speed of their development

organizations, without compromising their IT team’s ability to provide a scalable, cost-

effective, and manageable infrastructure, find that AWS Lambda lets them trade

operational complexity for agility and better pricing, without compromising on scale or

reliability.

Lambda offers many benefits, including the following.

No Servers to Manage

Lambda runs your code on highly available, fault-tolerant infrastructure spread across

multiple Availability Zones in a single region, seamlessly deploying code, and providing

all the administration, maintenance, and patches of the infrastructure. Lambda also

provides built-in logging and monitoring, including integration with Amazon CloudWatch,

CloudWatch Logs, and AWS CloudTrail.

Continuous Scaling

Lambda precisely manages scaling of your functions (or application) by running event

triggered code in parallel, and processing each event individually.

Subsecond Metering

With AWS Lambda, you are charged for every 100 ms your code executes and the

number of times your code is triggered. You pay for consistent throughput or execution

duration, instead of by server unit.

Increases Innovation

Lambda frees up your programming resources by taking over the infrastructure

management, allowing them to focus more on innovation and development of business

logic.

https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Web Services Security Overview of AWS Lambda

 Page 3

Modernize your Applications

Lambda enables you to use functions with pre-trained machine learning models to inject

artificial intelligence into applications easily. A single API request can classify images,

analyze videos, convert speech to text, perform natural language processing, and more.

Rich Ecosystem

Lambda provides a rich ecosystem, supporting developers through AWS Serverless

Application Repository for discovering, deploying and publishing serverless applications,

AWS Serverless Application Model for building serverless applications and integrations

with various IDEs like AWS Cloud9, AWS Toolkit for Visual Studio, AWS Tools for

Visual Studio Team Services, and several others. Along with this, Lambda is integrated

with additional AWS services to provide you a rich ecosystem for building serverless

applications.

Cost for Running Lambda-Based Applications

Lambda offers a granular, pay-as-you-go pricing model. With this model, you are

charged based on the number of function invocations and their duration (the time it

takes for the code to execute). In addition to this flexible pricing model, Lambda also

offers 1 million perpetually free requests per month, allowing many customers to

automate their process without any costs.

https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/vsts/
https://aws.amazon.com/vsts/
https://aws.amazon.com/blogs/aws/new-aws-toolkits-for-pycharm-intellij-preview-and-visual-studio-code-preview/
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://aws.amazon.com/lambda/pricing/

Amazon Web Services Security Overview of AWS Lambda

 Page 4

The Shared Responsibility Model

Security and Compliance is a shared responsibility between AWS and the customer.

This shared responsibility model can help relieve your operational burden as AWS

operates, manages, and controls the components from the host operating system and

virtualization layer, down to the physical security of the facilities in which the service

operates. You assume responsibility and management of the guest operating system

(including updates and security patches) and other associated application software, as

well as the configuration of the AWS-provided security group firewall.

For AWS Lambda, AWS manages the underlying infrastructure and foundation services,

the operating system, and the application platform. You are responsible for the security

of your code, the storage and accessibility of sensitive data, and identity and access

management (IAM) to the Lambda service and within your function.

Figure 1 shows the shared responsibility model for AWS Lambda. AWS responsibilities

appear in orange and customer responsibilities appear in blue. AWS assumes more

responsibility for applications deployed to Lambda.

Figure 1 – Shared Responsibility Model for AWS Lambda

https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services Security Overview of AWS Lambda

 Page 5

Lambda Runtime Environment

When Lambda executes a function on your behalf, it manages both provisioning and the

resources necessary to run your code. This enables your developers to focus on

business logic and writing code, not administering systems.

The Lambda service is split into the control plane and the data plane. Each plane

serves a distinct purpose in the service. The control plane provides the function

management APIs (CreateFunction, UpdateFunctionCode), and manages integrations

with all AWS services. The data plane controls the Invoke API that runs Lambda

functions. When a Lambda function is invoked, the data plane allocates an execution

environment to that function, or chooses an existing execution environment that has

already been set up for that function, then runs the function code in that environment.

Each function runs in one or more dedicated execution environments that are used for

the lifetime of the function and then destroyed. Each execution environment hosts one

concurrent invocation, but is reused in place across multiple serial invocations of the

same function. Execution environments run on hardware virtualized virtual machines

(microVMs). A microVM is dedicated to an AWS account, but can be reused by

execution environments across functions within an account. MicroVMs are packed onto

an AWS owned and managed hardware platform (Lambda Workers). Execution

environments are never shared across functions, and microVMs are never shared

across AWS accounts.

Figure 2 – Isolation model for AWS Lambda

Amazon Web Services Security Overview of AWS Lambda

 Page 6

Isolation Between Functions and Between MicroVMs

Each execution environment contains a dedicated copy of the following items:

• The function code

• Any Lambda layers selected for your function

• The function runtime, either built-in (Java 8, NodeJS 8, Python 3.7, etc.) or

custom runtime

• A minimal Linux userland based on Amazon Linux

Execution environments are isolated from one another using several container

technologies built in to the Linux kernel. These technologies include:

• cgroups – Constrain resource access to limiting CPU, memory, disk throughput,

and network throughput, per execution environment.

• namespaces – Group process IDs, user IDs, network interfaces, and other

resources managed by the Linux kernel. Each execution environment runs in a

dedicated namespace.

• seccomp-bpf – Limit the syscalls that can be used from within the execution

environment.

• iptables and routing tables – Isolate execution environments from each other.

• chroot – Provide scoped access to the underlying filesystem.

Along with AWS proprietary isolation technologies, these mechanisms provide strong

isolation between execution environments. This isolation ensures that environments are

not able to access or modify data that belongs to other environments.

Although multiple execution environments from a single AWS account can run on a

single microVM, microVMs are never shared or reused between AWS accounts. At this

time, AWS Lambda uses two different mechanisms for isolating microVMs: EC2

instances and Firecracker. EC2 instances have been used for Lambda guest isolation

since 2015. Firecracker is a new open source hypervisor developed by AWS especially

for serverless workloads, and was introduced in 2018. The underlying physical

hardware running microVMs will be shared by workloads from multiple accounts. For

more information, see Appendix – Lambda EC2 & Firecracker Models.

https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://firecracker-microvm.github.io/

Amazon Web Services Security Overview of AWS Lambda

 Page 7

Storage and State

Though Lambda execution environments are never reused across functions, a single

execution environment can be reused for invoking the same function, potentially existing

for hours before it is destroyed. Functions can take advantage of this behavior to

improve efficiency by keeping local caches, reusing long-lived connections between

invocations, and pre-computing common results. Inside an execution environment,

these multiple invocations are handled by a single process, so any process-wide state

(such as a static state in Java) could be available for future invocations to reuse, if the

invocation occurs on a reused execution environment.

Each Lambda execution environment also includes a writeable file system, available at

/tmp. This storage is not accessible to other execution environments. As with the

process state, files written to /tmp remain for the lifetime of the execution environment.

This allows expensive transfer operations—such as downloading machine learning (ML)

models—to be amortized across multiple invocations. Functions that do not want to

persist data between invocations should either not write to /tmp, or delete their files

from /tmp after each invocation. The /tmp storage is implemented with either Amazon

Elastic Block Store (Amazon EBS) or local storage on the Lambda worker instance.

Also, prior to a function’s first invocation, Lambda scrubs the memory before assigning it

to an execution environment, which effectively guards against memory sharing between

functions that belong to the same account and different customer accounts. To facilitate

execution environment reuse, Lambda does not scrub memory between subsequent

invocations on the same execution environment for the same function. You can

implement your own memory encryption and wiping process before function termination.

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Amazon Web Services Security Overview of AWS Lambda

 Page 8

Invoke Data Path

The Invoke API can be called in two modes: event mode and request-response mode.

Event mode queues the invocation for later execution. Request-response mode

immediately invokes the function with the provided payload, and returns the response.

In both cases, the actual function execution is done in a Lambda execution

environment, but the payload takes different paths. For more information, see the

Lambda Runtime Environment section.

For request-response invocations, the payload passes from the API caller—such as

AWS API Gateway or the AWS SDK—to a load balancer, and then to the Lambda

invoke service. This service identifies an execution environment for the function, and

passes the payload to that execution environment to complete the invocation. Traffic to

the load balancer passes over the internet, and is secured with TLS. Traffic within the

Lambda service (from the load balancer down) passes through a Lambda internal VPC

within a single AWS region.

Figure 3 – Invocation model for AWS Lambda: request-response

Event invocations can be executed immediately or queued for processing. In some

cases, the queue is implemented with Amazon Simple Queue Service (Amazon SQS),

and passed back to the Lambda invoke service by an internal poller process. Traffic on

this path is secured with TLS, but no additional encryption is provided for data stored in

Amazon SQS. The Amazon SQS queues used by Lambda are managed by the Lambda

service, and not visible to you as a customer. For event invokes, no response is

returned, and any response data is discarded by the worker. Invocations from Amazon

S3, Amazon SNS, CloudWatch events, and other event sources follow the event invoke

path in the Lambda service. Invocations from Amazon Kinesis and DynamoDB streams,

SQS queues, Application Load Balancer, and API Gateway follow the request-response

path.

Amazon Web Services Security Overview of AWS Lambda

 Page 9

Runtime Maintenance in Lambda

AWS Lambda provides support for multiple programming languages through the use of

runtimes, including Java 8, Python 3.7, Go, NodeJS 8, .NET core 2, and others. For a

complete list, see AWS Lambda Runtimes. Lambda provides support for these

runtimes, including updates, security patches, and other maintenance. Typically, no

action is required to pick up the latest patches for Lambda runtimes, but sometimes

action might be required to test patches before they are deployed. AWS will contact you

(for example, through the Personal Health Dashboard) if action is required from you.

You can use other languages in Lambda by implementing a custom runtime. For

custom runtimes, maintenance becomes your responsibility, including making sure that

the runtime you provide includes the latest security patches. For more information, see

Custom AWS Lambda Runtimes in the AWS Lambda Developer Guide.

Sometimes, Lambda deprecates runtime versions, such as when they marked as End-

of-life (EOL) by their upstream maintainers. Versions that are marked as deprecated

stop supporting creation of new functions and updates to existing functions that were

authored in the deprecated runtime. AWS Lambda does not provide security updates,

technical support, or hotfixes for deprecated runtimes, and reserves the right to disable

invocations of functions configured to run on a deprecated runtime at any time. For

details on when runtimes are deprecated, see the AWS Lambda Runtime Support

Policy.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html

Amazon Web Services Security Overview of AWS Lambda

 Page 10

Monitoring and Auditing Lambda Functions

You can monitor and audit Lambda functions with many AWS methods and services,

including the following services.

Amazon CloudWatch

AWS Lambda automatically monitors Lambda functions on your behalf. Through

Amazon CloudWatch, it reports metrics such as the number of requests, the execution

duration per request, and the number of requests resulting in an error. These metrics

are exposed at the function level, which you can then leverage to set CloudWatch

alarms. For a list of metrics exposed by Lambda, see AWS Lambda Metrics.

Amazon CloudTrail

Using Amazon CloudTrail, you can implement governance, compliance, operational

auditing, and risk auditing of your entire AWS account, including Lambda. CloudTrail

enables you to log, continuously monitor, and retain account activity related to actions

across your AWS infrastructure, providing a complete event history of actions taken

through the AWS Management Console, AWS SDKs, command line tools, and other

AWS services. Using CloudTrail, you can optionally encrypt the log files using Amazon

Key Management Service (KMS) and also leverage the CloudTrail log file integrity

validation for positive assertion.

AWS X-Ray

Using AWS X-Ray, you can analyze and debug production and distributed Lambda-

based applications, which enables you to understand the performance of your

application and its underlying services, so you can eventually identify and troubleshoot

the root cause of performance issues and errors. X-Ray’s end-to-end view of requests

as they travel through your application shows a map of the application’s underlying

components, so you can analyze applications during development and in production.

AWS Config

With AWS Config, you can track configuration changes to the Lambda functions

(including deleted functions), runtime environments, tags, handler name, code size,

memory allocation, timeout settings, and concurrency settings, along with Lambda IAM

execution role, subnet, and security group associations. This gives you a holistic view of

the Lambda function’s lifecycle and enables you to surface that data for potential audit

and compliance requirements.

https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-metrics.html
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-intro.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-intro.html
https://aws.amazon.com/xray/
https://aws.amazon.com/config/

Amazon Web Services Security Overview of AWS Lambda

 Page 11

Architecting and Operating Lambda Functions

Now that we have discussed the foundations of the Lambda service, we move on to

architecture and operations. For information about standard best practices for

serverless applications, see the Serverless Application Lens whitepaper, which defines

and explores the pillars of the AWS Well Architected Framework in a Serverless

context.

• Operational Excellence Pillar – The ability to run and monitor systems to

deliver business value and to continually improve supporting processes and

procedures.

• Security Pillar – The ability to protect information, systems, and assets while

delivering business value through risk assessment and mitigation strategies.

• Reliability Pillar – The ability of a system to recover from infrastructure or

service disruptions, dynamically acquire computing resources to meet demand,

and mitigate disruptions such as misconfigurations or transient network issues.

• Performance Efficiency Pillar – The efficient use of computing resources to

meet requirements and the maintenance of that efficiency as demand changes

and technologies evolve.

The Serverless Application Lens whitepaper includes topics such as logging metrics

and alarming, throttling and limits, assigning permissions to Lambda functions, and

making sensitive data available to Lambda functions.

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://aws.amazon.com/architecture/well-architected/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf

Amazon Web Services Security Overview of AWS Lambda

 Page 12

Lambda and Compliance

As mentioned in The Shared Responsibility Model section, you are responsible for

determining which compliance regime applies to your data. After you have determined

your compliance regime needs, you can use the various Lambda features to match

those controls. You can contact AWS experts (such as Solution Architects, Domain

experts, Technical Account Managers and other human resources) for assistance.

However, AWS cannot advise customers on whether (or which) compliance regimes are

applicable to a particular use case.

As of March 2019, Lambda is compliant with SOC 1, SOC 2, SOC 3, PCI DSS, U.S.

Health Insurance Portability and Accountability Act (HIPAA), etc. For a list of

compliance information, see the AWS Services in Scope by Compliance Program page.

Because of the sensitive nature of some compliance reports, they cannot be shared

publicly. For access to these reports, you can sign in to your AWS console and use

AWS Artifact—a no cost, self-service portal—for on-demand access to AWS

compliance reports.

Conclusion

AWS Lambda offers a powerful toolkit for building secure and scalable applications.

Many of the best practices for security and compliance in AWS Lambda are the same

as in all AWS services, but some are particular to Lambda. This paper describes the

benefits of Lambda, its suitability for applications, and the Lambda managed runtime

environment. It also includes information about monitoring and auditing, and security

and compliance best practices. As you think about your next implementation, consider

what you learned about AWS Lambda and how it might improve your next workload

solution.

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/artifact/

Amazon Web Services Security Overview of AWS Lambda

 Page 13

Contributors

Contributors to this document include:

• Mayank Thakkar, Global Life Sciences Solutions Architect

• Brian McNamara, Specialist Technical Account Manager (Serverless)

• Marc Brooker, Senior Principal Engineer (Serverless)

• Osman Surkatty, Senior Security Engineer (Serverless)

Further Reading

For additional information, see:

• AWS Security Best Practices covers best practices for AWS security in general,

and many AWS services. It also introduces the Shared Responsibility model, and

best practices for managing IAM roles and accounts.

• Serverless Application Lens covers the AWS well-architected framework

identifies key elements to ensure your workloads are architected according to

best practices

• Introduction to AWS Security provides a broad introduction to thinking about

security in AWS.

• AWS Risk and Compliance provides an overview of compliance in AWS.

Document Revisions

Date Description

April 2019 Replaced Lambda EC2 & Firecracker Models diagrams.

March 2019 First publication

https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf

Amazon Web Services Security Overview of AWS Lambda

 Page 14

Appendix – Lambda EC2 & Firecracker Models

The following is a comparison of EC2 and Firecracker models for AWS Lambda.

	Introduction
	About AWS Lambda
	Benefits of Lambda
	No Servers to Manage
	Continuous Scaling
	Subsecond Metering
	Increases Innovation
	Modernize your Applications
	Rich Ecosystem

	Cost for Running Lambda-Based Applications

	The Shared Responsibility Model
	Lambda Runtime Environment
	Isolation Between Functions and Between MicroVMs
	Storage and State

	Invoke Data Path
	Runtime Maintenance in Lambda
	Monitoring and Auditing Lambda Functions
	Amazon CloudWatch
	Amazon CloudTrail
	AWS X-Ray
	AWS Config

	Architecting and Operating Lambda Functions
	Lambda and Compliance
	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Appendix – Lambda EC2 & Firecracker Models

