

Use AWS WAF to Mitigate
OWASP’s Top 10 Web

Application Vulnerabilities
July 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Web Application Vulnerability Mitigation 2

A1 – Injection 3

A2 – Broken Authentication and Session Management 5

A3 – Cross-Site Scripting (XSS) 7

A4 – Broken Access Control 9

A5 – Security Misconfiguration 12

A6 – Sensitive Data Exposure 15

A7 – Insufficient Attack Protection 16

A8 – Cross-Site Request Forgery (CSRF) 19

A9 – Using Components with Known Vulnerabilities 21

A10 – Underprotected APIs 23

Old Top 2013 A10 – Unvalidated Redirects and Forwards 24

Companion CloudFormation Template 26

Conclusion 29

Contributors 30

Further Reading 30

Document Revisions 31

Abstract

AWS WAF is a web application firewall that helps you protect your websites and

web applications against various attack vectors at the HTTP protocol level. This

paper outlines how you can use the service to mitigate the application

vulnerabilities that are defined in the Open Web Application Security Project

(OWASP) Top 10 list of most common categories of application security flaws.

It’s targeted at anyone who’s tasked with protecting websites or applications,

and maintaining their security posture and availability.

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 1

Introduction
The Open Web Application Security Project (OWASP) is an online community

that creates freely available articles, methodologies, documentation, tools, and

technologies in the field of web application security.1 They publish a ranking of

the 10 most-critical web application security flaws, which are known as the

OWASP Top 10.2 While the current version was published in 2013, a new 2017

Release Candidate version is currently available for public review.

The OWASP Top 10 represents a broad consensus of the most-critical web

application security flaws. It’s a widely accepted methodology for evaluating

web application security and build mitigation strategies for websites and web-

based applications. It outlines the top 10 areas where web applications are

susceptible to attacks, and where common vulnerabilities are found in such

workloads.

For any project aimed at enhancing the security profile of websites and web-

based applications, it’s a great idea to understand the OWASP Top 10 and how it

relates to your own workloads. This will help you implement effective mitigation

strategies.

AWS WAF is a web application firewall (WAF) you can use to help protect your

web applications from common web exploits that can affect application

availability, compromise security, or consume excessive resources.3 With AWS

WAF, you can allow or block requests to your web applications by defining

customizable web security rules. Also, you can use AWS WAF to create rules to

block common attack patterns, as well as specific attack patterns targeted at

your application.

AWS WAF works with Amazon CloudFront,4 our global content delivery

network (CDN) service, and the Application Load Balancer option for Elastic

Load Balancing.5 By using these together, you can analyze incoming HTTP

requests, apply a set of rules, and take actions based on the matching of those

rules.

AWS WAF can help you mitigate the OWASP Top 10 and other web application

security vulnerabilities because attempts to exploit them often have common

https://www.owasp.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://aws.amazon.com/waf/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/
https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 2

detectable patterns in the HTTP requests. You can write rules to match the

patterns and block those requests from reaching your workloads.

However, it’s important to understand that using any web application firewall

doesn’t fix the underlying flaws in your web application. It just provides an

additional layer of defense, which reduces the risk of them being exploited. This

is especially useful in a modern development environment where software

evolves quickly.

Web Application Vulnerability Mitigation
In April 2017, OWASP released the new iteration of the Top 10 for public

comment. The categories listed in the new proposed Top 10 are many of the

same application flaw categories from the 2013 Top 10 and past versions:

A1 Injection

A2 Broken Authentication and Session Management

A3 Cross-Site Scripting (XSS)

A4 Broken Access Control (NEW)

A5 Security Misconfiguration

A6 Sensitive Data Exposure

A7 Insufficient Attack Protection (NEW)

A8 Cross-Site Request Forgery (CSRF)

A9 Using Components with Known Vulnerabilities

A10 Underprotected APIs (NEW)

The new A4 category consolidates the categories Insecure Direct Object

References and Missing Function Level Access Controls from the 2013 Top 10.

The previous A10 category Unvalidated Redirects and Forwards has been

replaced with a new category that focuses on Application Programming

Interface (API) security. In this paper, we discuss both old and new categories.

You can deploy AWS WAF to effectively mitigate a representative set of attack

vectors in many of the categories above. It can also be effective in other

categories. However, the effectiveness depends on the specific workload that’s

protected and the ability to derive recognizable HTTP request patterns. Given

that the attacks and exploits evolve constantly, it’s highly unlikely that any one

web application firewall can mitigate all possible scenarios of an attack that

targets flaws in any of these categories.

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 3

This paper describes recommendations for each category that you can

implement easily to get started in mitigating application vulnerabilities. At the

end of the paper, you can download an example AWS CloudFormation template

that implements some of the generic mitigations discussed here. However, be

aware that the applicability of these rules to your particular web application can

vary.

A1 – Injection

Injection flaws occur when an application sends untrusted data to an

interpreter.6 Often, the interpreter has its own domain-specific language. By

using that language and inserting unsanitized data into requests to the

interpreter, an attacker can alter the intent of the requests and cause

unexpected actions.

Perhaps the most well-known and widespread injection flaws are SQL

injection flaws. These occur when input isn’t properly sanitized and escaped,

and the values are inserted in SQL statements directly. If the values themselves

contain SQL syntax statements, the database query engine executes those as

such. This triggers actions that weren’t originally intended, with potentially

dangerous consequences.

Credit: XKCD: Exploits of a Mom, published by permission.

Using AWS WAF to Mitigate

SQL injection attacks are relatively easy to detect in common scenarios. They’re

usually detected by identifying enough SQL reserved words in the HTTP request

components to signal a potentially valid SQL query. However, more complex

and dangerous variants can spread the malicious query (and associated key

words) over multiple input parameter or request components, based on the

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://xkcd.com/327/
https://xkcd.com/license.html

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 4

internal knowledge of how the application composes them in the backend.

These can be more difficult to mitigate using a WAF alone—you might need to

address them at the application level.

AWS WAF has built-in capabilities to match and mitigate SQL injection attacks.

You can use a SQL injection match condition to deploy rules to mitigate such

attacks.7 The following table provides some common condition configurations:

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Justification

QUERY_STRING URL_DECODE,

HTML_ENTITY_DECODE

The most common component to match. Query

string parameters are frequently used in database

lookups.

URI URL_DECODE,

HTML_ENTITY_DECODE

If your application is using friendly, dirified, or clean

URLs, then parameters might appear as part of the

URL path segment—not the query string (they are

later rewritten server side). For example:

https://example.com/products/<product_id>/reviews/

BODY URL_DECODE,

HTML_ENTITY_DECODE

A common component to match if your application

accepts form input. AWS WAF only evaluates the

first 8 KB of the body content.

HEADER:

Cookie

URL_DECODE,

HTML_ENTITY_DECODE

A less common component to match. But, if your

application uses cookie-based parameters in

database lookups, consider matching on this

component as well.

HEADER:

Authorization

URL_DECODE,

HTML_ENTITY_DECODE

A less common component to match. But, if your

application uses the value of this header for

database validation, consider matching on this

component as well.

Additionally, consider any other components of custom request headers that

your application uses as parameters for database lookups. You might want to

match these components in your SQL injection match condition.

Other Considerations

Predictably, this detection pattern is less effective if your workload legitimately

allows users to compose and submit SQL queries in their requests. For those

cases, consider narrowly scoping an exception rule that bypasses the SQL

injection rule for specific URL patterns that are known to accept such input. You

can do that by using a SQL injection match condition, as described in the

http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-string-conditions.html

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 5

preceding table, while listing the URLs that are excluded from checking by using

a string match condition: 8

Rule - action: BLOCK

when request matches SQL Injection Match Condition

and request does not match String Match Condition for excluded

Uniform Resource Identifiers (URI)

You can also mitigate other types of injection vulnerabilities against other

domain-specific languages to varying degrees using string match conditions—by

matching against known key words, assuming they’re not also legitimate input

values.

A2 – Broken Authentication and Session

Management

Flaws in the implementation of authentication and session management

mechanisms for web applications can lead to exposure of unwanted data, stolen

credentials or sessions, and impersonation of legitimate users.9 These flaws are

difficult to mitigate using a WAF.

Broadly, attackers rely on vulnerabilities in the way client-server

communication is implemented. Or they target how session or authorization

tokens are generated, stored, transferred, reused, timed-out, or invalidated by

your application to obtain these credentials. After they obtain credentials,

attackers impersonate legitimate users and make requests to your web

applications using those tokens.

For example, if an attacker obtains the JWT token that authorizes

communication between your web client and the RESTful API, they can

impersonate that user until the token expires by launching HTTP requests with

the illicitly obtained authorization token. 10

Using AWS WAF to Mitigate

Because illicit requests with stolen authorization credentials, sessions, or tokens

are hard to distinguish from legitimate ones, AWS WAF takes on a reactive role.

http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-string-conditions.html
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://jwt.io/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 6

After your own application security controls are able to detect that a token was

stolen, you can add that token to a blacklist AWS WAF rule. This rule blocks

further requests with those signatures, either permanently or until they expire.

You can also automate this reaction to reduce mitigation time. AWS WAF offers

an API to interact with the service.11 For this kind of solution, you would use

infrastructure-specific or application-specific monitoring and logging tools to

look for patterns of compromise. Automation of AWS WAF rules is discussed in

greater detail under A7 – Insufficient Attack Protection.

To build a blacklist, use a string match condition. The following table

provides some example patterns:

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

QUERY_STRING Avoid exposing session tokens in the URI or QUERY_STRING because they’re

visible in the browser address bar or server logs and are easy to capture.
URI

HEADER:

Cookie

URL_DECODE,

HTML_ENTITY_DECODE

CONTAINS Session ID or access tokens.

HEADER:

Authorization

URL_DECODE,

HTML_ENTITY_DECODE

CONTAINS JWT token or other bearer

authorization tokens.

You can use various mechanisms to help detect leaked or misused session

tokens or authorization tokens. One mechanism is to keep track of client devices

and the location where a user commonly accesses your application from. This

gives you the ability to quickly detect if requests are made from an entirely

different location or client device with the same tokens, and blacklist them for

safety.

AWS WAF also supports rate-based rules. Rate-based rules trigger and block

when the rate of requests from an IP address exceeds a customer-defined

threshold (requests per 5-min interval). You can combine these rules with other

predicates (conditions) that are available in AWS WAF. You can enforce rate-

based limits to protect your applications’ authentication or authorization URLs

and endpoints against brute-force attack attempts to guess credentials. You can

also use a string match condition to match authentication URI paths of the

application:

http://docs.aws.amazon.com/waf/latest/APIReference/Welcome.html

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 7

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

URI URL_DECODE,

HTML_ENTITY_DECODE

STARTS_WITH /login (or relevant application-

specific URLs)

This condition is then used inside a rate-based rule with the desired threshold

for requests originating from a given IP address:

Rule - action: BLOCK; rate limit: 2000; rate key: IP

Only requests that match the string match condition are counted. When that

count exceeds 2000 requests per 5-minute interval, the originating IP address is

blocked. The minimum rate limit over a 5-minute you can set is 2000 requests.

A3 – Cross-Site Scripting (XSS)

Cross-site scripting (XSS) flaws occur when web applications include user-

provided data in webpages that is sent to the browser without proper

sanitization.12 If the data isn’t properly validated or escaped, an attacker can use

those vectors to embed scripts, inline frames, or other objects into the rendered

page (reflection). These in turn can be used for a variety of malicious purposes,

including stealing user credentials by using key loggers, in order to install

system malware. The impact of the attack is magnified if that user data persists

server side in a data store and then delivered to a large set of other users.

Consider the example of a common, but popular, blog that accepts user

comments. If user comments aren’t correctly sanitized, a malicious user can

embed a malicious script in the comments, such as:

 <script src =”https://malicious - site.com/exploit.js ”

type=”text/javascript” />

The code then gets executed anytime a legitimate user loads that blog article.

https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 8

Using AWS WAF to Mitigate

XSS attacks are relatively easy to mitigate in common scenarios because they

require specific key HTML tag names in the HTTP request.

AWS WAF has built-in capabilities to match and mitigate XSS attacks. You can

use a cross-site scripting match condition to deploy rules to mitigate these

attacks.13 The following table provides some common condition configurations:

HTTP Request

Component to Match

Relevant Input

Transformations to Apply

Justification

BODY URL_DECODE,

HTML_ENTITY_DECODE

A very common component to match

if your application accepts form input.

AWS WAF only evaluates the first 8 KB

of the body content.

QUERY_STRING URL_DECODE,

HTML_ENTITY_DECODE

Recommended if query string

parameters are reflected back into the

webpage. An example is the current

page number in a paginated list.

HEADER: Cookie URL_DECODE,

HTML_ENTITY_DECODE

Recommended if your application uses

cookie-based parameters that are

reflected back on the webpage. For

example, the name of the user who is

currently logged in is stored in a cookie

and embedded in the page header.

URI URL_DECODE,

HTML_ENTITY_DECODE

Less common. But, if your application

is using friendly, dirified URLs, then

parameters might appear as part of the

URL path segment, not the query string

(they are later rewritten server side).

There are similar concerns as with

query strings.

Other Considerations

This detection pattern is less effective if your workload legitimately allows users

to compose and submit rich HTML, such as the editor of a content management

system (CMS).14 For those cases, consider narrowly scoping an exception rule

that bypasses the XSS rule for specific URL patterns that are known to accept

such input, as long as there are alternate mechanisms to protect those excluded

URLs.

http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-xss-conditions.html
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Content_management_system

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 9

Additionally, some image or custom data formats and match condition

configurations can trigger elevated levels of false positives. Patterns that might

indicate XSS attacks in HTML content can be legitimate in certain image or

other data formats. For example, the SVG graphics format15 also allows a

<script> tag. You should narrowly tailor XSS rules to the type of request

content that’s expected if HTML requests include other data formats.

A4 – Broken Access Control

This category of application flaws, new in the proposed 2017 Top 10, covers lack

of or improper enforcement of restrictions on what authenticated users are

allowed to do. It consolidates the following categories from the 2013 Top 10: A4

– Insecure Direct Object References and A7 – Missing Function Level Access

Controls.

Application flaws in this category allow internal web application objects to be

manipulated without the requestor’s access permissions being properly

validated.16 Depending on the specific workload, this can lead to exposure of

unauthorized data, manipulation of internal web application state, path

traversal, and file inclusion.

Your applications should properly check and restrict access to individual

modules, components, or functions in accordance with the authorization and

authentication scheme used by the application. Flaws in function-level access

controls occur most commonly in applications where access controls weren’t

initially designed into the system, but were added later.17

These flaws also occur in applications that take a perimeter security approach to

access validation. In these cases, access level can be validated once at the

request initialization level. However, checks aren’t done further in the execution

cycle as various subroutines are invoked. This creates an implicit trust that the

caller code can invoke other modules, components, or functions on behalf of the

authorized user—which might not always hold true.

If your web application exposes different components to different users based

on access level or subscription level, then you should have authorization checks

performed anytime those functions are invoked.

Consider the following examples of flawed implementations for illustration:

https://developer.mozilla.org/en-US/docs/Web/SVG
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 10

1. A web application that allows authenticated users to edit their profile

generates a link to the profile editor page upon successful

authentication:

https://example.com/edit/profile?user_id= 3324

The profile editor page, however, doesn’t specifically check that the

parameter matches the current user. This allows any user who’s logged

in to find information about any other user by simply iterating over the

pool of user IDs. This exposes unauthorized information:

https://example.com/edit/profile?user_id= 3325

2. Another example is a helper server-side script that displays or allows a

download of files for a document sharing site. It accepts the file name as

a query string parameter:

https://example.com/download.php?file= mydocument.pdf

Somewhere in the script code, it passes the parameter to an internal file

reading function:

$content =

file_get_contents(”/documents/path/{$_GET[file]}”);

With no validation or sanitization and a vulnerable server configuration,

the file parameter can be exploited to have the server read and reflect

any file. For example:

https://example.com/do wnload.php?file=

.. %2F.. %2Fetc%2Fpasswd

This is an example of both a directory traversal attack18 and a local

file inclusion attack.19

3. Consider a modular web application, which is a pattern popular with

content management systems to enable extensibility, as well as

applications using model-view-controller (MVC) frameworks. The entry

point into the application is usually a router that invokes the right

https://en.wikipedia.org/wiki/Directory_traversal_attack
https://en.wikipedia.org/wiki/File_inclusion_vulnerability
https://en.wikipedia.org/wiki/File_inclusion_vulnerability

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 11

controller, based on the request parameters after processing common

routines (such as authentication/authorization):

https://example.com/?module= myprofile &view= display

A legitimate, authenticated user invoking the URL above should be able

to see their own profile. A malicious user might authenticate and view

their profile as well. However, they could attempt to alter the request

URL and invoke an administrative module:

https://e xample.com/?module= usermanagement &view= display

If that particular module doesn’t perform additional checks

commensurate with the elevated privileges needed for administrators, it

enables an attacker to gain access to unintended parts of the system.

Using AWS WAF to Mitigate

You can use AWS WAF to mitigate certain attack vectors in this category of

vulnerabilities. Mitigating permission validation flaws is difficult using any

WAF. This is because the criteria that differentiate good requests from bad

requests are found in the context of the user (requestor) session and privileges,

and rarely in the representation of the HTTP request itself. However, if

malicious HTTP requests have a recognizable signature that legitimate requests

don’t have, you can write rules to match them.

Also, you can use AWS WAF to filter dangerous HTTP request patterns that can

indicate path traversal attempts, or remote and local file inclusion (RFI/LFI).

The table below illustrates a few such generic conditions:

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

QUERY_STRING URL_DECODE,

HTML_ENTITY_DECODE

CONTAINS ../, ://

URI URL_DECODE,

HTML_ENTITY_DECODE

CONTAINS ../, ://

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 12

Also consider any other components of the HTTP request that your application

uses to assemble or refer to file system paths. As with the patterns suggested in

the previously discussed categories, these might be less effective if your

application legitimately accepts URLs or complex file system paths.

If access to administrative modules, components, plugins, or functions is

limited to a known set of privileged users, you can limit access to those

functions by having them accessed from known source locations, a whitelisting

pattern:

Other Considerations

If the authorization claims are transmitted from the client as part of the HTTP

request and encapsulated using JWT tokens (or something similar), you can

evaluate and compare them to the requested modules, plugins, components, or

functions. Consider using AWS Lambda@Edge functions to prevalidate the

HTTP requests and ensure that the relevant request parameters match the

assertions and authorizations in the token.20 You can use Lambda@Edge to

reject nonconforming requests before they reach your backend servers.

A5 – Security Misconfiguration

Misconfiguration of server parameters, especially ones that have a security

impact, can happen at any level of your application stack.21 This can apply to the

operating system, middleware, platform services, web server software,

application code, or database layers of your application. Default configurations

http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 13

that ship with these components might not always follow security

recommendations or be fit for every workload.

A few examples of security misconfigurations are:

1. Leaving the Apache web server ServerTokens Full (default)

configuration in a production system. This exposes the exact versions of

the web server and associated modules in any server-generated

responses. Attackers can use this information to identify known

vulnerabilities in your server software.

2. Leaving default directory listings enabled on production web servers.

This allows malicious users to browse for files that are hosted by the web

server.

3. Application server configurations that return stack traces to end users

on production systems in response to errors. Attackers can potentially

discover the software components that are used. They might be capable

of reverse engineering your code and potentially discovering flaws.

4. A previous feature in PHP. Several years ago, the default configuration

for PHP allowed the registration of any request parameter (query string,

cookie-based, POST-based) as a global variable. Since then, this feature

has been deprecated and removed altogether. Coupled with a vulnerable

version of PHP, it allowed for overwriting internal server variables via

HTTP requests:

http://example.com/ ?_SERVER[DOCUMENT_ROOT]=http://bad.co

m/bad.htm

In a vulnerable application, this embeds a malicious site address in the

site that users visit.

Using AWS WAF to Mitigate

You can use AWS WAF to mitigate attempts to exploit server misconfigurations

in a variety of ways, as long as the HTTP request patterns that attempt to exploit

them are recognizable. These patterns, however, are also application-stack

specific. They depend on the operating system, web server, frameworks, or

languages your code leverages. Generic rules that might not apply to your

specific stack can be useful to you for nuisance protection because they block

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 14

requests that would otherwise be invalid, so your backend servers don’t have to

process them.

Here are a few strategies you can use:

¶ You should block access to the paths to administrative consoles,

configuration, or status pages that are installed or enabled by default.

Alternatively, you should restrict access to trusted source IP addresses, if

they’re in use. You should do this regardless of whether you specifically

disabled or removed them (future actions might reactivate or reinstall

them).

¶ Protect against known attack patterns that are specific to your platform,

especially if you have legacy applications that rely on old platform

behavior. For example, if you’re using PHP, you might choose to block

requests with a query string that contains “_SERVER[“.

A whitelisting rule pattern, similar to the one discussed previously for the

Broken Access Control category, can help with whitelisting specific subservices,

such as the administrative console of a WordPress site.

Other Considerations

Also consider deploying Amazon Inspector to verify your software

configurations.22 It’s an automated security assessment service that helps

improve the security and compliance of applications that are deployed on AWS.

Amazon Inspector automatically assesses applications for vulnerabilities or

deviations from best practices.

To help you get started quickly, Amazon Inspector includes a knowledge base of

hundreds of rules that are mapped to common security best practices and

vulnerability definitions. Examples of built-in rules include checking for the

enablement of the remote root login or the installation of vulnerable software

versions. These rules are regularly updated by AWS security researchers.

In addition to detective controls, you can provide the best protection against

attacks in this category by implementing and maintaining secure configurations.

Configuration guidelines, such as the CIS Benchmarks23, can help you deploy

secure configurations. You can use services such as AWS Config24 and Amazon

https://aws.amazon.com/inspector/
https://www.cisecurity.org/cis-benchmarks/
https://aws.amazon.com/config/
https://aws.amazon.com/ec2/systems-manager/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 15

EC2 Systems Manager25 to help you track and manage configuration changes

over time.

A6 – Sensitive Data Exposure

Sensitive data exposure application flaws are typically harder to mitigate using

web application firewalls.26 These flaws commonly involve encryption processes

that have been deficiently implemented. Some examples are the lack of

encryption on transported or stored sensitive data, or using vulnerable legacy

encryption ciphers,27 where malicious parties can intercept and decode your

data.

Less commonly, there can be flaws in application or protocol implementations,

or client browsers, which can also lead to the exposure of sensitive data.

Exploits that ultimately lead to sensitive data exposure can span multiple

OWASP categories. A security misconfiguration that allows for the use of weak

cryptographic algorithms leads to encryption downgrades and, ultimately, to an

attacker being able to capture the data stream to decode sensitive data.

Using AWS WAF to Mitigate

Because the HTTP request is evaluated by AWS WAF after the incoming data

stream has been decrypted, its rules have no impact on enforcing good

encryption hygiene at the connection level.

Less commonly, if HTTP requests that can lead to sensitive data exposure have

detectable patterns, you can mitigate them by using string match conditions

that target those patterns. However, these patterns are application specific and

require more in-depth knowledge of those applications.

For example, if your application relies heavily on the SHA-1 hashing

algorithm,28 malicious users might attempt to cause a hash collision using a pair

of specially crafted PDF documents.29 If your application allows uploads, it

would be beneficial to set up a rule that blocks requests that contain portions of

the base64-encoded representation of those files in the body.

When you attempt to block uploaded file signatures using AWS WAF, take into

account the limits the service imposes on such rules. Uploaded data is base64

https://aws.amazon.com/ec2/systems-manager/
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-1
https://shattered.io/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 16

encoded. Therefore, your string match condition values have to be in base64

representation.

WAF searches the first 8 KB of the HTTP request body, or less if the multi-part

encoding of the request body contains other field parameters that precede the

file data itself. The relevant signature of the matched pattern can be up to 50

bytes in size. Most standardized file formats also have uniform preambles, so

the first several bytes of the file are common to all files of that format. This

forces you to derive the relevant signature from data further in the file.

Other Considerations

You can use other services in the AWS ecosystem to provide control over the

encryption protocols and ciphers that are used at the connection level:

¶ For Elastic Load Balancing Classic Load Balancers,30 you can select

predefined or customized security policies.31 These policies specify the

protocols and ciphers that the load balancers can use to negotiate secure

connections with clients.

¶ For Elastic Load Balancing Application Load Balancers,32 you can select

from a set of predefined security policies.33 As with the Classic Load

Balancers, these policies specify the allowed protocols and ciphers.

¶ For Amazon CloudFront,34 our content delivery network (CDN) service,

you can configure the minimum SSL protocol version you want to

support,35 as well as the SSL protocols you want CloudFront to use when

it connects to your custom origins.

A7 – Insufficient Attack Protection

This category has been proposed for the new 2017 Top 10, and it reflects the

reality that attack patterns can change quickly. Malicious actors are able to

adapt their toolsets quickly to exploit new vulnerabilities and launch large-scale

automated attacks to detect vulnerable systems. This category focuses strongly

on your ability to react in a timely manner to new attack vectors and abnormal

request patterns, or to application flaws that are discovered.

A broad range of attack vectors fall into this category, with many overlapping

other categories. To better understand them, ask yourself the following

questions:

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-ssl-security-policy.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesMinimumSSLProtocolVersion

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 17

¶ Can you enforce a certain level of hygiene at the request level? Are there

HTTP request components that your application expects to exist, or can’t

operate without?

¶ Are you able to detect and recognize when your application is targeted

with unusual request patterns or high volume? Do you have systems in

place that can do that detection in an automated fashion? Are these

systems capable of reacting to and blocking such unwanted traffic?

¶ Are you able to detect when a malicious actor launches a directed,

targeted attack against your application, trying to find and exploit flaws

in your application? Is this capability automated, so that you can react in

near-real time?

¶ How fast can you deploy a patch to a discovered application flaw or

vulnerability in your application stack and mitigate attacks against it?

Do you have mechanisms in place to detect the effectiveness of the patch

after deployment?

Using AWS WAF to Mitigate

You can use AWS WAF to enforce a level of hygiene for inbound HTTP requests.

Size constraint conditions36 help you build rules that ensure that

components of HTTP requests fall within specifically defined ranges. You can

use them to avoid processing abnormal requests. An example is to limit the size

of URIs or query strings to values that make sense to the application. Also, you

can use them to require the presence of specific headers, such as an API key for

a RESTful API.

HTTP Request

Component to Match

Relevant Input

Transformations

to Apply

Comparison

Operator

Size

URI NONE GT (greater than) Maximum expected URI path size

in bytes

QUERY_STRING NONE GT Maximum expected size of the

query string in bytes

BODY NONE GT Maximum expected request body

size in bytes

HEADER:x-api-key NONE LT (less than) 1 (or actual size of the API key)

HEADER:cookie NONE GT Maximum expected cookie size in

bytes

http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-size-conditions.html

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 18

You can use the example conditions described in this section with a blacklisting

rule to reject requests that don’t conform to the limits.

For detecting abnormal request patterns, you can use AWS WAF’s rate-based

rules that trigger when the rate of requests from an IP address exceeds your

defined threshold (requests per 5-min interval). You can combine these rules

with other predicates (conditions) that are available in AWS WAF.

For example, you can combine a rate-based rule with a string match rule to only

count requests with a particular user-agent (say user-agent=”abc”). This rule

combination makes sure that only requests with user-agent=”abc” are counted

towards the determination of the rate violation by that IP address.

A key advantage of AWS WAF is its programmability. You can configure and

modify AWS WAF web access control lists (ACLs), rules, and conditions by

using a programmatic API at any time. Any changes normally take effect within

a minute, even for our global service that’s integrated with Amazon CloudFront.

Using the API, you can build automated processes that are able to react to

application-specific abnormal conditions and take actions to block suspicious

sources of traffic or notify operators for further investigation. These

automations can operate in real-time, invoked via trap or honeypot URL paths.

They can also be reactive, based on the analysis and correlation of application

log files and request patterns.

As mentioned earlier, AWS provides a set of capabilities called the AWS WAF

Security Automations.37 These tools build upon the patterns highlighted

previously. They use several other AWS services, most notably AWS Lambda for

event-driven computing, and provide the following capabilities:38

¶ Scanner and probe mitigation. Malicious sources scan and probe

internet-facing web applications for vulnerabilities. They send a series of

requests that generate HTTP 4xx error codes. You can use this history to

help identify and block IP addresses from malicious sources. This

solution creates an AWS Lambda function that automatically parses

access logs, counts the number of bad requests from unique source IP

addresses, and updates AWS WAF to block further scans from those

addresses.

https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/lambda/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 19

¶ Known attacker origin mitigation. A number of organizations

maintain reputation lists of IP addresses that are operated by known

attackers, such as spammers, malware distributors, and botnets. This

solution leverages the information in these reputation lists to help you

block requests from malicious IP addresses.

¶ Bots and scraper mitigation. Operators of publicly accessible web

applications have to trust that the clients accessing their content identify

themselves accurately, and that they will use services as they’re intended.

However, some automated clients, such as content scrapers or bad bots,

misrepresent themselves to bypass restrictions.

This solution implements a honeypot that helps you identify and block

bad bots and scrapers. In this solution, the honeypot URL is listed in the

‘disallow’ section of the robots.txt file.39 Any IP that accesses this URL is,

therefore, deemed malicious or noncompliant and is blacklisted.

Additionally, there are ways you might be able to use AWS WAF to mitigate

newly discovered application flaws or vulnerabilities in your stack. They are

discussed in greater detail later (see A9 – Using Components with Known

Vulnerabilities).

A8 – Cross-Site Request Forgery (CSRF)

Cross-site request forgery attacks predominantly target state-changing

functions in your web applications.40 Consider any URL path and HTTP request

that is intended to cause a state change (for example, form submission

requests). Are there any mechanisms in place to ensure the user intended to

take that action? Without such mechanisms, there isn’t an effective way to

determine whether the request is legitimate and wasn’t forged by a malicious

party. Depending solely on client-side attributes, such as session tokens or

source IP addresses, isn’t an effective strategy because malicious actors can

manipulate and replicate these values.

CSRF attacks take advantage of the fact that all details of a particular action are

predictable (form fields, query string parameters). Attacks are carried out in a

way that takes advantage of other vulnerabilities, such as cross-site scripting or

file inclusion—so users aren’t aware that the malicious action is triggered using

their credentials and active session.

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 20

Using AWS WAF to Mitigate

You can mitigate CSRF attacks by doing the following:

¶ Including unpredictable tokens in the HTTP request that triggers the

action.

¶ Prompting users to authenticate for sending action requests.

¶ Introducing CAPTCHA challenges for sending action requests.41

The first option is transparent to end users—forms can include unique tokens as

hidden form fields, custom headers, or, less desirably, query string parameters.

The latter two options can introduce extra friction for end users and are

generally only implemented for sensitive action requests. Additionally,

CAPTCHAs can be circumvented by motivated actors and value combinations

can also repeat.42 As such, they are a less desirable mitigation control for CSRF.

You can use AWS WAF to check for the presence of those unique tokens. For

example, if you decide to leverage a random universally unique identifier

(UUIDv4)43 as the CSRF token, and expect the value in a custom HTTP header

named x-csrf-token, you can implement a size constraint condition:

HTTP Request

Component to Match

Relevant Input

Transformations

to Apply

Comparison

Operator

Size

HEADER:x-csrf-token NONE EQ (equal to) 36

(bytes/ASCII characters, canonical

format)

You would build a blocking rule where requests do not match this condition

(negated). You can further narrow the scope of the rule by only matching POST

HTTP requests, for example. Build a rule using the negated condition above and

an additional string match condition for:

HTTP Request

Component to Match

Relevant Input

Transformations

to Apply

Relevant

Positional

Constraints

Values to Match Against

METHOD LOWERCASE EXACTLY post

https://en.wikipedia.org/wiki/CAPTCHA
https://en.wikipedia.org/wiki/CAPTCHA#Circumvention
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 21

Other Considerations

Such rules are effective in filtering out CSRF attacks that circumvent your

unique tokens. However, they aren’t effective at validating if the request carries

invalid, wrong, stale, or stolen tokens. This is because HTTP request

introspection lacks access to your application context. Therefore, you need a

server-side mechanism in your application to track the expected token or and

ensure it’s used exactly once.

As an example, the server sends a simple form to the client browser along with

the embedded unique token as a hidden field. At the same time, it retains in the

current server-side session store the token value it expects the browser to

supply when the user submits the form. After the user submits the form, a POST

request is made to the server that includes the unique hidden token. The server

can safely discard any POST requests that don’t contain the expected value for

the supplied session. It should clear the value from the session store after it’s

used up, which ensures that the value doesn’t get reused.

A9 – Using Components with Known Vulnerabilities

Currently, most web applications are highly composed. They use frameworks

and libraries from a variety of sources, commercial or open source. One

challenge is keeping up to date with the most recent versions of these

components. This is further exacerbated when underlying libraries and

frameworks use other components themselves.

Using components with known vulnerabilities is one of the most prevalent

attack vectors.44 They can help open up the attack surface of your web

application to some of the other attack vectors discussed in this document. The

decision to use such components can be an active trade-off to maintain

compatibility with legacy code. Or, it’s possible to inadvertently use vulnerable

components if you’re using components that depend on vulnerable

subcomponents.

Mitigating vulnerabilities in such components is challenging because not all of

them are reported and tracked by central clearinghouses such as Common

Vulnerabilities and Exposures (CVE).45 This puts the responsibility on the

application developers to track the status of the components individually with

the respective vendor, author, or provider. Often, vulnerabilities are addressed

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
http://cve.mitre.org/
http://cve.mitre.org/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 22

in new versions of the components, including new enhancements, rather than

fixing existing versions. This adds to the amount of work that developers have to

perform to implement, test, and deploy the new versions of these components.

Using AWS WAF to Mitigate

The primary mechanism to mitigate known vulnerabilities in components is to

have a comprehensive process in place that addresses the lifecycle of such

components. You should have a way to identify and track the dependencies of

your application and the dependencies of the underlying components. Also, you

should have a monitoring process in place to track the security of these

components.

Establish a software development process and policy that factors in the patch or

release frequency of underlying components and acceptable licensing models.

This can help you react quickly when component providers address

vulnerabilities in their code.

Additionally, you can use AWS WAF to filter and block HTTP requests to

functionality of such components that you aren’t using in your applications.

This helps reduce the attack surface of those components if vulnerabilities are

discovered in functionality you’re not using.

Does your application use server-side included components? These are usually

files that contain code that is loaded at runtime to assemble the HTTP response

directly or indirectly. Examples are Apache Server-side Includes46 or code that

loads via PHP include47 or require48 statements. Other languages and

frameworks have similar constructs.

It’s a best practice that these components aren’t deployed in the public web path

on your web server in the first place. However, sometimes this recommendation

is ignored for a variety of reasons. If these components are present in the public

web path, these files aren’t designed to be accessed directly. Nevertheless,

accessing them might expose internal application information or provide

vectors of attack.

Consider using a string match condition to block access to such URL

prefixes:

https://httpd.apache.org/docs/current/howto/ssi.html
http://php.net/manual/en/function.include.php
http://php.net/manual/en/function.require.php

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 23

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

URI URL_DECODE STARTS_WITH /includes/

(or relevant prefix in your application)

Similarly, if your application uses third-party components but uses only a

subset of the functionality, consider blocking exposed URL paths to

functionality in those components that you don’t use by using similar AWS WAF

conditions.

Other Considerations

Penetration testing can also be an effective mechanism to discover

vulnerabilities.49 You can integrate it into your deployment and testing

processes to both detect potential vulnerabilities, as well as to ensure that

deployed patches correctly mitigate the targeted application flaws.

The AWS Marketplace50 offers a wide range of vulnerability testing solutions

from our partner vendors that are designed to help you get started easily and

quickly. Keep in mind that AWS requires customers to obtain permission51

before conducting such tests on resources that are hosted in AWS. However,

some of the solutions available in the AWS Marketplace have been

preauthorized, and you can skip the authorization step. They are marked as

such in the solution title.

A10 – Underprotected APIs

Another new category proposed for the 2017 Top 10, Underprotected APIs,

focuses on the target of potential attacks, rather than the specific application

flaw patterns that can be exploited. This category recognizes the prevalence and

anticipated future growth of APIs. Currently, entire applications are published

that don’t have a user-facing UI. Instead, they’re available as APIs that other

application publishers can use to build loosely coupled applications. Many

applications can have both user UIs and APIs, whether those APIs are intended

to be consumed by third parties or not.

https://en.wikipedia.org/wiki/Penetration_test
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=vulnerability+scanner&page=1&ref_=nav_search_box
https://aws.amazon.com/security/penetration-testing/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 24

The attack vectors are often the same as discussed in categories A1 through A9,

and are common with more traditional web applications that are end user

facing.

However, because APIs are designed for programmatic access, they do provide

some additional challenges around security testing. It’s easier to develop

security test cases for user-facing UIs that have simpler data structures and

more discrete, high-delay steps due to human interaction. In contrast, APIs are

often designed to work with more complex data structures and use a wider

range of request frequencies and input values. This is the case even if they’re

standardized and use well-known protocols, such as RESTful APIs52 or SOAP.53

Using AWS WAF to Mitigate

Because the attack vectors for APIs are often the same as for traditional web

applications, the mitigation mechanisms discussed throughout this document

also apply to APIs in a similar manner. You can use AWS WAF in a variety of

ways to mitigate these different attack vectors.

A key component that needs hardening is the protocol parser itself. With

standardized protocols, it’s relatively easy to extrapolate the parser used. With

SOAP, you use XML54—and with RESTful APIs you will likely use JSON,55

although you can also use XML, YAML,56 or other formats. Thus, you can

provide a critical success factor by effectively securing the configuration of the

parser component and ensuring any vulnerabilities are mitigated.

As specific input patterns are discovered that would attempt to exploit flaws in

the parser, you might be able to use AWS WAF string match conditions or

size restrictions for the request body to block such request patterns.

Old Top 2013 A10 – Unvalidated Redirects and

Forwards

Most websites and web applications contain mechanisms to redirect or forward

users to other pages—internal or partner sites. If these mechanisms don't

validate the redirect or forward requests,57 it’s possible for malicious parties to

use your legitimate domain to direct users to unwanted destinations. These

links use your legitimate and reputable domain to trick users.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/SOAP
https://www.w3.org/XML/
http://www.json.org/
http://yaml.org/
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 25

Consider the following example:

You run a video sharing site and operate a URL shortener mechanism

to enable users to share videos over text messages on mobile devices.

You use a script to create the URLs:

https://example.com/link?target=

https %3A%2F%2Fexample.com%2Fvideo%2Fe439853%3Fpos%3D200%2

6mode%3Dfullscreen

Users receive a URL like below, and it takes them to the correct content

page:

https://example.com/to? vrejkR6T

If your link generator script doesn’t validate the acceptable input

domains for the target page, a malicious user can generate a link to an

unwanted site:

https://example.com/link?target=

https %3A%2F%2Fbadsite.com%2Fmalware

They can then package it and send it to users as it would originate from

your site:

https://example.com/to? br09FtZ1

Using AWS WAF to Mitigate

The first step in mitigation is understanding where redirects and forwards occur

in your application. Discovering what URL request patterns cause redirects,

directly or indirectly, and under what conditions, helps you to build a list of

potentially vulnerable areas. You should perform the same analysis for any

exposed third-party components that your application uses in case they include

redirect functionality.

If redirects and forwards are generated in response to HTTP requests from end

users, as in the example above, then you can use AWS WAF to filter the requests

and maintain a whitelist of domains that are trusted for redirect/forwarding

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 26

purposes. You can use a string match condition that targets the HTTP

request component where the target parameter is expected to match a whitelist.

In the example above, the set of conditions might look like the following:

1. Whitelist of allowed domains for redirects (block requests if no list value

is matched):

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

QUERY_STRING URL_DECODE CONTAINS target=https://example.com

QUERY_STRING URL_DECODE CONTAINS target=https://partnersite.com

2. Match only specific HTTP requests (to the redirector or router scripts):

HTTP Request

Component to

Match

Relevant Input

Transformations to

Apply

Relevant

Positional

Constraints

Values to Match Against

URI URL_DECODE STARTS_WITH /link

You should combine these conditions in a single AWS WAF rule, which ensures

that both conditions have to be met for requests to be matched.

Companion CloudFormation Template
We’ve prepared an AWS CloudFormation template58 that contains a web ACL

and the condition types and rules recommended in this document. You can use

the template to provision these resources with just a few clicks (full API support

is also available). Note that the template is designed as a starting point for you

to build upon—and not as a production-ready, comprehensive set of rules. For

more information about working with CloudFormation templates, see Learn

Template Basics.59

The template is available at:

https://s3.us-east-2.amazonaws.com/awswaf-owasp/owasp_10_base.yml

The following example rules are included in the template:

https://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://s3.us-east-2.amazonaws.com/awswaf-owasp/owasp_10_base.yml

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 27

¶ Bad sources of traffic. A generic IP block list rule that allows you to

block requests from identified bad sources of traffic.

¶ Broken access control:

o A path traversal and file injection rule that detects common file

system path traversal, as well as local and remote file injection

(LFI/RFI) patterns, to block suspicious requests.

o A privileged module access restriction rule that limits access for

administrative modules to known source IPs only. You can configure

one path prefix and source IP address through the template. You can

add additional patterns later by changing the conditions directly.

For more information, see Creating and Configuring a Web Access

Control List.60

¶ Broken authentication and session management. A block list

that allows you to block illicit requests that use stolen or hijacked

authorization credentials, such as JSON Web Tokens or session IDs.

¶ Cross-site request forgery (CSRF). A rule that enforces the

existence of CSRF-mitigating tokens.

¶ Cross-site scripting (XSS). A rule that mitigates XSS attacks in

common HTTP request components.

¶ Injection. A SQL injection rule that mitigates SQL injection attacks in

common HTTP request components.

¶ Insufficient attack protection. A request-size hygiene rule that

allows you to configure the maximum size of various HTTP request

components by using template parameters, and block abnormal requests

that exceed those maximum sizes.

¶ Security misconfigurations. A rule that detects some exploits of

PHP-specific server misconfigurations. This rule might be less effective

if you aren’t running PHP-based applications, but it can still be valuable

to filter out unwanted, automated HTTP requests that probe for PHP

vulnerabilities.

¶ The use of components with known vulnerabilities. A rule that

restricts access to publicly exposed URL paths that shouldn’t be directly

accessible, such as server-side include components or component

features that aren’t being used by your application.

http://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 28

We’ve chosen to package the example AWS WAF rule set as a CloudFormation

template because it provides an easy and repeatable way to provision the whole

rule set with a few simple clicks. The AWS CloudFormation documentation

provides an easy-to-follow walkthrough about how to create a stack,61 which is a

collection of resources you can manage as a single unit.

Follow those instructions and provide the template on the Select Template

page. Choose the option to Upload a template to Amazon S3 and provide

the downloaded template from your local computer. Otherwise, you can simply

paste the template URL (https://s3.us-east-2.amazonaws.com/awswaf-

owasp/owasp_10_base.yml) in the Specify an Amazon S3 template URL

box.

On the Specify Details page, you can configure the template’s parameters. A

few key parameters to emphasize are:

¶ Apply to WAF. This parameter allows you to select whether you want

to use the template to deploy a rule set for Amazon CloudFront web

distributions or Application Load Balancers (ALB) in the current region.

AWS WAF web ACLs get applied either to CloudFront web distributions

or ALBs, depending on which service you use to deliver your application.

The same stack can’t be used for both, but you can deploy multiple

stacks. You can also change this parameter’s value later by updating the

stack.

¶ Rule effect. This parameter determines the effect of your rule set. To

minimize disruption, we recommend that you start with a rule set that

counts matching requests. You can measure the effectiveness of your

rules that way without impacting traffic. When you’re confident about

the effectiveness of your rules, you can deploy a stack that will block

matching requests.

Continue following the AWS CloudFormation walkthrough instructions to

deploy the stack. After you deploy the stack, you must associate the web ACL62

that’s deployed by the stack with your load balancer or web distribution

resources to be able to use the rule set.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/updating.stacks.walkthrough.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/updating.stacks.walkthrough.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-testing.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-testing.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-working-with.html#web-acl-associating-cloudfront-distribution

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 29

Conclusion
You can use AWS WAF to help you protect your websites and web applications

against various attack vectors at the HTTP protocol level. As we discussed, in

relation to OWASP security flaws, AWS WAF is very effective at mitigating

vulnerabilities, to the extent that you can detect these attack patterns in HTTP

requests.

Additionally, you can enhance the capabilities of AWS WAF with other AWS

services to build comprehensive security automations. A set of such tools is

available on our website in the form of the AWS WAF Security Automations.63

These tools enable you to build a set of protections that can react to the

changing type of attacks your applications might be facing. The solution

provides several easy-to-deploy automations in the form of a CloudFormation

template for rate-based IP blacklisting, reputation list IP blacklisting, scanner

and probe mitigation, bot and scraper detection, and blocking.

https://aws.amazon.com/answers/security/aws-waf-security-automations/

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 30

Contributors

The following individuals and organizations contributed to this document:

¶ Vlad Vlasceanu, Sr. Solutions Architect, Amazon Web Services

¶ Sundar Jayashekar, Sr. Product Manager, Amazon Web Services

¶ William Reid, Sr. Manager, Amazon Web Services

¶ Stephen Quigg, Solutions Architect, Amazon Web Services

¶ Matt Nowina, Solutions Architect, Amazon Web Services

¶ Matt Bretan, Sr. Consultant, Amazon Web Services

¶ Enrico Massi, Security Solutions Architect, Amazon Web Services

¶ Michael St.Onge, Cloud Security Architect, Amazon Web Services

¶ Leandro Bennaton, Security Solutions Architect, Amazon Web Services

Further Reading

For additional information, see the following:

¶ AWS WAF Security Automations:

https://aws.amazon.com/answers/security/aws-waf-security-

automations/

¶ OWASP Top 10 – 2017 rc1:

https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top

%2010%20-%202017%20RC1-English.pdf

¶ OWASP Top 10 – 2013:

https://www.owasp.org/index.php/Top_10_2013

https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%20-%202017%20RC1-English.pdf
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%20-%202017%20RC1-English.pdf
https://www.owasp.org/index.php/Top_10_2013

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 31

Document Revisions

Date Description

July 2017 First publication

1 https://www.owasp.org/

2 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

3 https://aws.amazon.com/waf/

4 https://aws.amazon.com/cloudfront/

5 https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/

6 https://www.owasp.org/index.php/Top_10_2013-A1-Injection

7 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-sql-

conditions.html

8 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-string-

conditions.html

9 https://www.owasp.org/index.php/Top_10_2013-A2-

Broken_Authentication_and_Session_Management

10 https://jwt.io/

11 http://docs.aws.amazon.com/waf/latest/APIReference/Welcome.html

12 https://www.owasp.org/index.php/Top_10_2013-A3-Cross-

Site_Scripting_(XSS)

13 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-xss-

conditions.html

14 https://en.wikipedia.org/wiki/Content_management_system

15 https://developer.mozilla.org/en-US/docs/Web/SVG

16 https://www.owasp.org/index.php/Top_10_2013-A4-

Insecure_Direct_Object_References

Notes

https://www.owasp.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://aws.amazon.com/waf/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-sql-conditions.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-sql-conditions.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-string-conditions.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-string-conditions.html
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://jwt.io/
http://docs.aws.amazon.com/waf/latest/APIReference/Welcome.html
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-xss-conditions.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-xss-conditions.html
https://en.wikipedia.org/wiki/Content_management_system
https://developer.mozilla.org/en-US/docs/Web/SVG
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 32

17 https://www.owasp.org/index.php/Top_10_2013-A7-

Missing_Function_Level_Access_Control

18 https://en.wikipedia.org/wiki/Directory_traversal_attack

19 https://en.wikipedia.org/wiki/File_inclusion_vulnerability

20 http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

21 https://www.owasp.org/index.php/Top_10_2013-A5-

Security_Misconfiguration

22 https://aws.amazon.com/inspector/

23 https://www.cisecurity.org/cis-benchmarks/

24 https://aws.amazon.com/config/

25 https://aws.amazon.com/ec2/systems-manager/

26 https://www.owasp.org/index.php/Top_10_2013-A6-

Sensitive_Data_Exposure

27 https://en.wikipedia.org/wiki/Cipher

28 https://en.wikipedia.org/wiki/SHA-1

29 https://shattered.io/

30

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction

.html

31 http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-ssl-

security-policy.html

32

http://docs.aws.amazon.com/elasticloadbalancing/latest/application/introdu

ction.html

33 http://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-

https-listener.html

34

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Int

roduction.html

35

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/dis

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://en.wikipedia.org/wiki/Directory_traversal_attack
https://en.wikipedia.org/wiki/File_inclusion_vulnerability
http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://aws.amazon.com/inspector/
https://www.cisecurity.org/cis-benchmarks/
https://aws.amazon.com/config/
https://aws.amazon.com/ec2/systems-manager/
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/SHA-1
https://shattered.io/
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-ssl-security-policy.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-ssl-security-policy.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html%23DownloadDistValuesMinimumSSLProtocolVersion

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 33

tribution-web-values-

specify.html#DownloadDistValuesMinimumSSLProtocolVersion

36 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-size-

conditions.html

37 https://aws.amazon.com/answers/security/aws-waf-security-automations/

38 https://aws.amazon.com/lambda/

39 https://en.wikipedia.org/wiki/Robots_exclusion_standard

40 https://www.owasp.org/index.php/Top_10_2013-A8-Cross-

Site_Request_Forgery_(CSRF)

41 https://en.wikipedia.org/wiki/CAPTCHA

42 https://en.wikipedia.org/wiki/CAPTCHA#Circumvention

43 https://en.wikipedia.org/wiki/Universally_unique_identifier

44 https://www.owasp.org/index.php/Top_10_2013-A9-

Using_Components_with_Known_Vulnerabilities

45 http://cve.mitre.org/

46 https://httpd.apache.org/docs/current/howto/ssi.html

47 http://php.net/manual/en/function.include.php

48 http://php.net/manual/en/function.require.php

49 https://en.wikipedia.org/wiki/Penetration_test

50

https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerm

s=vulnerability+scanner&page=1&ref_=nav_search_box

51 https://aws.amazon.com/security/penetration-testing/

52 https://en.wikipedia.org/wiki/Representational_state_transfer

53 https://en.wikipedia.org/wiki/SOAP

54 https://www.w3.org/XML/

55 http://www.json.org/

56 http://yaml.org/

57 https://www.owasp.org/index.php/Top_10_2013-A10-

Unvalidated_Redirects_and_Forwards

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html%23DownloadDistValuesMinimumSSLProtocolVersion
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html%23DownloadDistValuesMinimumSSLProtocolVersion
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-size-conditions.html
http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-size-conditions.html
https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/lambda/
https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://en.wikipedia.org/wiki/CAPTCHA
https://en.wikipedia.org/wiki/CAPTCHA%23Circumvention
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
http://cve.mitre.org/
https://httpd.apache.org/docs/current/howto/ssi.html
http://php.net/manual/en/function.include.php
http://php.net/manual/en/function.require.php
https://en.wikipedia.org/wiki/Penetration_test
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=vulnerability+scanner&page=1&ref_=nav_search_box
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=vulnerability+scanner&page=1&ref_=nav_search_box
https://aws.amazon.com/security/penetration-testing/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/SOAP
https://www.w3.org/XML/
http://www.json.org/
http://yaml.org/
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

Amazon Web Services – Use AWS WAF to Mitigate OWASP’s Top 10 Web Application

Vulnerabilities

Page 34

58 https://aws.amazon.com/cloudformation/

59

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/getting

started.templatebasics.html

60 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html

61 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-

console-create-stack.html

62 http://docs.aws.amazon.com/waf/latest/developerguide/web-acl-working-

with.html#web-acl-associating-cloudfront-distribution

63 https://aws.amazon.com/answers/security/aws-waf-security-automations/

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/answers/security/aws-waf-security-automations/

