
Archived
Serverless Streaming
Architectures and Best

Practices

June 2018

This paper has been archived.

For the latest technical content, see
the AWS Whitepapers & Guides page:

https://aws.amazon.com/whitepapers/

https://aws.amazon.com/whitepapers/

Archived

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s current

product offerings and practices as of the date of issue of this document, which are subject to

change without notice. Customers are responsible for making their own independent

assessment of the information in this document and any use of AWS’s products or services,

each of which is provided “as is” without warranty of any kind, whether express or implied.

This document does not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and this document

is not part of, nor does it modify, any agreement between AWS and its customers.

Archived

Contents
Introduction 1

What is serverless computing and why use it? 1

What is streaming data? 1

Who Should Read this Document 2

Stream Processing Application Scenarios 2

Serverless Stream Processing 3

Three Patterns We’ll Cover 4

Cost Considerations of Server-Based vs Serverless Architectures 4

Example Use-case 6

Sensor Data Collection 6

Best Practices 8

Cost Estimates 8

Streaming Ingest Transform Load (ITL) 9

Best Practices 10

Cost Estimates 11

Real-Time Analytics 12

Best Practices 15

Cost Estimates 16

Customer Case Studies 17

Conclusion 18

Contributors 19

Further Reading 18

Document Revisions 19

Appendix A – Detailed Cost Estimates 19

Common Cost Assumptions 19

Appendix A.1 – Sensor Data Collection 20

Appendix A.2 – Streaming Ingest Transform Load (ITL) 23

Appendix A.3 – Real-Time Analytics 26

Archived

Appendix B – Deploying and Testing Patterns 28

Common Tasks 28

Appendix B.1 – Sensor Data Collection 29

Appendix B.2 – Streaming Ingest Transform Load (ITL) 32

Appendix B.3 – Real-Time Analytics 36

Archived

Executive Summary
Serverless computing allows you to build and run applications and services without thinking

about servers. This means you can focus on writing business logic instead of managing or

provisioning infrastructure. AWS Lambda, our serverless compute offering, allows you to write

code in discrete units called functions, which are triggered to run by events. Lambda will

automatically run and scale your code in response to these events, such as modifications to

Amazon S3 buckets, table updates in Amazon DynamoDB, or HTTP requests from custom

applications. AWS Lambda is also pay-per-use, which means you pay only for when your code

is running. Using a serverless approach allows you to build applications faster, at a lower cost,

and with less on-going management. AWS Lambda and serverless architectures are well-suited

for stream processing workloads which are often event-driven and have spiky or variable

compute requirements. Stream processing architectures are increasingly deployed to process

high volume events and generate insights in near-real time.

In this whitepaper we will explore three stream processing patterns using a serverless

approach. For each pattern, we’ll describe how it applies to a real-world use-case, the best

practices and considerations for implementation, and cost estimates. Each pattern also

includes a template which enables you to easily and quickly deploy these patterns in your AWS

accounts.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 1

Introduction

What is serverless computing and why use it?

Serverless computing allows you to build and run applications and services without thinking

about servers. Serverless applications don't require you to provision, scale, and manage any

servers. You can build them for nearly any type of application or backend service, and

everything required to run and scale your application with high availability is handled for you.

Building serverless applications means that your developers can focus on their core product

instead of worrying about managing and operating servers or runtimes, either in the cloud or

on-premises. This reduced overhead lets developers reclaim time and energy that can be spent

on developing great products which scale and that are reliable.

Serverless applications have three main benefits:

 No server management

 Flexible scaling

 Automated high availability

In this paper we will focus on serverless stream processing applications built with our

serverless compute service AWS Lambda. AWS Lambda lets you run code without provisioning

or managing servers. You pay only for the compute time you consume - there is no charge

when your code is not running.

With Lambda, you can run code for virtually any type of application or backend service - all

with zero administration. Just upload your code and Lambda takes care of everything required

to run and scale your code with high availability. You can set up your code to automatically

trigger from other AWS services or call it directly from any web or mobile app.

What is streaming data?

Streaming Data is data that is generated continuously by thousands of data sources, which

typically send in the data records simultaneously, and in small sizes (order of kilobytes).

Streaming data includes a wide variety of data such as log files generated by mobile or web

applications, e-commerce purchases, in-game player activity, information from social

networks, financial trading floors, or geospatial services, and telemetry from connected

devices or instrumentation in data centers.

Streaming data can be processed in real-time or near real-time, providing actionable insights

that respond to changing conditions and customer behavior quicker than ever before. This is in

contrast to the traditional database model, where data is stored then processed or analyzed at

a later time, sometimes leading to insights derived from data that is out of date.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 2

Who Should Read this Document

This document is targeted at Architects and Engineers seeking for a deeper understanding of

serverless patterns for stream processing and best practices and considerations. We assume a

working knowledge of stream processing. For an introduction to Stream Processing, please see

to the Whitepaper: Streaming Data Solutions on AWS with Amazon Kinesis.

Stream Processing Application Scenarios

Streaming data processing is beneficial in most scenarios where new, dynamic data is

generated on a continual basis. It applies to most big data use-cases and can be found across

diverse industry verticals, as shown in Table 1. In this Whitepaper, we’ll focus on the Internet

of Things (IoT) industry vertical to provide examples of how to apply stream processing

architectures to real-world challenges.

Scenarios/

Verticals

Accelerated

Ingest-Transform-Load

Continuous Metrics

Generation

Responsive Data

Analysis

IoT Sensor, device

telemetry data ingestion

Operational metrics and

dashboards

Device operational

intelligence and alerts

Digital Ad Tech

Marketing

Publisher, bidder data

aggregation

Advertising metrics like

coverage, yield, and

conversion

User engagement with

ads, optimized bid/buy

engines

Gaming Online data aggregation,

e.g., top 10 players

Massively multiplayer online

game (MMOG) live dashboard

Leader board generation,

player-skill match

Consumer

Online

Clickstream analytics Metrics like impressions and

page views

Recommendation

engines, proactive care

Table 1. Streaming Data Scenarios Across Verticals.

There are several characteristics of a stream processing or real-time analytics workload:

 It must be reliable enough to handle critical updates such as replicating the changelog

of a database to a replica store like a search index, delivering this data in order and

without loss.

 It must support throughput high enough to handle large volume log or event data

streams.

 It must be able to buffer or persist data for long periods of time to support integration

with batch systems that may only perform their loads and processing periodically.

 It must provide data with latency low enough for real-time applications.

https://aws.amazon.com/whitepapers/kinesis-solutions/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 3

 It must be possible to operate it as a central system that can scale to carry the full load

of the organization and operate with hundreds of applications built by disparate teams

all plugged into the same central nervous system.

 It has to support close integration with stream processing systems.

Serverless Stream Processing

Traditionally, stream processing architectures have used frameworks like Apache Kafka to

ingest and store the data, and a technology like Apache Spark or Storm to process the data in

near-real time. These software components are deployed to clusters of servers along with

supporting infrastructure to manage the clusters such as Apache ZooKeeper. Today,

companies taking advantage of the public cloud no longer need to purchase and maintain their

own hardware. However, any server-based architecture still requires them to architect for

scalability and reliability and to own the challenges of patching and deploying to those server

fleets as their applications evolve. Moreover, they must scale their server fleets to account for

peak load and then attempt to scale them down when and where possible to lower costs—all

while protecting the experience of end users and the integrity of internal systems.

Serverless compute offerings like AWS Lambda are designed to address these challenges by

offering companies a different way of approaching application design – an approach with

inherently lower costs and faster time to market that eliminates the complexity of dealing with

servers at all levels of the technology stack. Eliminating infrastructure and moving to a per-

pay-request model offers dual economic advantages:

 Problems like cold servers and underutilized storage simply cease to exist, along with

their cost consequences—it’s simply impossible for a serverless compute system like

AWS Lambda to be cold because charges only accrue when useful work is being

performed, with millisecond-level billing granularity.

 The elimination of fleet management, including the security patching, deployments,

and monitoring of servers disappears, along with the challenge of maintaining the

associated tools, processes, and on-call rotations required to support 24x7 server fleet

uptime. Without the burden of server management, companies can direct their scarce

IT resources to what matters—their business.

With greatly reduced infrastructure costs, more agile and focused teams, and faster time to

market, companies that have already adopted serverless approaches are gaining a key

advantage over their competitors.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 4

Three Patterns We’ll Cover

In this whitepaper, we will consider three serverless stream processing patterns:

 Sensor Data Collection with Simple Transformation – in this pattern, IoT sensor

devices are transmitting measurements into a ingest service. As data is ingested,

simple transformations can be performed to make the data suitable for downstream

processing. Example use-cases: medical sensor devices generate patient data streams

that must be de-identified to mask Protected Health Information (PHI) and Personally

Identifiable Information (PII) to meet HIPAA compliance.

 Stream Ingest Transform Load (ITL) – this pattern extends the prior pattern to add

field level enrichment from relatively small and static data sets. Example use-case(s):

add data fields to medical device sensor data such as location information or device

details looked up from a database. This is also a common pattern used for log data

enrichment and transformation.

 Real-time Analytics – this pattern builds upon the prior patterns and adds the

computation of windowed aggregations and anomaly detection. Example use-case(s):

tracking user activity, performing log analytics, fraud detection, recommendation

engines, and maintenance alerts in near-real-time.

In the sections that follow, we will provide an example use-case of each pattern. We will

discuss the implementation choices and provide an estimate of the costs. Each sample pattern

described in the paper is also available in Github (please see Appendix B) so you can quickly

and easily deploy them into your AWS account.

Cost Considerations of Server-Based vs

Serverless Architectures
When comparing the cost of a serverless solution against server-based approaches, you must

consider several indirect cost elements that are in addition to the server infrastructure costs.

These indirect costs include additional patching, monitoring and other responsibilities of

maintaining server-based applications that can require additional resources to manage.

A number of these cost considerations are listed in Table 2.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 5

Cost

Consideration

Server-based architectures Serverless architectures

Patching All servers in the environment must be

regularly patched; this includes the

Operating System (OS) as well as the suite

of applications needed for the workload to

function.

As there are no servers to manage in a

serverless approach, these patching

tasks are largely absent. You are only

responsible for updating your function

code when using AWS Lambda.

Security stack Servers will often include a security stack

including products for malware protection,

log monitoring, host based firewalls and

IDS that must be configured and managed.

Equivalent firewall and IDS controls are

largely taken care of by the AWS service

and service specific security logs such as

CloudTrail are provided for auditing

purposes without requiring setup and

configuration of agents and log

collection mechanisms.

Monitoring Server-based monitoring may surface

lower-level metrics that must be

monitored, correlated and translated to

higher service-level metrics. For example,

in a stream ingestion pipeline, individual

server metrics like CPU utilization, network

utilization, disk IO, disk space utilization

must all be monitored and correlated to

understand the performance of the

pipeline.

In the serverless approach, each AWS

service provides CloudWatch metrics

that can be directly used to understand

the performance of the pipeline. For

example: Kinesis Firehose publishes

CloudWatch metrics for IncomingBytes,

IncomingRecords and S3 DataFreshness

that lets an operator understand more

directly the performance of the

streaming application.

Supporting

infrastructure

Often, server based clusters need

supporting infrastructure such as cluster

management software, centralized log

collection that must also be managed.

AWS manages the clusters providing

AWS services and removes this burden

from the customer. Further, services

like AWS Lambda deliver log records to

CloudWatch Logs allowing centralized

log collection, processing and analysis.

Software licenses Customers must consider the cost of

licenses and commercial support for

software such as the Operating Systems,

streaming platforms, application servers,

and packages for security, management

and monitoring.

The AWS service prices include

software licenses and no additional

packages are needed for security,

management and monitoring of these

services.

Table 2. Cost considerations when comparing serverless and server-based architectures.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 6

Example Use-case
For this whitepaper, we will focus on a use-case of medical sensor devices that are wired to a

patient receiving treatment at a hospital. First, sensor data must be ingested securely at scale.

Next, the patient’s protected health information (PHI) is de-identified in order to be processed

in an anonymized way. As part of the processing, the data may need to be enriched with

additional fields or the data may be transformed. Finally, the sensor data is analyzed in real-

time to derive insights such as detecting anomalies or developing trend patterns. In the

sections that follow, we’ll detail this use-case with example realizations of the three patterns.

Sensor Data Collection
Wearable devices for health monitoring is a fast growing IoT use-case that allow real-time

monitoring of a patient’s health. In order to do this, first, the sensor data must be ingested

securely and at scale. It must then be de-identified to remove the patient’s personal health

information (PHI) so that the anonymized data can be processed in other systems

downstream.

An example solution that meets these requirements is shown in Figure 1.

Figure 1. Overview of Medical Device Use-Case – Sensor or Device Data Collection

In Point 1 of Figure 1, one or more medical devices (“IoT sensors”) are wired to a patient in a

hospital. The devices transmit sensor data to the hospital IoT gateway which are then

forwarded securely using the MQTT protocol to the AWS IoT gateway service for processing. A

sample record at this point is:

IoT sensors AWS
IoT

IoT
rule

IoT
action

De-identification

DynamoDB:
Cross-Reference Data

Store

KMS:
Encryption Keys

Encrypt

MQTT

1

2

De-identified records

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 7

{

 "timestamp": "2018-01-27T05:11:50",

 "device_id": "device8401",

 "patient_id": "patient2605",

 "name": "Eugenia Gottlieb",

 "dob": "08/27/1977",

 "temperature": 100.3,

 "pulse": 108.6,

 "oxygen_percent": 48.4,

 "systolic": 110.2,

 "diastolic": 75.6

}

Next, the data must be de-identified in order to be processed in an anonymized way. AWS IoT

is configured with an IoT Rule that selects measurements for a specific set of patients and an

IoT Action that delivers these selected measurements to a Lambda de-identification function.

The Lambda performs three tasks. First the function removes PHI and PII attributes (Patient

Name and Patient DOB) from the records. Second for the purpose of future cross-reference

the function encrypts and stores the Patient Name and Patient DOB attributes in a DynamoDB

table along with the Patient ID. And finally the function sends the de-identified records to a

Kinesis Data Firehose delivery stream (Point 2 in Figure 1). A sample record at this point is

shown below – note that the date of birth (“dob”) and “name” fields are removed:

{

 "timestamp": "2018-01-27T05:11:50",

 "device_id": "device8401",

 "patient_id": "patient2605",

 "temperature": 100.3,

 "pulse": 108.6,

 "oxygen_percent": 48.4,

 "systolic": 110.2,

 "diastolic": 75.6,

}

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 8

Best Practices

Consider the following best practices when deploying this pattern:

 Separate the Lambda Handler entry-point from the core logic. This allows you
to make a more unit-testable function.

 Take advantage of container re-use to improve the performance of your
Lambda function. Make sure any externalized configuration or dependencies
that your code retrieves are stored and referenced locally after initial
execution. Limit the re-initialization of variables/objects on every invocation.
Instead use static initialization/constructor, global/static variables, and
singletons.

 When delivering data to S3, tune the Kinesis Data Firehose buffer size and
buffering interval to achieve the desired object size. With small objects, the
cost of PUT and GET actions on the object will be higher.

 Use a compression format to further reduce storage and data transfer costs.
Kinesis Data Firehose supports GZIP, Snappy and Zip data compression.

Cost Estimates

The monthly cost of the AWS services from the ingestion of the sensor data into AWS IoT

Gateway, de-identification in a Lambda function and storing cross-reference data into

DynamoDB Table can be $117.19 for the small scenario, $1,132.01 for the medium scenario

and $4,977.99 for the large scenario.

Please refer to Appendix A.1 – Sensor Data Collection for a detailed breakdown of the costs

per service.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 9

Streaming Ingest Transform Load (ITL)
After sensor data has been ingested, it may need to be enriched or modified with simple

transformations such as field level substitutions and data enrichment from relatively small and

static data sets.

In the example use-case, it may be important to associate sensor measurements with

information on the device model and manufacturer. A solution to meet this need is shown in

Figure 3. De-identified records from the prior pattern are ingested into a Kinesis Data Firehose

Delivery Stream (Point 2 in Figure 2).

Figure 2. Overview of Medical Device Use-Case – Stream Ingest Transform Load (ITL)

The solution introduces a Lambda function that is invoked by Kinesis Data Firehose as records

are received by the delivery stream. The Lambda function looks up information about each

device from a DynamoDB table and adds these as fields to the measurement records. Firehose

then buffers and sends the modified records to the configured destinations (Point 3 in Figure

2). A copy of the source records is saved in S3 as a backup and for future analysis. A sample

record at this point is shown below with the enriched fields highlighted:

S3: Buffered Files

Raw records

Enriched records

Enriched records

Firehose
Delivery Stream

IoT sensors AWS
IoT

IoT
rule

IoT
action

De-identification

DynamoDB:
Cross-Reference Data

EnrichmentLookup Tables

Lookup

Store

KMS:
Encryption Keys

Encrypt

MQTT

1

2

De-identified records

3

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 10

{

 "timestamp": "2018-01-27T05:11:50",

 "device_id": "device8401",

 "patient_id": "patient2605",

 "temperature": 100.3,

 "pulse": 108.6,

 "oxygen_percent": 48.4,

 "systolic": 110.2,

 "diastolic": 75.6,

 "manufacturer": "Manufacturer 09",

 "model": "Model 02"

}

Using AWS Lambda functions for transformations in this pattern removes the conventional

hassle of setting up and maintaining infrastructure. Lambda runs more copies of the function

in parallel in response to concurrent transformation invocations, and scales precisely with the

size of the workload down to the individual request. As a result, the problem of idle

infrastructure and wasted infrastructure cost is eliminated.

Once data is ingested into Firehose, a Lambda function is invoked that performs simple

transformations:

 Replace the numeric timestamp information with a human readable string that allows

us to query the data based on day, month or year. E.g. the timestamp

“1508039751778” is converted to the timestamp string “2017-10-

15T03:55:51.778000”.

 Enrich the data record by querying a table (stored in DynamoDB) using the Device ID

to get the corresponding Device Manufacturer and Device Model. The function caches

the device details in memory to avoid having to query DynamoDB frequently and

reduce the number of Read Capacity Units (RCU). This design takes advantage of

container reuse in AWS Lambda to opportunistically cache data when a container is

reused.

Best Practices

Consider the following best practices when deploying this pattern:

 When delivering data to S3, tune the Kinesis Data Firehose buffer size and buffer

interval to achieve your desired object size. With small objects, the cost of object

actions – PUTs and GETs – will be higher.

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 11

 Use a compression format to reduce your storage and data transfer costs. Kinesis Data

Firehose supports GZIP, Snappy, or Zip data compression.

 When delivering data to Redshift consider the best practices for loading data into

Redshift.

 When transforming data in the Firehose delivery stream using an AWS Lambda

function, consider enabling Source Record Backup for the delivery stream. This feature

backs up all untransformed records to S3 while delivering transformed records to the

destinations. Though this increases your storage size on S3, this backup data can come

in handy if you have an error in your transformation lambda function.

 Firehose will buffer records up to the buffer size or 3MB, whichever is smaller, and

invoke the transformation Lambda function with each buffered batch. Thus, the buffer

size determines number of Lambda function invocations and the amount of work sent

in each invocation. A small buffer size means a large number of Lambda function

invocations and a larger invocation cost. A large buffer size means fewer invocations

but more work per invocation and depending on the complexity of the transformation

the function may exceed the 5-minute maximum invocation duration.

 The lookup during the transformation happens at the rate of ingest record rates.

Consider using Amazon DynamoDB Accelerator (DAX) to cache results to reduce the

latency for lookups and increase lookup throughput.

Cost Estimates

The monthly cost of the AWS services from the ingestion of the streaming data into Kinesis

Data Firehose, transformations in a Lambda function and delivery of both the source records

and transformed records into S3 can be as little as $18.11 for the Small scenario, $138.16 for

the Medium scenario and $672.06 for the Large scenario.

Please refer to Appendix A.2 – Streaming Ingest Transform Load (ITL) for a detailed breakdown

of the costs per service.

http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 12

Real-Time Analytics
Once streaming data is ingested and enriched, it can now be analyzed to derive insights in real-

time.

In the example use-case, the de-identified and enriched records needs be analyzed in real-time

to detect anomalies with any of the devices in the hospital and notify the appropriate device

manufacturers. By assessing the condition of the devices, the manufacturer can start to spot

patterns that indicate when a failure is likely to arise. In addition, by monitoring information in

near real-time, the hospital provider can quickly react to concerns before anything goes

wrong. Should an anomaly is detected, the devices are immediately pulled out and sent for

inspection. The benefits of this approach include a reduction in device downtime, increased

device monitoring, lower labor costs, and more efficient maintenance scheduling. This also

allows the device manufacturers to start offering hospitals more performance-based

maintenance contracts.

A solution to meet this requirement is shown in Figure 3.

Figure 3. Overview of Medical Device Use-Case – Real-Time Analytics

S3: Buffered Files

Raw records

Enriched records

Enriched records

Firehose
Delivery Stream

IoT sensors AWS
IoT

IoT
rule

IoT
action

De-identification

DynamoDB:
Cross-Reference Data

EnrichmentLookup Tables

Lookup

Store

KMS:
Encryption Keys

Encrypt

Kinesis Analytics:
Anomaly Detection

Kinesis Data Stream:
Anomaly Scores

Alerting SNS:
SMS Alerts

MQTT

1

2

De-identified records

3

4
Anomaly Scores

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 13

Copies of the enriched records from the prior pattern (Point 4 in Figure 3) are delivered to a

Kinesis Data Analytics application that detects anomalies in the measurements across all

devices for a manufacturer. The anomaly scores (Point 5 in Figure 3) are sent to a Kinesis Data

Stream and processed by a Lambda function. A sample record with the added anomaly score is

shown below:

{

 "timestamp": "2018-01-27T05:11:50",

 "device_id": "device8401",

 "patient_id": "patient2605",

 "temperature": 100.3,

 "pulse": 108.6,

 "oxygen_percent": 48.4,

 "systolic": 110.2,

 "diastolic": 75.6,

 "manufacturer": "Manufacturer 09",

 "model": "Model 02",

 "anomaly_score": 0.9845

}

Based on a range or threshold of anomalies detected, the Lambda function sends a notification

to the manufacturer with the model number and device id and a set of measurements that

caused the anomaly.

The Kinesis Analytics application code consists of an anomaly detection pre-built function,

RANDOM_CUT_FOREST. This function is the crux of the anomaly detection. The function takes

the numeric data in the message, in our case "temperature", "pulse", "oxygen_percent",

"systolic" and "diastolic" to determine the anomaly score.

To learn more on the function RANDOM_CUT_FOREST you read the amazon kinesis analytics

document - https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-

forest.html

The following is an example of anomaly detection. The diagram shows three clusters and a few

anomalies randomly interjected. The red squares show the records that received the highest

anomaly score according to the RANDOM_CUT_FOREST function. The blue diamond represent

the remaining records. Note how the highest scoring records tend to be outside the clusters.

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 14

Figure 4. Example of anomaly detection.

Below is the Kinesis Analytics Application code. The first block of the code is to store the

output of the anomaly score generated by the RANDOMM_CUT_FOREST function. The block of

code uses the incoming sensor data stream (“STRAM_PUMP”) to call the pre-built anomaly

detection function RANDOM_CUT_FOREST

-- Creates a temporary stream and defines a schema

CREATE OR REPLACE STREAM "TEMP_STREAM" (

 "device_id" VARCHAR(16),

 "manufacturer" VARCHAR(16),

 "model" VARCHAR(16),

 "temperature" integer,

 "pulse" integer,

 "oxygen_percent" integer,

 "systolic" integer,

 "diastolic" integer,

 "ANOMALY_SCORE" DOUBLE);

-- Compute an anomaly score for each record in the source stream

-- using Random Cut Forest

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO

"TEMP_STREAM"

SELECT STREAM

"device_id", "manufacturer", "model", "temperature", "pulse",

"oxygen_percent", "systolic", "diastolic", "ANOMALY_SCORE" FROM

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 15

TABLE(RANDOM_CUT_FOREST(

 CURSOR(SELECT STREAM "device_id", "manufacturer", "model",

"temperature", "pulse", "oxygen_percent", "systolic",

"diastolic"

 FROM "SOURCE_SQL_STREAM_001")

)

);

The post-processing Lambda function in this use case performs the following simple tasks on

the analytics data records with the anomaly scores:

 The Lambda function uses two environment variables called

ANOMALY_THRESHOLD_SCORE and SNS_TOPIC_ARN. The environment variable

ANOMALY_THRESHOLD_SCORE you need to set after running initial testing using

controlled data to determine the appropriate value to set. The SNS_TOPIC_ARN is the

SNS Topic to which the lambda function will deliver the anomaly records.

 The Lambda function iterates through the a batch of analytics data records looking at

the anomaly score and find records that has an anomaly score that exceeds the

threshold.

 The Lambda function then publishes the threshold records to the SNS Topic defined in

the environment variable. In your deployment script referred in the section Appendix

B.3 under Package and Deploy, you will set the variable NotificationEmailAddress for

your e-mail that will be used to subscribe to the SNS Topic.

The sensor data is also stored into S3 making the data available for all sorts of future analysis

by different data scientists working on different domains. The stream sensor data is passed to

a Kinesis Firehose Delivery stream where it is buffered and zipped before doing a PUT

operation into S3.

Best Practices

Consider the following best practices when deploying this pattern:

 Setup Amazon CloudWatch Alarms. Using the CloudWatch metrics that Amazon

Kinesis Data Analytics provides: Input bytes and input records (number of bytes and

records entering the application), Output bytes, output record and MillisBehindLatest

(tracks how far behind the application is in reading from the streaming source)

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 16

 Defining Input Schema. Adequately test the inferred schema. The discovery process

uses only a sample of records on the streaming source to infer a schema. If your

streaming source has many record types, there is a possibility that the discovery API

missed sampling one or more record types, which can result in a schema that does not

accurately reflect data on the streaming source.

 Connecting To Outputs. We recommend that every application have at least two

outputs. Use the first destination to insert the results of your SQL queries. Use the

second destination to insert the entire error stream and send it to an S3 bucket

through an Amazon Kinesis Firehose delivery stream.

 Authoring Application Code:

 During development, keep window size small in your SQL statements so that

you can see the results faster. When you deploy the application to your

production environment, you can set the window size as appropriate.

 Instead of a single complex SQL statement, you might consider breaking it into

multiple statements, in each step saving results in intermediate in-application

streams. This might help you debug faster.

 When using tumbling windows, we recommend that you use two windows,

one for processing time and one for your logical time (ingest time or event

time). For more information, see Timestamps and the ROWTIME Column.

Cost Estimates

The monthly cost of the AWS services for doing the anomaly detection in Kinesis Analytics,

reporting of the anomaly score using the lambda function to an SNS Topic and storing the

anomaly score data to an S3 bucket for future analysis can be $705.81 for the Small scenario,

$817.09 for the Medium scenario and $1312.05 for the Large scenario.

Please refer to Appendix A.3 – Real Time Analytics for a detailed breakdown of the costs per

service.

http://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-tworecordtypes.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/timestamps-rowtime-concepts.html

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 17

Customer Case Studies
Customers of different sizes and across different business segments are using a serverless

approach for data processing and analytics. Below are some of their stories. To see more

serverless case studies and customer talks, go to our AWS Lambda Resources page.

Thomson Reuters is a leading source of information—including one of the world’s most

trusted news organizations—for the world’s businesses and professionals. In 2016,

Thomson Reuters decided to build a solution that would enable it to capture, analyze, and

visualize analytics data generated by its offerings, providing insights to help product

teams continuously improve the user experience. This solution, called Product Insights,

ingests and delivers data to a streaming data pipeline using AWS Lambda and Amazon

Kinesis Streams and Amazon Kinesis Data Firehose. The data is then piped into permanent

storage or into an Elasticsearch cluster for real-time data analysis. Thomson Reuters can

now process up to 25 billion events per month.

Read the case study »

iRobot is a leading global consumer robot company, designs and builds robots that

empower people to do more both inside and outside the home. iRobot created the home-

cleaning robot category with the introduction of its Roomba Vacuuming Robot in 2002.

Today, iRobot reports that connected Roomba vacuums operate in more than 60

countries, with total sales of connected robots projected to reach more than 2 million by

the end of 2017. To handle such scale at a global level, iRobot implemented a completely

serverless architecture for its mission-critical platform. At the heart of this solution is AWS

Lambda, AWS IoT Platform and Amazon Kinesis. With serverless, iRobot is able to keep

the cost of the cloud platform low, and manage the solution with fewer than 10 people.

Read the case study »

https://aws.amazon.com/lambda/resources/
https://www.thomsonreuters.com/en.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/solutions/case-studies/thomson-reuters/
http://www.irobot.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/solutions/case-studies/irobot/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 18

Nextdoor is a free private social-network for neighborhoods. The Systems team at

Nextdoor is responsible for managing the data ingestion pipeline, which services 2.5

billion syslog and tracking events per day. As the data volumes grew, keeping the data

ingestion pipeline stable became a full time endeavor that distracted the team from core

responsibilities, like developing the product.

Rather than continue running a large infrastructure to power data pipelines, Nextdoor

decided to implement a serverless ETL built on AWS Lambda. See Nextdoor’s 2017 AWS

re:Invent talk to learn more about Nextdoor’s serverless solution and how you can

leverage Nextdoor-scale serverless ETL through their open-source project Bender.

Hear the Nextdoor talk »

Conclusion
Serverless computing eliminates the undifferentiated heavy-lifting associated with building

and managing server infrastructure at all levels of the technology stack, and introduces a pay-

per-request billing model where there are no more costs from idle compute capacity. With

data stream processing you can evolve your applications from traditional batch processing to

real-time analytics which allows you to extract deeper insights on how your business performs.

In this whitepaper, we reviewed how by combining these two powerful concepts developers

can work with a clean application model that helps them deliver complex data processing

applications faster and organizations to only pay for useful work. To learn more about

serverless computing, visit our page Serverless Computing and Applications. You can also see

more resources, customer talks, and tutorials on our Serverless Data Processing page.

Further Resources
For more serverless data processing resources, including tutorials, documentation, customer

case studies, talks, and more, visit our Serverless Data Processing Page. For more resources on

serverless and AWS Lambda, please see the AWS Lambda Resources page.

Read related whitepapers about serverless computing and data processing:

 Streaming Data Solutions on AWS with Amazon Kinesis

 Serverless: Changing the Face of Business Economics

 Optimizing Enterprise Economics with Serverless Architectures

https://nextdoor.com/
https://aws.amazon.com/lambda/
https://github.com/Nextdoor/bender
https://www.youtube.com/watch?v=AaRawf9vcZ4&feature=youtu.be
https://aws.amazon.com/serverless/
https://aws.amazon.com/lambda/data-processing/
https://aws.amazon.com/lambda/data-processing/
https://aws.amazon.com/lambda/resources/
https://aws.amazon.com/kinesis/whitepaper/
https://pages.awscloud.com/Changing-the-face-of-business-economics
https://pages.awscloud.com/Changing-the-face-of-business-economics
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 19

Contributors
The following individuals and organizations contributed to this document:

 Akhtar Hossain, Sr. Solutions Architect, Global Life science, Amazon Web Services

 Maitreya Ranganath, Solutions Architect, Amazon Web Services

 Linda Lian, Product Marketing Manager, Amazon Web Services

 David Nasi, Product Manager, Amazon Web Services

Document Revisions

Date Description

Month YYYY Brief description of revisions.

Month YYYY First publication

Appendix A – Detailed Cost Estimates
In this Appendix we provide the detailed costs estimates that were summarized in the main

text.

Common Cost Assumptions

We estimate the monthly cost of the resources required to implement each pattern for three

traffic scenarios:

 Small – peak rate of 50 records / second, average 1 KB per record

 Medium – peak rate of 1000 records / second, average 1 KB per record

 Large – peak rate of 5000 records / second, average 1 KB per record

We assume that there are 4 peak hours in a day where records are ingested at the peak rate

for the scenario. In the rest of the 20 hours, the rate falls to 20% of the peak data rate. This is a

simple variable rate model used to estimate the volume of data ingested monthly.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 20

Appendix A.1 – Sensor Data Collection

The detailed monthly cost of the Sensor Data Collection pattern is estimated in Table 3 below.
The services are configured as follows:

 AWS IoT Gateway Service Connectivity per day is assumed at 25%/day for the small
use case, 50%/day for the medium use case and 70%/day for the large use case.

 Kinesis Firehose buffer size is 100MB

 Kinesis Firehose buffer interval is 5 minutes (300 seconds)

 Small Medium Large

Peak Rate (Messages/Sec) 100 1000 5000

Record Size (KB) 1 1 1

Daily Records (Numbers) 2880000 28800000 144000000

Monthly Records (Numbers) 86400000 864000000 4320000000

Monthly Volume (KB) 86400000 864000000 4320000000

Monthly Volume (GB) 82.39746094 823.9746094 4119.873047

Monthly Volume (TB) 0.08046627 0.804662704 4.023313522

(Table continued on next page)

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 21

AWS IoT Costs

No of Devices 1 1 1

Connectivity - Percentage Time / day 25 50 75

Messaging (Number of Msgs/day) 2880000 28800000 144000000

Rules Engine (Number of Rules) 1 1 1

Device Shadow 0 0 0

Device Registry 0 0 0

Total Cost - Based on AWS IoT Core

Calculator

$112.00 $1,123.00 $4,952.00

Amazon Kinesis Firehose Delivery

Stream

Record Size Rounded Up to 5 KB 5 5 5

Monthly Volume for Firehose(KB) 432000000 4320000000 21600000000

Monthly Volume for Firehose(GB) 411.9873047 4119.873047 20599.36523

Firehose Monthly Cost 11.94763184 119.4763184 597.3815918

Amazon Dynamo DB

RCU 1 1 1

WCU 10 10 10

Size (MB) 1 1 1

RCU Cost 0.0936 0.0936 0.0936

WCU Cost 4.68 4.68 4.68

Size Cost 0 0 0

DynamoDB Monthly Cost 4.7736 4.7736 4.7736

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 22

AWS Key Management Service

(KMS) Cost

Monthly Record Number 86400000 864000000 4320000000

Number of Encryption Request -

20,000 free

86380000 863980000 4319980000

Encryption Cost 259.14 2591.94 12959.94

KMS Monthly Cost 259.14 2591.94 12959.94

AWS Lambda

Invocations 59,715 597,149 2,985,745

Duration (ms) 16,496,242 164,692,419 824,812,095

Memory(MB) 1536 1536 1536

Memory-Duration (GB/Sec) 24,744.35 247,443.63 1,237,218.14

Lambda Monthly Cost 0.42 4.24 21.22

Estimated Total Monthly Cost $388.28 $3,843.43 $18,535.32

Table 3. Sensor data collection - details of estimated costs.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 23

Appendix A.2 – Streaming Ingest Transform Load

(ITL)

The detailed monthly cost of the Streaming Ingest Transform Load (ITL) pattern is estimated in

Table 4 below. The services are configured as follows:

 Kinesis Firehose buffer size is 100MB

 Kinesis Firehose buffer interval is 5 minutes (300 seconds)

 Buffered records are stored in S3 compressed using GZIP, assuming 1/4 compression

ratio.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 24

 Small Medium Large

Peak Rate (records/second) 100 1000 5000

Record Size (KB) 1 1 1

Amazon Kinesis Firehose

Monthly Volume (GB) (Note 1) 411.987 4,119.87 20,599.37

Kinesis Monthly Cost $11.95 $119.48 $597.38

Amazon S3

Source Record Backup Storage (GB) 21.02 210.22 1,051.08

Transformed Records Storage (GB) 21.02 210.22 1,051.08

PUT API Calls (Note 2) 17280 17280 84375

S3 Monthly Cost $2.47 $23.87 $119.35

AWS Lambda

Invocations 59,715 597,149 2,985,745

Duration (ms) 16,496,242 164,962,419 824,812,095

Function Memory (MB) 1536 1536 1536

Memory-Duration (GB-seconds) 24,744.36 247,443.63 1,237,218.14

Lambda Monthly Cost (Note 3) $0.42 $4.24 $21.22

Amazon DynamoDB

Read Capacity Units (Note 4) 50 50 50

DynamoDB Monthly Cost $4.68 $4.68 $4.68

Total Monthly Cost $18.11 $138.16 $672.06

Table 4. Streaming Ingest Transform Load (ITL) - details of estimated costs.

Notes:

1. Kinesis Firehose rounds up the record size to the nearest 5KB. In the three scenarios

above, each 1KB record is rounded up to 5KB when calculating the monthly volume.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 25

2. S3 PUT API calls were estimated assuming one PUT call per S3 object created by the

Firehose delivery stream. At low record rates, the number of S3 objects is determined

by the Firehose buffer duration (5 minutes). At high record rates, the number of S3

objects is determined by the Firehose buffer size (100MB).

3. The AWS Lambda free tier includes 1M free requests per month and 400,000 GB-

seconds of compute time per month. The monthly cost estimated above is before the

free tier is applied.

4. The DynamoDB Read Capacity Units (RCU) estimated above were the result of caching

lookups in memory and taking advantage of container reuse. This meant that the

number of RCU required on the Table is reduced.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 26

Appendix A.3 – Real-Time Analytics

The detailed monthly cost of the Real-Time Analytics pattern is estimated in the Table 5 below.

 Small Medium Large

Peak Rate (Messages/Sec) 100 1000 5000

Record Size (KB) 1 1 1

Daily Records (Numbers) 2880000 28800000 144000000

Monthly Records (Numbers) 86400000 864000000 4320000000

Monthly Volume (KB) 86400000 864000000 4320000000

Monthly Volume (GB) 82.39746094 823.9746094 4119.873047

Monthly Volume (TB) 0.08046627 0.804662704 4.023313522

Amazon Kinesis Analytics

Peak Hours in a day (hrs) 4 4 4

Average Hours in a day (hrs) 20 20 20

Kinesis Processing Unit (KPU)/hr -

Peak

2 2 2

Kinesis Processing Unit (KPU)/hr -

Avg

1 1 1

Kinesis Analytics Monthly Cost $692.40 $692.40 $692.40

Amazon Kinesis Firehose

Delivery Stream

Record Size Rounded Up to 5 KB 5 5 5

Monthly Volume for Firehose (KB) 432000000 4320000000 21600000000

Monthly Volume for Firehose(GB) 411.9873047 4119.873047 20599.36523

Kinesis Firehose Monthly Cost 11.94763184 119.4763184 597.3815918

(Table continued on next page)

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 27

Small Medium Large

Amazon S3

S3 PUTs per Month based on Size

only

843.75 843.75 843.75

S3 PUTs per Month based on Time

only

8640 8640 8640

Expected S3 PUTs (max of size &

time)

8640 8640 8640

Total Puts (source backup +

Analytics data)

17280 17280 17280

Analytics Data Compressed (GB) 21.02150444 21.02 21.02

Source Data Compressed (GB) 21.02 21.02 21.02

Source Record Backup 0.48346 0.48346 0.48346

PUTs 0.0864 0.0864 0.0864

Analytics Data Records 0.483494602 0.48346 0.48346

S3 Monthly Cost 1.053354602 1.05332 1.05332

AWS Lambda

Invocations 59,715 597,149 2,985,745

Duration (ms) 16,496,242 164,692,419 824,812,095

Memory(MB) 1536 1536 1536

Memory-Duration (GB/Sec) 24,744.35 247,443.63 1,237,218.14

Lambda Monthly Cost 0.42 4.24 21.22

Estimated Total Monthly Cost $705.82 $817.17 $1,312.05

Table 5. Real-time analytics - details of estimated costs.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 28

Appendix B – Deploying and Testing

Patterns

Common Tasks

Implementation details of the three patterns are described in the following sections. Each

pattern can be deployed, ran, and tested independently of the other patterns. To deploy each

pattern, we provide links to the AWS Serverless Application Model (AWS SAM) template that

can be deployed to any AWS Region. AWS SAM extends AWS CloudFormation to provide a

simplified syntax for defining the Amazon API Gateway APIs, AWS Lambda functions, and

Amazon DynamoDB tables needed by your serverless application.

The solutions for three patterns can be downloaded from the public GitHub repo below:

https://github.com/aws-samples/aws-serverless-stream-ingest-transform-load
https://github.com/aws-samples/aws-serverless-real-time-analytics
https://github.com/awslabs/aws-serverless-sensor-data-collection

Create or Identify an S3 Bucket for Artifacts

To use the AWS Serverless Application Model (SAM), you need an S3 bucket where your code

and template artifacts are uploaded. If you already have a suitable bucket in your AWS

Account, you can simply note the S3 bucket name and skip this step. If you instead choose to

create a new bucket then you can follow the steps below:

1. Log into the S3 console.

2. Choose Create Bucket and type a bucket name. Ensure that the name is globally

unique – we suggest a name like <random-string>-stream-artifacts. Choose the AWS

Region where you want to deploy the pattern.

3. Choose Next on the following pages to accept the defaults. On the last page, choose

Create Bucket to create the bucket. Note the name of the bucket as you’ll need it to

deploy the three patterns below.

Create an Amazon Cognito User for Kinesis Data Generator

To simulate hospital devices to test the Streaming Ingest Transform Load (ITL) and Real-Time

Analytics patterns, you will use the Amazon Kinesis Data Generator (KDG) tool. You can learn

more about the KDG Tool in this blog post.

https://github.com/awslabs/serverless-application-model
https://github.com/aws-samples/aws-serverless-stream-ingest-transform-load
https://github.com/aws-samples/aws-serverless-real-time-analytics
https://github.com/awslabs/aws-serverless-sensor-data-collection
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 29

You can access the Amazon Kinesis Data Generator here. Click on the Help menu and follow

the instructions to create a Cognito username and password that will use to log into the KDG.

Appendix B.1 – Sensor Data Collection

In this section we will describes how you can deploy the use-case into your AWS Account and

then run and test.

Review SAM Template

Review the Serverless Application Model (SAM) template in the file ‘SAM-For-

SesorDataCollection.yaml’ by opening the file in an editor of your choice. You can use

Notepad++ which renders the JSON file nicely.

This template creates the following resources in your AWS Account:

 An S3 Bucket that is used to store the De-Identified records.

 A Firehose Delivery Stream and associated IAM Role used to buffer and collect the De-

Identified records compressed in a zip file and stored in the S3 Bucket

 An AWS Lambda Function that performs the De-Identification of the incoming

messages by removing the PHI/PII Data. The function also stores the PHI / PII Data into

DynamoDB along with PatientID for cross-reference. The PHI / PII data are encrypted

using AWS KMS Keys.

 An AWS Lambda Function that does hospital Device Simulation for the use case. The

Lambda function uses generates sensor simulation data and publishes to IoT MQTT

Topic

 A DynamoDB table that stores encrypted cross-reference data Patient ID, Timestamp,

Patient Name and Patient Date of Birth.

Package and Deploy

Follow the following steps to package and deploy the Sensor Data Collection scenario:

1. Clone and download the files from the GitHub folder here to a folder on your local

machine. On your local machine make sure you have the following files:

1.1 DeIdentification.zip
1.2 PublishIoTData.zip
1.3 SAM-For-SesorDataCollection.yaml
1.4 deployer-sensordatacollection.sh

2. Create an S3 Deployment Bucket in the AWS Region where you intend to deploy the

solution. Note down the S3 bucket name. You will need the S3 bucket name later.

https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://github.com/awslabs/aws-serverless-sensor-data-collection

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 30

3. From your local machine upload the following lambda code zip files into the S3

Deployment Bucket you just created in Step 2:

3.1 DeIdentification.zip
3.2 PublishIoTData.zip

4. In the AWS Management console launch an ec2 Linux instance that will be used to run
the CloudFormation template. Launch an ec2 instance of type - Amazon Linux AMI

2018.03.0 (HVM), SSD Volume Type (t2.macro) ec2 in the AWS Region where you
want to deploy the solution. Make sure you enable SSH access to the instance. For
details on how to launch an ec2 instance and enable SSH access see -
https://aws.amazon.com/ec2/getting-started/

5. On your local machine open the deployer-sensordatacollection.sh file in a text editor
and update the three variables indicated as PLACE_HOLDER –
S3ProcessedDataOutputBucket (the S3 bucket Name where the Processed Output
Data will be stored), LamdaCodeUriBucket (the S3 Bucket Name you created in Step 2
and uploaded the lambda code files) and the environment variable REGION to the
AWS Region where you intend to deploy the solution. Save the deployer-
sensordatacollection.sh file.

6. Once the ec2 instance you just launched is the instance state running, using SSH log

into the ec2 Linux box. Create a folder called samdeploy under /home/ec2-user/.
Upload the following files into the folder /home/ec2-user/samdeploy

5.1 SAM-For-SesorDataCollection.yaml
5.2 deployer-sensordatacollection.sh

7. On the ec2 instance change directory to /home/ec2-user/samdeploy. Next you will run

two ClouFormation CLI commands called package and deploy. Both the steps are in a
single script file deployer-sensordatacollection.sh. Review the script file. You can now
execute the package and deploy the SAM template by running the following command
at the command prompt:

$ sh ./deployer-sensordatacollection.sh

View Stack Details

You can view the progress of the stack creation by logging into the CloudFormation console.

Ensure you choose the AWS Region where you deployed the stack. Locate the Stack named

SensorDataCollectionStack from the list of stacks, choose the Events tab and refresh the page

to see the progress of resource creation.

https://aws.amazon.com/ec2/getting-started/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 31

The stack creation takes approximately 3-5 minutes. The stack’s state will change to

CREATE_COMPLETE once all resources are successfully created.

Test the Pipeline

The SensorDataCollectionStack includes an IoT Device Simulator Lambda Function called

PublishToIoT. The lambda function is triggered by AWS CloudWatch event rule. The event rule

invokes the lambda function on a schedule of every 5 minutes. The Lambda function

generates simulated sensor device messages matching the pattern discussed earlier and

publishes it to the MQTT topic.

The function takes a JSON string as input called the SimulatorConfig to set the number of

messages to generate per invocation. In our example we have set 10 messages per invocation

of the lambda function. The input parameter to the lambda function is set to the JSON string

{"NumberOfMsgs": "10"}.

The solution will start immediately after the stack has deployed successfully. You observe the

followings:

1. The CloudWatch Event / Rule triggers every 5 min to invoke the Device Simulator

lambda function. The lambda function is configured to generate by default 10 sensor

data messages per invocation and publish these to the IoT Topic –

“LifeSupportDevice/Sensor”.

2. The processed data (without the PHI / PII) will appear in the S3 Processed Data

Bucket.

3. In the DynamoDB console you will see the cross reference data composed of the

PatientID, PatientName and PatientDOB in the Table – PatientReferenceTable.

To stop the Testing of the pattern simply go to the CloudWatch console and disable the
Events/Rule called - SensorDataCollectionStack-IoTDeviceSimmulatorFunct-XXXXXXX

NOTE:
At the time of writing this whitepaper the team at AWS Solution Group has created a robust IoT
Device Simulator. To help customers more easily test device integration and IoT backend
services. This solution provides a web-based graphical user interface (GUI) console that enables
customers to create and simulate hundreds of virtual connected devices, without having to
configure and manage physical devices, or develop time-consuming scripts. More details can be
found at https://aws.amazon.com/answers/iot/iot-device-simulator/

However our simple pattern you will use the IoT Device Simulator Lambda Function that is
invoke by the CloudWatch Event/Rule. By default the Rule is scheduled to trigger every 5
minute

https://aws.amazon.com/answers/iot/iot-device-simulator/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 32

Cleaning up Resources

Once you have tested this pattern, you can delete and clean up the resources created so that

you are not charged for these resources.

1. On the CloudWatch Console in the AWS Region where you deployed the pattern,
under Events / Rules disable the Rule –
SensorDataCollectionStack-IoTDeviceSimmulatorFunct-XXXXXXX

1. On the S3 console, choose the output S3 Processed Data Bucket and choose Empty

Bucket.

2. On the CloudFormation console, choose the SensorDataCollectionStack stack and

choose Delete Stack.

3. Finally on the EC2 console terminate the ec2 Linux instance you created to run the

CloudFormation template to deploy the solution

Appendix B.2 – Streaming Ingest Transform Load

(ITL)

In this section, we’ll describe how you can deploy the pattern in your AWS Account and test

the transformation function and monitor the performance of the pipeline.

Review SAM Template

Review the Serverless Application Model (SAM) template in the file

‘streaming_ingest_transform_load.template’.

This template creates the following resources in your AWS Account:

 An S3 Bucket that is used to store the transformed records and the source records

from Kinesis Firehose.

 A Firehose Delivery Stream and associated IAM Role used to ingest records.

 An AWS Lambda Function that performs the transformation and enrichment described

above.

 A DynamoDB table that stores device details that are looked up by the transformation

function.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 33

 An AWS Lambda Function that inserts sample device detail records into the

DynamoDB table. This function is invoked once as a custom CloudFormation resource

to populate the table when the stack is created.

 A CloudWatch Dashboard that makes it easy to monitor the processing pipeline.

Package and Deploy

In this step, you’ll use the CloudFormation package command to upload local artifacts to the

artifacts S3 bucket you chose or created in the previous step. This command also returns a

copy of the SAM template after replacing references to local artifacts with the S3 location

where the package command uploaded your artifacts.

After this, you will use the CloudFormation deploy command to create the stack and

associated resources.

Both steps above are included in a single script deployer.sh in the github repository. Before

executing this script, you need to set the artifact S3 bucket name and region in the script. Edit

the script in any text editor and replace PLACE_HOLDER with the name of the S3 bucket and

region from the previous section. Save the file.

You can package and deploy the SAM template by running the following command:

$ sh ./deployer.sh

View Stack Details

You can view the progress of the stack creation by logging into the CloudFormation console.

Ensure you choose the AWS Region where you deployed the stack. Locate the Stack named

StreamingITL from the list of stacks, choose the Events tab and refresh the page to see the

progress of resource creation.

The stack creation takes approximately 3-5 minutes. The stack’s state will change to

CREATE_COMPLETE once all resources are successfully created.

Test the Pipeline

Follow the steps below to test the pipeline:

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 34

1. Log into the CloudFormation console and locate the stack for the Kinesis Data

Generator Cognito User you created in Create an Amazon Cognito User for Kinesis

Data Generator above.

2. Choose the Outputs tab and click on value for the key KinesisDataGeneratorUrl.

3. Log in with the username and password you used when creating the Cognito User

CloudFormation stack earlier.

4. From the Kinesis Data Generator, choose the Region where you created the serverless

application resources, choose the IngestStream delivery stream from the drop down.

5. Set the Records per second as 100 to test the first traffic scenario.

6. Set the Record template as the following to generate test data:

{

"timestamp" : {{date.now("x")}},

"device_id" : "device{{helpers.replaceSymbolWithNumber("####")}}",

"patient_id" : "patient{{helpers.replaceSymbolWithNumber("####")}}",

"temperature" : {{random.number({"min":96,"max":104})}},

"pulse" : {{random.number({"min":60,"max":120})}},

"oxygen_percent" : {{random.number(100)}},

"systolic" : {{random.number({"min":40,"max":120})}},

"diastolic" : {{random.number({"min":40,"max":120})}},

"text" : "{{lorem.sentence(140)}}"

}

We are using a text field in the template to ensure that our test records are approximately 1KB

in size as required by the scenarios.

7. Choose Send Data to send generated data at the chosen rate to the Kinesis Firehose

Stream.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 35

Monitor the Pipeline

Follow the steps below to monitor the performance of the pipeline and verify the resulting

objects in S3:

1. Switch to the CloudWatch Console and choose Dashboards from the menu on the left.

2. Choose the Dashboard named StreamingITL.

3. View the metrics for Lambda, Kinesis Firehose and DynamoDB on the dashboard.

Choose the duration to zoom into a period of interest.

Figure 7. CloudWatch Dashboard for Streaming ITL.

4. After around 5-8 minutes, you will see transformed records arrive in the output S3

bucket under the prefix transformed/.

5. Download a sample object from S3 to verify its contents. Note that objects are stored

GZIP compressed to reduce space and data transfers.

6. Verify that the transformed records contain a human readable time-stamp string,

device model and manufacturer. These are enriched fields looked up from the

DynamoDB table.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 36

7. Verify that a copy of the untransformed source records is also delivered to the same

bucket under the prefix source_records/.

Once you have verified the pipeline is working correctly for the first traffic scenario, you can

now increase the rate of messages to 1000 requests / second and then to 5000 requests /

second.

Cleaning up Resources

Once you have tested this pattern, you can delete and clean up the resources created so that

you are not charged for these resources.

4. Stop sending data from the Kinesis Data Generator.

5. On the S3 console, choose the output S3 bucket and choose Empty Bucket.

6. On the CloudFormation console, choose the StreamingITL stack and choose Delete

Stack.

Appendix B.3 – Real-Time Analytics

In this section describes how you can deploy the use-case into your AWS Account and then run

and test.

Review SAM Template

Review the Serverless Application Model (SAM) template in the file ‘SAM-For-

RealTimeAnalytics.yaml’ by opening the file in a text editor of your choice. You can use

Notepad++ which renders the JSON file nicely.

This template creates the following resources in your AWS Account:

 An S3 Bucket (S3ProcessedDataOutputBucket) that is used to store the Real-Time

Analytics records containing the anomaly score

 A Firehose Delivery Stream and the associated IAM Role used as an input stream to

the Kinesis Analytic service.

 A Kinesis Analytics Application named DeviceDataAnalytics with one input stream

(Firehose Delivery Stream), Application Code (SQL Statements), a Destination

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 37

Connection (Kinesis Analytics Application Output) as a Lambda Function and a second

Destination Connection (Kinesis Analytics Output) as Kinesis Firehose Delivery Stream

 A SNS Topic named publishtomanufacturer and an e-mail subscription the SNS Topic.

You configure the e-mail in the deployment script deployer-realtimeanalytics.sh. The

variable to set your e-mail is named NotificationEmailAddress in the deployment

script.

 An AWS Lambda Function that interrogates the data record set received from the

Analytics Stream picking up and publishing the record to a SNS Topic where the

anomaly score is higher than a threshold defined (in this case in the Lambda function

environment variable).

 A second AWS Lambda Function named KinesisAnalyticsHelper that is used to start the

Kinesis Analytics Application DeviceDataAnalytics immediately after the Kinesis

Analytics Application is created

 A Kinesis Firehose Delivery Stream that aggregates that records from the Analytics

Destination Stream, buffers the record and zips and put the zipped file into the S3

bucket (S3ProcessedDataOutputBucket).

Package and Deploy

Follow the following steps to package and deploy the Real-Time Analytics scenario:

1. Clone and download the files from the GitHub folder here to a folder on your local

machine. On your local machine make sure you have the following files:

1.1 KinesisAnalyticsOuputToSNS.zip
1.2 SAM-For-RealTimeAnalytics.yaml
1.3 deployer-realtimeanalytics.sh

2. Create an S3 Deployment Bucket in the AWS Region where you intend to deploy the

solution. Note down the S3 bucket name. You will need the S3 bucket name later.

3. From your local machine upload the following lambda code zip files into the S3

Deployment Bucket you just created in Step 2:

3.1 KinesisAnalyticsOuputToSNS.zip

4. In the AWS Management console launch an ec2 Linux instance that will be used to run
the CloudFormation template. Launch an ec2 instance of type - Amazon Linux AMI

2018.03.0 (HVM), SSD Volume Type (t2.macro) ec2 in the AWS Region where you
want to deploy the solution. Make sure you enable SSH access to the instance. For

https://github.com/aws-samples/aws-serverless-real-time-analytics

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 38

details on how to launch an ec2 instance and enable SSH access see -
https://aws.amazon.com/ec2/getting-started/

5. On your local machine open the deployer-realtimeanalytics.sh file in a text editor and
update the five variables indicated as PLACE_HOLDER -S3ProcessedDataOutputBucket
(the S3 bucket Name where the Processed Output Data will be stored),
NotificationEmailAddress (the e-mail address you specify to receive notification that
the anomaly score has exceeded a threshold value), AnomalyThresholdScore (the
threshold value that the Lambda function will use to identify the records to send for
notification), LamdaCodeUriBucket (the S3 Bucket Name you created in Step 2 and
uploaded the lambda code files) and the variable REGION to the AWS Region where
you intend to deploy the solution. Save the deployer-sensordatacollection.sh file.

6. Once the ec2 instance you just launched is in the instance state running, using SSH, log

into the ec2 Linux box. Create a folder called samdeploy under /home/ec2-user/.
Upload the following files into the folder /home/ec2-user/samdeploy

6.1 SAM-For-RealTimeAnalytics.yaml

 6.2 deployer-realtimeanalytics.sh

7. On the ec2 instance change directory to /home/ec2-user/samdeploy. Next you will run
two ClouFormation CLI commands called package and deploy. Both the steps are in a
single script file deployer-realtimeanalytics.sh. Review the script file. You can now
execute the package and deploy the SAM template by running the following command
at the command prompt:

$ sudo yum install dos2unix
$ dos2unix deployer-realtimeanalytics.sh
$ sh ./ deployer-realtimeanalytics.sh

8. As part of the deployment of the pattern, an e-mail (the e-mail specified in step 5)
subscription is setup to the SNS Topic. Check your e-mail in-box for an e-mail
requesting subscription confirmation. Open the e-mail and confirm the subscription
verification. Subsequently you will be receiving e-mail notifications for the device data
records that has exceeded the specified threshold.

View Stack Details

You can view the progress of the stack creation by logging into the CloudFormation console.

Ensure you choose the AWS Region where you deployed the stack. Locate the Stack named

DeviceDataRealTimeAnalyticsStack from the list of stacks, choose the Events tab and refresh

the page to see the progress of resource creation.

The stack creation takes approximately 3-5 minutes. The stack’s state will change to

CREATE_COMPLETE once all resources are successfully created.

https://aws.amazon.com/ec2/getting-started/

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 39

Test the Pipeline

To test this pattern you will use the Kinesis Data Generator (KDG) to Tool to generate and

publish test data. Refer to section Create an Amazon Cognito User for Kinesis Data Generator

section of the whitepaper. Using the username and password that you generated during the

configuration log into the KDG tool. Provide the following information:

1. Region : Select the Region where you have installed the

DeviceDataRealTimeAnalyticsStack

2. Stream / Delivery Stream: Select the delivery stream called

DeviceDataInputDeliveryStream

3. Records per Second: Enter the record generation / submission rate for simulating the

hospital device data

4. Record template: KDG uses a record template to generate random data for each of the

record fields. We will be using the following JSON template to generate the records

that will be submitted to the Kinesis Delivery Stream -

DeviceDataInputDeliveryStream

{

 "timestamp" : "{{date.now("x")}}",

 "device_id" :

"device{{helpers.replaceSymbolWithNumber("####")}}",

 "patient_id" :

"patient{{helpers.replaceSymbolWithNumber("####")}}",

 "temperature" : "{{random.number({"min":96,"max":104})}}",

 "pulse" : "{{random.number({"min":60,"max":120})}}",

 "oxygen_percent" : "{{random.number(100)}}",

 "systolic" : "{{random.number({"min":40,"max":120})}}",

 "diastolic" : "{{random.number({"min":40,"max":120})}}",

 "manufacturer" : "Manufacturer

{{helpers.replaceSymbolWithNumber("#")}}",

 "model" : "Model {{helpers.replaceSymbolWithNumber("##")}}"

}

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 40

To run the RealTime Analytics application click on the Send Data button located towards the

bottom of the KDG Tool. As the KDG begins to pump device data records to the Kinesis

Delivery Stream, the records are streamed into the Kinesis Analytics Application. The

Application code analyzes the streaming data and applies the algorithm to generate the

anomaly score for each of the rows. You can view the data stream in the Kinesis Analytics

console. The diagram below the sampling of the data stream.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 41

The Kinesis Analytics Application is configured with two Destination Connections. The first

destination connector (or output) is a Lambda function. The lambda function iterates through

a batch of records delivered by the Application DESTINATION_SQL_STREAM_001 and

interrogates the anomaly score field for the record. If the anomaly score exceeds the threshold

defined in the lambda function environment variable ANOMALY_THRESHOLD_SCORE, the

lambda function publishes the record to a Simple Notification Service (SNS) Topic named -

publishtomanufacturer

The second Destination Connection is configured to a Kinesis Firehose Delivery Stream –

DeviceDataOutputDeliveryStream. The delivery stream buffers the records, and zips the

buffered records to a zip file before putting into the S3 bucket -

S3ProcessedDataOutputBucket

Observe the followings:

1. In your e-mail (that you specified in the deployment script) inbox the first e-mail you

will receive device data records for which the anomaly score has exceeded the

specified threshold

2. In the AWS Kinesis Data Analytics console select the Application named

DeviceDataAnalytics click the Application detail button towards the bottom, this will

take you to the DeviceDataAnalytics application detail page. Towards the middle of

the page under Real-Time Analytics click the button “Go to the SQL Results”. On the

real-Time Analytics page observe the Source Data, Rael-Time Analytics Data and the

Destination Data using the tabs.

3. Records with the anomaly score are stored in the S3 Processed Data Bucket. Review

the records that includes the anomaly score.

Archived

Amazon Web Services – Serverless Streaming Architectures and Best Practices

Page 42

To stop the Testing of the pattern simply go to the browser where you are running the KDG
Tool and click the “Stop Sending Data to Kinesis” button.

Cleaning up Resources

Once you have tested this pattern, you can delete and clean up the resources created so that

you are not charged for these resources.

1. Go back to the browser where you launched the KDG Tool and click the stop button.
The tool will stop sending any addition data to the input kinesis stream.

7. On the S3 console, choose the output S3 Processed Data Bucket and choose Empty

Bucket.

8. On the Kinesis console stop the Kinesis Data Application - DeviceDataAnalytics

9. On the CloudFormation console, choose the SensorDataCollectionStack stack and click

Delete Stack.

10. Finally on the EC2 console terminate the ec2 Linux instance you created to run the

CloudFormation template to deploy the solution

