
Archived
Best Practices for Migrating

MySQL Databases to
Amazon Aurora

October 2016

This paper has been archived
For the latest technical content, see the AWS

Whitepapers & Guides page:

https://aws.amazon.com/whitepapers

https://aws.amazon.com/whitepapers

Archived

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Archived

Contents

Introduction 1

Basic Performance Considerations 1

Client Location 1

Client Capacity 3

Client Configuration 4

Server Capacity 4

Tools and Procedures 5

Advanced Performance Concepts 6

Client Topics 6

Server Topics 7

Tools 8

Procedure Optimizations 12

Conclusion 18

Contributors 18

Archived

Abstract

This whitepaper discusses some of the important factors affecting the

performance of self-managed export/import operations in Amazon Relational

Database Service (Amazon RDS) for MySQL and Amazon Aurora. Although

many of the topics are discussed in the context of Amazon RDS, performance

principles presented here also apply to the MySQL Community Edition found in

self-managed MySQL installations.

Target Audience

The target audience of this paper includes:

 Database and system administrators performing migrations from

MySQL-compatible databases into Aurora, where AWS-managed

migration tools cannot be used

 Software developers working on bulk data import tools for MySQL-

compatible databases

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 1

Introduction
Migrations are among the most time-consuming tasks handled by database

administrators (DBAs). Although the task becomes easier with the advent of

managed migration services such as the AWS Database Migration Service (AWS

DMS), many large-scale database migrations still require a custom approach

due to performance, manageability, and compatibility requirements.

The total time required to export data from the source repository and import it

into the target database is one of the most important factors determining the

success of all migration projects. This paper discusses the following major

contributors to migration performance:

 Client and server performance characteristics

 The choice of migration tools; without the right tools, even the most

powerful client and server machines cannot reach their full potential

 Optimized migration procedures to fully utilize the available client/server

resources and leverage performance-optimized tooling

Basic Performance Considerations
The following are basic considerations for client and server performance.

Tooling and procedure optimizations are described in more detail in “Tools and

Procedures," later in this document.

Client Location

Perform export/import operations from a client machine that is launched in the

same location as the database server:

 For on-premises database servers, the client machine should be in the

same on-premises network.

 For Amazon RDS or Amazon Elastic Compute Cloud (Amazon EC2)

database instances, the client instance should exist in the same Amazon

Virtual Private Cloud (Amazon VPC) and Availability Zone as the server.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 2

For EC2-Classic (non-VPC) servers, the client should be located in the

same AWS Region and Availability Zone.

Figure 1: Logical migration between AWS Cloud databases

To follow the preceding recommendations during migrations between distant

databases, you might need to use two client machines:

 One in the source network, so that it’s close to the server you’re migrating

from

 Another in the target network, so that it’s close to the server you’re

migrating to

In this case, you can move dump files between client machines using file

transfer protocols (such as FTP or SFTP) or upload them to Amazon Simple

Storage Service (Amazon S3). To further reduce the total migration time, you

can compress files prior to transferring them.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 3

Figure 2: Data flow in a self-managed migration from on-premises to an

AWS Cloud database

Client Capacity

Regardless of its location, the client machine should have adequate CPU, I/O,

and network capacity to perform the requested operations. Although the

definition of adequate varies depending on use cases, the general

recommendations are as follows:

 If the export or import involves real-time processing of data, for example,

compression or decompression, choose an instance class with at least one

CPU core per export/import thread.

 Ensure that there is enough network bandwidth available to the client

instance. We recommend using instance types that support enhanced

networking. For more information, see the Enhanced Networking section

in the Amazon EC2 User Guide.1

 Ensure that the client’s storage layer provides the expected read/write

capacity. For example, if you expect to dump data at 100 megabytes per

second, the instance and its underlying Amazon Elastic Block Store

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 4

(Amazon EBS) volume must be capable of sustaining at least 100 MB/s

(800 Mbps) of I/O throughput.

Client Configuration

For best performance on Linux client instances, we recommend that you enable

the receive packet steering (RPS) and receive flow steering (RFS) features.

To enable RPS, use the following code.

sudo sh -c 'for x in /sys/class/net/eth0/queues/rx-*; do echo ffffffff > $x/rps_cpus; done'

sudo sh -c "echo 4096 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt"

sudo sh -c "echo 4096 > /sys/class/net/eth0/queues/rx-1/rps_flow_cnt

To enable RFS, use the following code.

sudo sh -c "echo 32768 > /proc/sys/net/core/rps_sock_flow_entries"

Server Capacity

To dump or ingest data at optimal speed, the database server should have

enough I/O and CPU capacity.

In traditional databases, I/O performance often becomes the ultimate

bottleneck during migrations. Aurora addresses this challenge by using a

custom, distributed storage layer designed to provide low latency and high

throughput under multithreaded workloads. In Aurora, you don’t have to

choose between storage types or provision storage specifically for export/import

purposes.

We recommend using Aurora for instances with one CPU core per thread for

exports and two CPU cores per thread for imports. If you’ve chosen an instance

class with enough CPU cores to handle your export/import, the instance should

already offer adequate network bandwidth.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 5

For more information, see “Server Topics,” later in this document.

Tools and Procedures

Whenever possible, perform export and import operations in multithreaded

fashion. On modern systems equipped with multicore CPUs and distributed

storage, this approach ensures that all available client/server resources are

consumed efficiently. Engineer export/import procedures to avoid unnecessary

overhead.

The following table lists common export/import performance challenges and

provides sample solutions. You can use it do drive your tooling and procedure

choices.

Import Technique Challenge Potential Solution Examples

Single-row INSERT

statements

Storage and SQL

processing overhead

Use multi-row SQL

statements

Use non-SQL format

(e.g., CSV flat files)

Import 1 MB of data

per statement

Use a set of flat files

(chunks), 1 GB each

Single-row or multi-

row statements with

small transaction size

Transactional

overhead, each

statement is committed

separately

Increase transaction

size

Commit once per

1,000 statements

Flat file imports with

very large transaction

size

Undo management

overhead

Reduce transaction

size

Commit once per

1 GB of data imported

Single-threaded

export/import

Under-utilization of

server resources, only

one table is accessed

at a time

Export/import multiple

tables in parallel

Export from or load

into 8 tables in parallel

If you are exporting data from an active production database, you have to find a

balance between the performance of production queries and that of the export

itself. Execute export operations carefully so that you don’t compromise the

performance of the production workload.

This information is discussed in more detail in the following section.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 6

Advanced Performance Concepts

Client Topics

Contrary to the popular opinion that total migration time depends exclusively

on server performance, data migrations can often be constrained by client-side

factors. It is important that you identify, understand, and finally address client-

side bottlenecks; otherwise, you may not achieve the goal of reaching optimal

import/export performance.

Client Location

The location of the client machine is an important factor affecting data

migrations, performance benchmarks, and day-to-day database operations

alike. Remote clients can experience network latency ranging from dozens to

hundreds of milliseconds. Communication latency introduces unnecessary

overhead to every database operation and can result in substantial performance

degradation.

The performance impact of network latency is particularly visible during single-

threaded operations involving large amounts of short database statements. With

all statements executed on a single thread, the statement throughput becomes

the inverse of network latency, yielding very low overall performance.

We strongly recommend that you perform all types of database activities from

an Amazon EC2 instance located in the same VPC and Availability Zone as the

database server. For EC2-Classic (non-VPC) servers, the client should be located

in the same AWS Region and Availability Zone.

The reason we recommend that you launch client instances not only in the same

AWS Region but also in the same VPC is that cross-VPC traffic is treated as

public and thus uses publicly routable IP addresses. Because the traffic must

travel through a public network segment, the network path becomes longer,

resulting in higher communication latency.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 7

Client Capacity

It is a common misconception that the specifications of client machines have

little or no impact on export/import operations. Although it is often true that

resource utilization is higher on the server side, it is still important to remember

the following:

 On small client instances, multithreaded exports and imports can

become CPU-bound, especially if data is compressed or decompressed on

the fly, e.g., when the data stream is piped through a compression tool

like gzip.

 Multithreaded data migrations can consume substantial network and I/O

bandwidth. Choose the instance class and size and type of the underlying

Amazon EBS storage volume carefully. For more information, see the

Amazon EBS Volume Performance section in the Amazon EC2 User

Guide.2

All operating systems provide diagnostic tools that can help you detect CPU,

network, and I/O bottlenecks. When investigating export/import performance

issues, we recommend that you use these tools and rule out client-side problems

before digging deeper into server configuration.

Server Topics

Server-side storage performance, CPU power, and network throughput are

among the most important server characteristics affecting batch export/import

operations. Aurora supports point-and-click instance scaling that enables you to

modify the compute and network capacity of your database cluster for the

duration of the batch operations.

Storage Performance

Aurora leverages a purpose-built, distributed storage layer designed to provide

low latency and high throughput under multithreaded workloads. You don't

need to choose between storage volume types or provision storage specifically

for export/import purposes.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 8

CPU Power

Multithreaded exports/imports can become CPU bound when executed against

smaller instance types. We recommend using a server instance class with one

CPU core per thread for exports and two CPU cores per thread for imports. CPU

capacity can be consumed efficiently only if the export/import is realized in

multithreaded fashion. Using an instance type with more CPU cores is unlikely

to improve performance dump or import that is executed in a single thread.

Network Throughput

Aurora does not use Amazon EBS volumes for storage. As a result, it is not

constrained by the bandwidth of EBS network links or throughput limits of the

EBS volumes.

However, the theoretical peak I/O throughput of Aurora instances still depends

on the instance class. As a rule of thumb, if you choose an instance class with

enough CPU cores to handle the export/import (as discussed earlier), the

instance should already offer adequate network performance.

Temporary Scaling

In many cases, export/import tasks can require significantly more compute

capacity than day-to-day database operations. Thanks to the point-and-click

compute scaling feature of Amazon RDS for MySQL and Aurora, you can

temporarily overprovision your instance and then scale it back down when you

no longer need the additional capacity.

Note: Due to the benefits of the Aurora custom storage layer, storage scaling is

not needed before, during, or after exporting/importing data.

Tools

With client and server machines located close to each other and sized

adequately, let’s look at the different methods and tools you can use to actually

move the data.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 9

Percona XtraBackup

Aurora supports migration from Percona XtraBackup files stored in Amazon S3.

Migrating from backup files can be significantly faster than migrating from

logical schema and data dumps using tools such as mysqldump. Logical

imports work by executing SQL commands to recreate the schema and data

from your source database, which carries considerable processing overhead.

However, Percona XtraBackup files can be ingested directly into an Aurora

storage volume, which removes the additional SQL execution cost.

A migration from Percona XtraBackup files involves three main steps:

1. Using the innobackupex tool to create a backup of the source database.

2. Copying the backup to Amazon S3.

3. Restoring the backup through the AWS RDS console.

You can use this migration method for source servers using MySQL versions 5.5

and 5.6.

For more information and step-by-step instructions for migrating from Percona

XtraBackup files, see the Amazon Relational Database Service User Guide.3

mysqldump

The mysqldump tool is perhaps the most popular export/import tool for

MySQL-compatible database engines. The tool produces dumps in the form of

SQL files that contain data definition language (DDL), data control language

(DCL), and data manipulation language (DML) statements. The statements

carry information about data structures, data access rules, and the actual data,

respectively.

In the context of this whitepaper, two types of statements are of interest:

 CREATE TABLE statements to create relevant table structures before

data can be inserted.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 10

 INSERT statements to populate tables with data. Each INSERT typically

contains data from multiple rows, but the dataset for each table is

essentially represented as a series of INSERT statements.

The mysqldump-based approach introduces certain issues related to

performance:

 When used against managed database servers, such as Amazon RDS

instances, the tool’s functionality is limited. Due to privilege restrictions,

it cannot dump data in multiple threads or produce flat-file dumps

suitable for parallel loading.

 The SQL files do not include any transaction control statements by

default. Consequently, you have very little control over the size of

database transactions used to import data. This lack of control can lead

to poor performance, for example:

o With auto-commit mode enabled (default), each individual INSERT

statement runs inside its own transaction. The database must

COMMIT frequently, which increases the overall execution overhead.

o With auto-commit mode disabled, each table is populated using one

massive transaction. The approach removes COMMIT overhead but

leads to side effects such as tablespace bloat and long rollback times if

the import operation is interrupted.

Note: Work is in progress to provide a modern replacement for the legacy

mysqldump tool. The new tool, called mysqlpump, is expected to check most

of the boxes on MySQL DBA’s performance checklist. For more information,

see the MySQL Reference Manual.4

Flat Files

As opposed to SQL-format dumps that contain data encapsulated in SQL

statements, flat-file dumps come with very little overhead. The only control

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 11

characters are the delimiters used to separate individual rows and columns.

Files in comma-separated value (CSV) or tab-separated value (TSV) format are

both examples of the flat-file approach.

Flat files are most commonly produced using:

 The SELECT … INTO OUTFILE statement, which dumps table contents

(but not table structure) into a file located in the server’s local file system.

 mysqldump command with the --tab parameter, which also dumps

table contents to a file and creates the relevant metadata files with

CREATE TABLE statements. The command uses SELECT … INTO

OUTFILE internally, so it also creates dump files on the server’s local file

system.

Note: Due to privilege restrictions, you cannot use the methods mentioned

previously with managed database servers such as Amazon RDS. However,

you can import flat files dumped from self-managed servers into managed

instances with no issues.

Flat files have two major benefits:

 The lack of SQL encapsulation results in much smaller dump files and

removes SQL processing overhead during import.

 Flat files are always created in file-per-table fashion, which makes it easy

to import them in parallel.

Flat files also have their disadvantages. For example, the server would use a

single transaction to import data from each dump file. To have more control

over the size of import transactions, you need to manually split very large dump

files into chunks, and then import one chunk at a time.

Third-Party Tools and Alternative Solutions

The mydumper and myloader tools are two popular, open-source MySQL

export/import tools designed to address performance issues that are associated

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 12

with the legacy mysqldump program. They operate on SQL-format dumps and

offer advanced features such as:

 Dumping and loading data in multiple threads

 Creating dump files in file-per-table fashion

 Creating chunked dumps, that is, multiple files per table

 Dumping data and metadata into separate files

 Ability to configure transaction size during import

 Ability to schedule dumps in regular intervals

For more information about mydumper and myloader, see the project home

page.5

Efficient exports and imports are possible even without the help of third-party

tools. With enough effort, you can solve issues associated with SQL-format or

flat file dumps manually, as follows:

 Solve single-threaded mode of operations in legacy tools by running

multiple instances of the tool in parallel. However, this does not allow

you to create consistent database-wide dumps without temporarily

suspending database writes.

 Control transaction size by manually splitting large dump files into

smaller chunks.

Procedure Optimizations

This section describes ways that you can handle some of the common

export/import challenges.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 13

Choosing the Right Number of Threads for Multithreaded
Operations

As mentioned earlier, a rule of thumb is to use one thread per server CPU core

for exports and one thread per two CPU cores for imports. For example, you

should use 16 concurrent threads to dump data from a 16-core db.r3.4xlarge

instance and 8 concurrent threads to import data into the same instance type.

Exporting and Importing Multiple Large Tables

If the dataset is spread fairly evenly across multiple tables, export/import

operations are relatively easy to parallelize. To achieve optimal performance,

follow these guidelines:

 Perform export and import operations using multiple parallel threads. To

achieve this, use a modern export tool such as mydumper, described in

“Third-Party Tools and Alternative Solutions.”

 Never use single-row INSERT statements for batch imports. Instead, use

multi-row INSERT statements or import data from flat files.

 Avoid using small transactions, but also don’t let each transaction

become too heavy. As a rule of thumb, split large dumps into 500-MB

chunks and import one chunk per transaction.

Exporting and Importing Individual Large Tables

In many databases, data is not distributed equally across tables. It is not

uncommon for the majority of the data set to be stored in just a few tables or

even a single table. In this case, the common approach of one export/import

thread per table can result in suboptimal performance. This is because the total

export/import time depends on the slowest thread, which is the thread that is

processing the largest table. To mitigate this, you must leverage multithreading

at the table level.

The following ideas can help you achieve better performance in similar

situations.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 14

Large Table Approach for Exports

On the source server, you can perform a multithreaded dump of table data using

a custom export script or a modern third-party export tool, such as

mydumper, described in “Third-Party Tools and Alternative Solutions.”

When using custom scripts, you can leverage multithreading by exporting

multiple ranges (segments) of rows in parallel. For best results, you can produce

segments by dumping ranges of values in an indexed table column, preferably

the primary key. For performance reasons, you should not produce segments

using pagination (LIMIT … OFFSET clause).

When using mydumper, know that the tool uses multiple threads across

multiple tables, but it does not parallelize operations against individual tables.

To use multiple threads per table, you must explicitly provide the --rows

parameter when invoking the mydumper tool, as follows.

--rows : Split table into chunks of this many rows, default unlimited

You can choose the parameter value so that the total size of each chunk doesn’t

exceed 100 MB. For example, if the average row length in the table is 1 KB, you

can choose a chunk size of 100,000 rows for the total chunk size of ~100 MB.

Large Table Approach for Imports

Once the dump is completed, you can import it into the target server using

custom scripts or the myloader tool.

Note: Both mydumper and myloader default to using four parallel threads,

which may not be enough to achieve optimal performance on Aurora

db.r3.2xlarge instances or larger. You can change the default level of

parallelism using the --threads parameter.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 15

Splitting Dump Files into Chunks

You can import data from flat files using a single data chunk (for small tables)

or a contiguous sequence of data chunks (for larger tables).

Use the following guidelines to decide how to split table dumps into multiple

chunks:

 Avoid generating very small chunks (<1 MB) so that you can avoid

protocol and transactional overhead. Alternatively, very large chunks can

put unnecessary pressure on server resources without bringing

performance benefits. As a rule of thumb, you might use a 500-MB

chunk size for large batch imports.

 For partitioned InnoDB tables, use one chunk per partition and don’t mix

data from different partitions in one chunk. If individual partitions are

very large, split partition data further using one of the following

solutions.

 For tables or table partitions with an autoincremented PRIMARY key:

o If PRIMARY key values are provided in the dump, it is good practice

not to split data in a random fashion. Instead, use range-based

splitting so that each chunk contains monotonically increasing

primary key values. For example, if a table has a PRIMARY key

column called id, data can be sorted by id in ascending order and then

sliced into chunks. This approach reduces page fragmentation and

lock contention during import.

o If PRIMARY key values are not provided in the dump, the engine

generates them automatically for each inserted row. In such cases,

you don't need to chunk the data in any particular way and you can

choose the method that’s easiest for you to implement.

 If the table or table partition has a PRIMARY or NOT NULL UNIQUE

key that is not autoincremented, split the data so that each chunk

contains monotonically increasing key values for that PRIMARY or NOT

NULL UNIQUE KEY, as described previously.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 16

 If the table does not have a PRIMARY or NOT NULL UNIQUE key, the

engine creates an implicit, internal clustered index and fills it with

monotonically increasing values, regardless of how the input data is split.

For more information about InnoDB index types, see the MySQL Reference

Manual.6

Avoiding Secondary Index Maintenance Overhead

CREATE TABLE statements found in a typical SQL-format dump include the

definition of the table primary key and all secondary keys. Consequently, the

cost of secondary index management has to be paid for every row inserted

during the import. You can observe the index management cost as a gradual

decrease in import performance as the table grows.

The negative effects of index management overhead are particularly visible if

the table is large or if there are multiple secondary indexes defined on it. In

extreme cases, importing data into a table with secondary indexes can be several

times slower than importing the same data into a table with no secondary

indexes.

Unfortunately, none of the tools mentioned in this document support built-in

secondary index optimization. You can, however, implement the optimization

using this simple technique:

 Modify the dump files so that CREATE TABLE statements do not include

secondary key or foreign key definitions.

 Import data.

 Recreate secondary and foreign keys using ALTER TABLE statements or

third-party online schema manipulation tools such as “pt-online-schema-

change” from Percona Toolkit. When using ALTER TABLE:

o Avoid using separate ALTER TABLE statements for each index.

Instead, use one ALTER TABLE statement per table to recreate all

indexes for that table in a single operation.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 17

o You may run multiple ALTER TABLE statements in parallel (one per

table) to reduce the total time required to process all tables.

ALTER TABLE operations can consume a significant amount of temporary

storage space, depending on the table size and the number and type of indexes

defined on the table. Aurora instances use local (per-instance) temporary

storage volumes. If you observe that ALTER TABLE operations on large tables

are failing to complete, it can be due to lack of free space on the instance’s

temporary volume. If this occurs, you can apply one of the following solutions:

 Scale the Aurora instance to a larger type.

 If altering multiple tables in parallel, reduce the number of ALTER

statements running concurrently or try running only one ALTER at a

time.

 Consider using a third-party online schema manipulation tool, such as

pt-online-schema-change from Percona Toolkit.

To learn more about monitoring the local temporary storage on Aurora

instances, see the Amazon Relational Database Service User Guide.7

Reducing the Impact of Long-Running Data Dumps

Data dumps are often performed from active database servers that are part of a

mission-critical production environment. If severe performance impact of a

massive dump is not acceptable in your environment, consider one of the

following ideas:

 If the source server has replicas, you can dump data from one of the

replicas.

 If the source server is covered by regular backup procedures:

o Use backup data as input for the import process if backup format

allows for that.

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 18

o If backup format is not suitable for direct importing into the target

database, use the backup to provision a temporary database and

dump data from it.

 If neither replicas nor backups are available:

o Perform dumps during off-peak hours, when production traffic is at

its lowest.

o Reduce the concurrency of dump operations so that the server has

enough spare capacity to handle production traffic.

Conclusion
This paper discussed important factors affecting the performance of self-

managed export/import operations in Amazon Relational Database Service

(Amazon RDS) for MySQL and Amazon Aurora:

 The location and sizing of client and server machines

 The ability to consume client and server resources efficiently, which is

mostly achieved through multithreading

 The ability to identify and avoid unnecessary overhead at all stages of the

migration process

We hope that the ideas and observations we provide will contribute to creating a

better overall experience for data migrations in your MySQL-compatible

database environments.

Contributors
The following individuals and organizations contributed to this document:

 Szymon Komendera, Database Engineer, Amazon Web Services

Archived

Amazon Web Services – Best Practices for Migrating MySQL Databases to Amazon Aurora

Page 19

1 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-

networking.html

2

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.h

tml

3

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.

MySQL.html#Aurora.Migrate.MySQL.S3

4 https://dev.mysql.com/doc/refman/5.7/en/mysqlpump.html

5 https://launchpad.net/mydumper/

6 https://dev.mysql.com/doc/refman/5.6/en/innodb-index-types.html

7

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitor

ing.html

Notes

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Migrate.MySQL.html#Aurora.Migrate.MySQL.S3
https://dev.mysql.com/doc/refman/5.7/en/mysqlpump.html
https://launchpad.net/mydumper/
https://dev.mysql.com/doc/refman/5.6/en/innodb-index-types.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html

