
Amazon EMR Migration Guide
How to Move Apache Spark and Apache Hadoop

From On-Premises to AWS

August 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents AWS current product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. AWS responsibilities and liabilities to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Starting Your Journey .. 3

Migration Approaches .. 3

Prototyping ... 6

Choosing a Team ... 8

General Best Practices for Migration ... 9

Gathering Requirements ... 11

Obtaining On-Premises Metrics ... 11

Cost Estimation and Optimization ... 12

Optimizing Costs .. 12

Storage Optimization .. 13

Compute Optimization.. 17

Cost Estimation Summary ... 18

Optimizing Apache Hadoop YARN-based Applications .. 19

Amazon EMR Cluster Segmentation Schemes .. 22

Cluster Characteristics ... 22

Common Cluster Segmentation Schemes .. 24

Additional Considerations for Segmentation ... 25

Securing your Resources on Amazon EMR ... 26

EMR Security Best Practices ... 26

Authentication ... 27

Authorization... 30

Encryption ... 35

Perimeter Security .. 36

Network Security .. 38

Auditing ... 38

Software Patching .. 40

Software Upgrades .. 41

Common Customer Use Cases ... 42

Data Migration ... 46

Using Amazon S3 as the Central Data Repository ... 46

Large Quantities of Data on an Ongoing Basis ... 49

Event and Streaming Data on a Continuous Basis ... 52

Optimizing an Amazon S3-Based Central Data Repository ... 54

Optimizing Cost and Performance ... 56

Data Catalog Migration .. 60

Hive Metastore Deployment Patterns .. 60

Hive Metastore Migration Options ... 65

Multitenancy on EMR .. 68

Silo Mode .. 68

Shared Mode .. 70

Considerations for Implementing Multitenancy on Amazon EMR 71

Extract, Transform, Load (ETL) on Amazon EMR.. 76

Orchestration on Amazon EMR ... 76

Migrating Apache Spark ... 87

Migrating Apache Hive ... 90

Providing Ad Hoc Query Capabilities .. 97

Considerations for Presto .. 97

HBase Workloads on Amazon EMR .. 99

Migrating Apache Impala ...104

Operational Excellence ...105

Upgrading Amazon EMR Versions ..105

General Best Practices for Operational Excellence ..109

Testing and Validation ...110

Data Quality Overview ...110

Check your Ingestion Pipeline ...111

Overall Data Quality Policy ..112

Estimating Impact of Data Quality ...113

Tools to Help with Data Quality ...115

Support for Your Migration ..116

AWS Professional Services ...116

AWS Partners ...118

AWS Support ..119

Contributors ...120

Additional Resources ..121

Document Revisions..122

Appendix A: Questionnaire for Requirements Gathering ...123

Security Requirements ...125

TCO Considerations ...125

Appendix B: EMR Kerberos Workflow ..126

EMR Kerberos Cluster Startup Flow for KDC with One-Way Trust126

EMR Kerberos Flow Through Hue Access..127

EMR Kerberos Flow for Directly Interacting with HiveServer2128

EMR Kerberos Cluster Startup Flow ...129

Appendix C: Sample LDAP Configurations ..131

Example LDAP Configuration for Hadoop Group Mapping ..131

Example LDAP Configuration for Hue ...132

Appendix D: Data Catalog Migration FAQs ..134

About this Guide

For many customers, migrating to Amazon EMR raises many questions about

assessment, planning, architectural choices, and how to meet the many requirements of

moving analytics applications like Apache Spark and Apache Hadoop from on-premises

data centers to a new AWS Cloud environment. Many customers have concerns about

the viability of distribution vendors or a purely open-source software approach, and they

need practical advice about making a change. This guide includes the overall steps of

migration and provides best practices that we have accumulated to help customers with

their migration journey.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 1

Introduction

Businesses worldwide are discovering the power of new big data processing and

analytics frameworks like Apache Hadoop and Apache Spark, but they are also

discovering some of the challenges of operating these technologies in on-premises data

lake environments. Not least, many customers need a safe long-term choice of platform

as the big data industry is rapidly changing and some vendors are now struggling.

Common problems include a lack of agility, excessive costs, and administrative

headaches, as IT organizations wrestle with the effort of provisioning resources,

handling uneven workloads at large scale, and keeping up with the pace of rapidly

changing, community-driven, open-source software innovation. Many big data initiatives

suffer from the delay and burden of evaluating, selecting, purchasing, receiving,

deploying, integrating, provisioning, patching, maintaining, upgrading, and supporting

the underlying hardware and software infrastructure.

A subtler, if equally critical, problem is the way companies’ data center deployments of

Apache Hadoop and Apache Spark directly tie together the compute and storage

resources in the same servers, creating an inflexible model where they must scale in

lock step. This means that almost any on-premises environment pays for high amounts

of under-used disk capacity, processing power, or system memory, as each workload

has different requirements for these components.

How can smart businesses find success with their big data initiatives?

Migrating big data (and machine learning) to the cloud offers many advantages. Cloud

infrastructure service providers, such as Amazon Web Services (AWS), offer a broad

choice of on-demand and elastic compute resources, resilient and inexpensive

persistent storage, and managed services that provide up-to-date, familiar environments

to develop and operate big data applications. Data engineers, developers, data

scientists, and IT personnel can focus their efforts on preparing data and extracting

valuable insights.

Services like Amazon EMR, AWS Glue, and Amazon S3 enable you to decouple and

scale your compute and storage independently, while providing an integrated, well-

managed, highly resilient environment, immediately reducing so many of the problems

of on-premises approaches. This approach leads to faster, more agile, easier to use,

and more cost-efficient big data and data lake initiatives.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 2

However, the conventional wisdom of traditional on-premises Apache Hadoop and

Apache Spark isn’t always the best strategy in cloud-based deployments. A simple lift

and shift approach to running cluster nodes in the cloud is conceptually easy but

suboptimal in practice. Different design decisions go a long way towards maximizing

your gains as you migrate big data to a cloud architecture.

This guide provides the best practices for:

• Migrating data, applications, and catalogs

• Using persistent and transient resources

• Configuring security policies, access controls, and audit logs

• Estimating and minimizing costs, while maximizing value

• Leveraging the AWS Cloud for high availability (HA) and disaster recovery (DR)

• Automating common administrative tasks

Although not intended as a replacement for professional services, this guide covers a

wide range of common questions, and scenarios as you migrate your big data and data

lake initiatives to the cloud.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 3

Starting Your Journey

Migration Approaches

When starting your journey for migrating your big data platform to the cloud, you must

first decide how to approach migration. One approach is to re-architect your platform to

maximize the benefits of the cloud. The other approach is known as lift and shift, is to

take your existing architecture and complete a straight migration to the cloud. A final

option is a hybrid approach, where you blend a lift and shift with re-architecture. This

decision is not straightforward as there are advantages and disadvantages of both

approaches.

A lift and shift approach is usually simpler with less ambiguity and risk. Additionally, this

approach is better when you are working against tight deadlines, such as when your

lease is expiring for a data center. However, the disadvantage to a lift and shift is that it

is not always the most cost effective, and the existing architecture may not readily map

to a solution in the cloud.

A re-architecture unlocks many advantages, including optimization of costs and

efficiencies. With re-architecture, you move to the latest and greatest software, have

better integration with native cloud tools, and lower operational burden by leveraging

native cloud products and services.

This paper provides advantages and disadvantages of each migration approach from

the perspective of the Apache Hadoop ecosystem. For a general resource on deciding

which approach is ideal for your workflow, see An E-Book of Cloud Best Practices for

Your Enterprise, which outlines the best practices for performing migrations to the cloud

at a higher level.

Re-Architecting

Re-architecting is ideal when you want to maximize the benefits of moving to the cloud.

Re-architecting requires research, planning, experimentation, education,

implementation, and deployment. These efforts cost resources and time but generally

provide the greatest rate of return as reduced hardware and storage costs, operational

maintenance, and most flexibility to meet future business needs.

https://aws.amazon.com/blogs/enterprise-strategy/an-e-book-of-cloud-best-practices-for-your-enterprise/
https://aws.amazon.com/blogs/enterprise-strategy/an-e-book-of-cloud-best-practices-for-your-enterprise/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 4

A re-architecture approach to migration includes the following benefits for your

applications:

• Independent scaling of components due to separated storage and compute

resources.

• Increased productivity and lowered costs by leveraging the latest features and

software.

• Ability to prototype and experiment quickly due to provisioning resources quickly.

• Options to scale system vertically (by requesting more powerful hardware) and

horizontally (by requesting more hardware units).

• Lowered operational burden by no longer managing many aspects of cluster

lifecycle, including replacing failed nodes, upgrades, patching, etc. Since

clusters can be treated as transient resources, they can be decommissioned and

restarted.

• Data accessibility when using a data lake architecture, data is stored on a

central storage system that can be used by a wide variety of services and tools

to ingest and process the data for different use cases. For example, using

services such as AWS Glue, and Amazon Athena and other services can greatly

reduce operational burden and reduce costs, and can only be leveraged if data

is stored on S3.

• Ability to treat compute instances as transient resources, and only use as much

as you need, when you actively need it.

Best Practices for Re-architecting

When re-architecting your system for the use of Amazon EMR, consider the following

best practices:

• Read the documentation found in this guide for reference architectures and

approaches that others have taken to successfully migrate.

• Reach out to an AWS representative early for a roadmap on architectures that

would meet your use case and goals.

Lift and Shift

The lift and shift approach is the ideal way of moving workloads from on-premises to the

cloud when time is critical and ambiguity is high. Lift and shift is the process of moving

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 5

your existing applications from one infrastructure to another. The benefits to this

approach are:

• Fewer number of changes. Since the goal is to move applications to

environments that are similar to the existing environment, changes are limited to

only those required to make the application to work on the cloud.

• Less risk because fewer changes reduce the unknowns and unexpected work.

• Shorter time to market because fewer number of changes reduces the amount

of training needed by engineers.

Best Practices for Lift and Shift

• Consider using Amazon S3 for your storage instead of HDFS because this

approach reduces costs significantly, and it allows you to scale compute to the

amount of data. When using HDFS, the data must be replicated by at least two

times, requiring more storage. The main cost driver is the cost of storage by

storing the data on EC2 instances using expensive disk-based instances or

using large EBS volumes. A quick calculation using AWS cost calculator shows

that storage costs for HDFS can be up to three times the cost of Amazon S3.

See Using Amazon S3 as the Central Data Repository for a guide.

• Amazon EMR bundles several versions of applications to a single Amazon

Machine Image (AMI) that you choose. If you choose newer versions of an

application, research the changes that were made between versions and look for

known issues. In cases of open-source applications, upgrading to a newer

version may introduce bugs.

• Amazon EMR clusters are configured using defaults that depend on the instance

types chosen. See Task Configuration for default values at the Hadoop task

level and Spark Defaults Set by Amazon EMR for Apache Spark defaults. These

defaults run for most workloads but some jobs may require that you override

these defaults.

• Amazon EMR clusters by default use the capacity scheduler as the Apache

Hadoop resource scheduler. Validate that this scheduler fits the use case that

you are migrating.

Hybrid Architecture

Hybrid architectures leverage aspects of both lift and shift and re-architecting

approaches. For existing applications, a lift and shift approach is employed for a quick

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-config.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#spark-defaults

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 6

migration. Any new applications then can use re-architected architecture. This hybrid

approach includes the benefit of being able to experiment and gain experience with

cloud technologies and paradigms before moving to the cloud.

Prototyping

When moving to a new and unfamiliar product or service, there is always a period of

learning. Usually, the best way to learn is to prototype and learn from doing, rather than

researching alone, to help identify the unknowns early in the process so you can plan

for them later. Make prototyping mandatory to challenge assumptions. Common

assumptions when working with new products and services include the following:

A particular data format is the best data format for my use case. Many times,

customers read that a specific data format is the best. However, there is no best data

format for all use cases. There are data formats that perform better than most other

data formats, such as Apache Parquet and Apache ORC. Validating this assumption

could be relatively quick but the impact could be large. Switching data formats after

moving to production is more expensive than running a quick prototype with real-world

data. This prototyping is highly recommended.

A particular application is more performant than another application for

processing a specific workflow. This scenario is the same as the above common

assumption on data formats. Changing applications can be an expensive undertaking

later in the process and impact adoption.

A particular instance type is the most cost effective way to run a specific

workflow. Many times, another instance type performs better if it is tuned for the

workflow. For example, C series EC2 instances can perform better, and cost less if you

enable spill-to-disk rather than using R series EC2 instances. This scenario is easier to

change later on and is recommended if cost and performance is a high priority

requirement.

A particular application running on-premises should work identically on cloud.

There are many factors that contribute to running workloads, such as the instance type,

storage type, application version, infrastructure configuration, and so on. Running a

wide variety of jobs with real data that you expect to run on production provides the

most validation.

With the cloud, there are several factors in the environment in which a workload may

run. For example, at different times of day, traffic to Amazon S3 could vary, or caching

could be instituted when not expected. Therefore, prototyping reduces the number and

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 7

severity of surprises during development and deployments, and the rate of return can

be large. Last, finding out issues earlier than later in the development cycle is much

more cost effective.

Best Practices for Prototyping

• Decide on what to prototype, brainstorm all of the possible assumptions and

unknowns. Make the assumptions and unknowns with the largest potential

impact a priority.

• Start early and choose the riskiest aspects to prototype first.

• Prototype in an environment that is similar to the environment that you want to

be operating in. Start with a smaller environment or subset of characteristics and

then move to a larger scale.

• Determine goals for the tests upfront and get support from stakeholders. The

goal could be to answer a question about how something works or to validate a

design.

• Make tests deterministic and easily repeatable. Run experiments using an

automated approach, such as a script or continuous integration environment, so

that the test can be run in different environments. For example, run a test on

different instance types or against multiple AMIs. These scripts can later be used

as tests for deployments.

• Validate your test setup, environment, and results with someone else to ensure

that all factors are being considered. For example, if you run download tests

against the same S3 objects, this could cause Amazon S3 to cache the object.

This scenario gives incorrect results when the actual workflow is retrieving

random objects.

• Run the tests sufficiently enough to remove variability that may come from

dependencies. For example, variability from Amazon S3 may be caused by the

traffic load of other users or the time of day. Look at different percentiles, such

as P50, P90, P99, and P100 and determine how variability may impact user

experience.

• Document the results and have them reviewed by your team members. This

review ensures that the tests were run properly and results are consistent.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 8

• Don't make assumptions. In the big data analytics space, too many variables

affect performance, cost, and functionality meaning an obvious assumption may

be incorrect. Always validate your assumptions by testing them. For example,

many people may assume that a particular instance type that closely matches

the hardware they use on their premises may be a better fit than choosing

another instance type.

• The purpose of prototyping is to validate assumptions of a design or approach

with a high degree of certainty. Generally, the more effort put into a prototype by

accounting for multiple factors will yield higher certainty that the design will work

in a production setting. Determining your goals at the beginning of the process

will make sure that you stop at a reasonable level.

• Don't be afraid to seek help by posting on forums, consulting AWS partners, and

reaching out to your account team.

Choosing a Team

When starting a migration to the cloud, you must carefully choose your project team to

research, design, implement, and maintain the new system. We recommend that your

team has individuals in the following roles with the understanding that a person can play

multiple roles:

• A project leader capable of managing the project end-to-end, and with enough

technical expertise and background on big data technology to make decisions.

• A big data applications engineer with a strong background in Apache Hadoop

and other technologies that are being migrated. This background is helpful to

understand how the underlying applications work, their intended uses, and their

limitations.

• An infrastructure engineer well-versed in the automation of infrastructure

provisioning on AWS and familiar with tools like AWS CloudFormation,

Terraform (by HashiCorp), and so on. This person should also be familiar with

test automation, including CI/CD approaches and tools.

• A security engineer able to provide guidance on the security requirements that

your company mandates. This person should be knowledgeable enough to map

the organization's security requirements to security features offered by AWS.

This person should also be flexible about the security design as long as it meets

the intended requirements.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 9

• A group of engineers who are quick learners and are not afraid to dive into

areas that they may not be familiar with.

All members in the migration team must exhibit the following characteristics:

• They must have an open mind and ability to think differently. Cloud infrastructure

requires a paradigm shift on how resources are treated.

• They must be able to dive deep into the underlying frameworks, architectures,

and issues.

• They must share an agreement on the project's mission and direction.

General Best Practices for Migration

Migrating big data and analytics workloads from on-premises to the cloud involves

careful decision making. The following are general best practices to consider when

migrating these workloads to Amazon EMR:

Consider using AWS Glue, Amazon Redshift, or Amazon Athena. Although Amazon

EMR is flexible and provides the greatest amount of customization and control, there is

an associated cost of managing Amazon EMR clusters, upgrades, and so on. Consider

using other managed AWS services that fulfill your requirements as they may have

lower operational burden, and in some cases, lower costs. If one of these services does

not meet your use case requirements, then use Amazon EMR.

Use Amazon S3 for your storage (data lake infrastructure). A data lake is a

centralized repository that allows you to store all of your structured and unstructured

data at any scale. Data can be stored as-is, without having to first structure the data.

You can execute different types of analytics on the data, from dashboards and

visualizations to big data processing, real-time analytics, and machine learning.

Amazon S3 is architected for high durability and high availability and supports lifecycle

policies for tiered storage. For more details, see Using Amazon S3 as the Central Data

Repository.

Decouple compute from storage so that you can scale them independently. With

your data in Amazon S3, you can launch as much or as little compute capacity as you

need using Amazon Elastic Compute Cloud (EC2). For more information, see Benefits

of using Amazon S3.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 10

Use multiple Amazon EMR (transient and long running) clusters with the ability to

spin up and down on demand. Analyze the current workloads and assign the

workloads to different clusters based on usage patterns.

• Separate out batch jobs (extract, transform, load [ETL], aggregations, data

cleansing, roll-up, machine learning) and interactive queries (one-time analysis).

• Use Reserved and Spot Instances as applicable to reduce costs for baseline or

variable workloads, respectively.

• Use automatic scaling within clusters. Automatic scaling allows for

programmatically scaling in and out core nodes and task nodes based on

Amazon CloudWatch metrics and other parameters that are specified in a

scaling policy.

• Right-size clusters (both instance types and number of instances). Multiple

Amazon EC2 instance types are available—make sure to choose the correct

instance type based on the workload. For more details, see Cost estimation and

optimization.

Implement automation and continuous integration/continuous delivery (CI/CD)

practices to enable experimentation and efficiency. Automating the provisioning of

EMR clusters along with other resources like roles and security groups is an operational

excellence best practice. Apply the same engineering discipline to infrastructure that is

typically used for application code. Check the infrastructure code into a code repository

and build CI/CD pipelines to test the code. Implementing infrastructure as code also

allows for the provisioning of EMR clusters in another Availability Zone or AWS Region

should problems arise in the one currently being used. For more details, see

Operational Excellence.

Involve security and compliance engineers as early in the migration process as

possible and make sure that the EMR environments are in line with the organization's

security directives. Make full use of multiple security-related services, such as AWS

Identity and Access Management (IAM) and AWS Key Management Service (KMS),

and features, such as Security Configurations within EMR. Amazon S3 also includes

many security-related features. Make sure that all data is encrypted at-rest and in-

transit. Finally, make sure that authentication and authorization are enabled as

appropriate. For more details, see Securing your Resources on Amazon EMR

(placeholder).

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/kms/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 11

Gathering Requirements

Obtaining On-Premises Metrics

The following list of metrics is useful to help with cost estimation, architecture planning,

and instance type selection.

Capture each of these metrics on your existing Hadoop clusters to help drive the

decision-making process during migration.

• Aggregate number of physical CPUs

• CPU clock speed and core counts

• Aggregate memory size

• Amount of HDFS storage (without replication)

• Aggregate maximum network throughput

• At least one week of utilization graphs for the resources used above

For help with taking a full inventory of your on-premises architecture and the possible

requirements for migration, refer to Appendix A: Questionnaire for Requirements

Gathering.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 12

Cost Estimation and Optimization

With Amazon EMR, you only pay a per-second rate for every second that you use the

cluster. The cost is based on the instance type, the number of Amazon EC2 instances

that you deploy, and the AWS Region in which you launch your cluster. The Amazon

EMR cost is in addition to the Amazon EC2 cost and Amazon EBS cost (if using EBS

volumes), which are also billed per-second. This chapter shows you how to optimize

Amazon EMR clusters and leverage features such as Auto Scaling and Instance Fleets

to lower costs.

Optimizing Costs

Amazon EMR provides various features to help lower costs. To make the best use out

of those features, consider the following factors.

Workload Type

You can run different applications and workload types on Amazon EMR. For

applications that only run for a specific period, you can use a transient EMR cluster. For

applications that run for a long period, you can use a long-running cluster. The following

image shows typical workload types and whether they're classified as transient or long-

running.

Figure 1: Typical workloads and their cluster types

Instance Type

Most Amazon EMR clusters can run on general-purpose EC2 instance types/families

(that is, M4.xlarge and M5.xlarge). Compute-intensive clusters may benefit from running

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 13

on high performance computing (HPC) instances, such as the compute-optimized

instance family (that is, C5). Database and memory-caching applications may benefit

from running on high memory instances, such as the memory-optimized instance family

(that is, R5). The master node does not have large computational requirements. For

most clusters of 50 or fewer nodes, you can use a general-purpose instance type such

as M5.xlarge (Note: for clusters of more than 50 nodes, consider using a larger

instance type, such as m5.xlarge). The amount of data you can process depends on the

capacity of your core nodes and the size of your data as input, data during processing,

and data as output.

Application Settings

Job performance also depends on application settings. There are different application

settings for different use cases. For example, by default, EMR clusters with Apache

HBase installed allocates half of the memory for HBase and allocates the other half of

memory for Apache Hadoop YARN. If you use applications such as Apache HBase and

Apache Spark, we recommend that you don't use a single, larger cluster for both

applications. Instead run each application on a separate, smaller cluster.

Storage Optimization

When you use Amazon EMR, you have the ability to decouple your compute and

storage by using Amazon S3 as your persistent data store. By optimizing your storage,

you can improve the performance of your jobs. This approach enables you to use less

hardware and run clusters for a shorter period. Here are some strategies to help you

optimize your cluster (Amazon S3) storage:

Partition Data

When your data is partitioned and you read the data based on a partition column, your

query only reads the files that are required. This reduces the amount of data scanned

during the query. For example, the following image shows two queries executed on two

datasets of the same size. One dataset is partitioned, whereas the other dataset is not.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 14

Figure 2: Queries on partitioned and non-partitioned data

The query over the partitioned data (s3logsjsonpartitioned) took 20 seconds to

complete and it scanned 349 MB of data.

The query over the non-partitioned data (s3logsjsonnopartition) took 2 minutes

and 48 seconds to complete and it scanned 5.13 GB of data.

Optimize File Sizes

Avoid files that are too small (generally, anything less than 128 MB). By having fewer

files that are larger, you can reduce the amount of Amazon S3 LIST requests and also

improve the job performance. To show the performance impact of having too many files,

the following image shows a query executed over a dataset containing 50 files and a

query over a dataset of the same size, but with 25,000 files.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 15

Figure 3: Query time difference on number of files

The query executed over the dataset containing 50 files (fewfilesjson) took 2

minutes and 31 seconds to complete.

The query over the dataset with 25000 files (manyfilesjson) took 3 minutes and 47

seconds to complete.

Compress the Dataset

By compressing your data, you reduce the amount of storage needed for the data, and

you also minimize the network traffic between S3 and the EMR nodes. When you

compress your data, make sure to use a compression algorithm that allows files to be

split or have each file be the optimal size for parallelization on your cluster. File formats

such as Apache Parquet or Apache ORC provide compression by default. The following

image shows the size difference between two file formats, Parquet (has compression

enabled) and JSON (text format, no compression enabled). The Parquet dataset is

almost five times smaller than the JSON dataset:

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 16

Figure 4: Compressed and non-compressed datasets

Optimize File Formats

Columnar file formats like Parquet and ORC can increase read performance. Columnar

formats are ideal if most of your queries only select a subset of columns. For use cases

where you primarily select all columns, but only select a subset of rows, choose a row-

optimized file format such as Apache Avro. The following image shows a performance

comparison of a select count(*) query between Parquet and JSON (text) file

formats.

Figure 5: Performance comparison of file formats

The query over the JSON dataset took 56 seconds to complete, and it scanned 5.21 GB

of data.

The query over the Parquet dataset took 2 seconds to complete, and it did not need to

scan any data.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 17

Compute Optimization

In the previous section, we covered some of the strategies that you can use to optimize

your Amazon S3 storage costs and performance. In this section, we cover some of the

features and ways to optimize your Amazon EC2 cluster’s compute.

Amazon EC2 provides various purchasing options for you to choose from. When you

launch Amazon EMR clusters, you have the ability use On-Demand, Spot, or Reserved

EC2 instances. Amazon EC2 Spot Instances offer spare compute capacity available at

discounts compared to On-Demand Instances. Amazon EC2 Reserved Instances

enable you to reserve EC2 instances at a significant discount compared to On-Demand

pricing. For more detailed information, see Instance Purchasing Options.

Spot Instances

Running EMR clusters with Spot Instances can be useful for a number of scenarios.

However, there are few things that you must consider before choosing Spot Instances

for a particular workload. For example, if you're running a job that requires predictable

completion time or has service level agreement (SLA) requirements, then using Spot

Instances may not be the best fit. For workloads where cost is more important than time

to completion, or workloads that can exceed an SLA, you can use Spot Instances for

the entire cluster.

You can also use a combination of Spot and On-Demand Instances for certain

workloads. For example, if cost is more important than the time to completion, but you

cannot tolerate a partial loss of work (that is, have an entire cluster terminated), you can

use Spot Instances for the task nodes, and use On-Demand/Reserved Instances for the

master and core nodes.

Spot Instances are also great for testing and development workloads. You can use Spot

Instances for an entire testing cluster to help you reduce costs when testing new

applications.

Reserved Instances

With Reserved Instances (RIs), you can purchase/reserve EC2 capacity at a lower price

compared to On-Demand Instances. Keep in mind that for you to have reduced costs

with Reserved Instances, you must make sure that your RI use over a period of a year

is higher than 70%. For example, if you use transient EMR clusters and your clusters

only run for a total of 12 hours per day, then your yearly use is 50%. This means that

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-purchasing-options.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 18

Reserved Instances might not help you reduce costs for that workload. Reserved

Instances may help you to reduce costs for long-running clusters and workloads.

Instance Fleets

Instance Fleets is an Amazon EMR feature that provides you with variety of options for

provisioning EC2 instances. This approach allows you to easily provision EMR cluster

with Spot Instances, On-Demand Instances, or a combination of both. When you launch

a cluster with Instance Fleets, you can select the target capacity for On-Demand and

Spot Instances and you can also specify a list of instance types and Availability Zones.

Instance Fleets choose the instance type and the Availability Zone that is the best fit to

fulfill your launch request.

Instance fleets also provide many features for provisioning Spot Instances. This

includes the ability for you to specify a defined duration (Spot block) to keep the Spot

Instances running, the maximum Spot price that you’re willing to pay, and a timeout

period for provisioning Spot Instances.

Amazon EMR Auto Scaling

You can reduce costs by using the Amazon EMR automatic scaling feature to

dynamically scale your cluster. Amazon EMR Auto Scaling allows you to choose

Amazon CloudWatch metrics and specify scaling policies to automatically scale out

(add more nodes to the cluster) and scale in (remove nodes from the cluster) core

nodes and task nodes. This approach allows you to run EMR clusters with just the right

of amount of resources that your application needs. This feature is also useful for use

cases where you have spikes in cluster utilization (i.e. a user submitting a job) and you

want the cluster to automatically scale based on the requirements for that application.

For more information, see Best practices for resizing and automatic scaling in Amazon

EMR on the AWS Big Data Blog.

Cost Estimation Summary

There are a number of factors to consider when estimating costs for an Amazon EMR

cluster. These factors include EC2 instances (compute layer), EBS volumes, and

Amazon S3 storage. Due to the per-second pricing of Amazon EMR, the cost of running

a large EMR cluster that runs for a short duration would be similar to the cost of running

a small cluster for a longer duration. For example, a 10-node cluster running for 10

hours costs the same as a 100-node cluster running for 1 hour. The hourly rate depends

https://aws.amazon.com/blogs/big-data/best-practices-for-resizing-and-automatic-scaling-in-amazon-emr/
https://aws.amazon.com/blogs/big-data/best-practices-for-resizing-and-automatic-scaling-in-amazon-emr/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 19

on the instance type used (such as standard, high CPU, high memory, high storage,

and so on). For detailed pricing information, see Amazon EMR Pricing.

Optimizing Apache Hadoop YARN-based Applications

About Apache Hadoop YARN and Job Optimization

Apache Hadoop YARN manages virtual resources. When registering nodes with YARN,

virtual memory and virtual CPU resources are provided in which resource that node can

operate. The total resources available to a cluster is the sum of all of the nodes that

participate in job execution. Ideally, the YARN memory and CPU resources should

closely match those of the underlying hardware, but in some cases, adjustments are

needed. With Amazon EMR, defaults are provided for each node. For more information

on these defaults, see Task Configuration in the Amazon EMR Release Guide.

A job requires resources to complete its computation. To parallelize the job, it runs

subsets of work within containers. The job requests from YARN the amount of memory

and CPU expected for each container. If not specified, then a default container size is

allocated for each container. If the container is not sized properly, the job will either

waste resources because it's not using everything allocated to it, run slowly because it's

being constrained, or it fails because its resources are being too constrained.

You must take care for both YARN and requests from a job to ensure that the

underlying hardware is fully used. YARN manages virtual resources and does not

necessarily map to the underlying hardware, but how YARN is configured and tasks are

scheduled does have an impact how the underlying hardware is used.

Optimizing and Monitoring Your Cluster

To tune your cluster, first ensure that YARN use is optimized. If some containers are

constantly available, shrinking your cluster saves cost without decreasing performance

because containers are sitting idle. Amazon EMR emits a ContainerPending metric to

Amazon CloudWatch that can provide this information. If there is a constant queue of

container requests, then increasing your cluster size helps your applications finish faster

because they can benefit from increased parallelism.

To ensure that you are using all of the physical resources, use Ganglia monitoring

software to provide information about the underlying hardware. If 100% of YARN

resources (vCPU and Memory) are used, but Ganglia is showing that actual CPU and

Memory usage is not crossing 80%, then you may want to reduce container size so that

the cluster can run more concurrent containers.

https://aws.amazon.com/emr/pricing/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-config.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/UsingEMR_ViewingMetrics.html
http://ganglia.sourceforge.net/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 20

If looking at Ganglia shows that either CPU or memory is 100% but the other resources

are not being used significantly, then consider moving to another instance type that may

provide better performance at a lower cost. For example, if CPU is 100%, and memory

usage is less than 50% on R4 or M5 series instance types, then moving to C4 series

instance type may be able to address the bottleneck on CPU.

Figure 6: Example Ganglia graph showing underutilized CPU and memory

Tuning Controls for Cluster Optimization

If CPU and memory are not fully used, you can tune two controls. The first control is the

amount of resources that are requested to reserve from YARN for each container. To

tune the resources available for a container, you can change the default container sizes

using Amazon EMR Application Configuration. The same configurations can be used to

control memory and CPU at an application level to provide finer control of resources.

The second control is the amount of virtual resources that is reservable from each node

within YARN. To change the amount of YARN memory or CPU available to be reserved

on each node in your cluster, set the yarn.nodemanager.resource.memory-mb and

yarn.nodemanager.resource.cpu-vcores configurations using the Amazon EMR

configuration API. For default values, see Hadoop Daemon Configuration Settings in the

Amazon EMR Release Guide.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-config.html#emr-hadoop-task-jvm
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-daemons.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 21

The following decision graph provides a suggested approach to optimizing your jobs.

Figure 7: Job optimization decision chart

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 22

Amazon EMR Cluster Segmentation Schemes

One of the main benefits of using Amazon EMR is that it makes it easy for you to start

and terminate clusters. Starting and stopping clusters quickly gives you the flexibility

that a single, long-running cluster cannot provide, and provides opportunities to save

costs by leveraging Amazon EC2 Spot Instances.

This section covers a few approaches to splitting a single, permanently running cluster

into smaller clusters and identifies the benefits these practices bring to your

environments. The approach you choose depends on your use case and existing

workflows. AWS can work with you to help choose the strategy that meets your goals.

Cluster Characteristics

You can approach the task of splitting up existing cluster from different perspectives,

depending on the area or a set of characteristics that you want to tackle or address. The

strategy you choose depends on the scenarios you have and the goals you want to

achieve. The following cluster characteristics are typically considered.

Machine Types and Cluster Sizes

In your cluster environment, different established workflows may experience bottlenecks

on different resources, such as the number of CPUs, memory size, network bandwidth,

or network latency. In small clusters that you start on demand, you select machine types

to best match the workloads. Similarly, you select the amount of resources your clusters

need. For example, you can use high-memory instances for processing machine

learning algorithms, or run compute-optimized instances for query engines, like

PrestoDB.

Applications, Application Versions, and Configuration

You can create different configurations and deploy different applications on different

clusters, providing only those resources that users need. You can also create clusters

that allow you to run red-black testing during application version upgrades, and to test

new software.

http://prestodb.github.io/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 23

Security

IAM Roles Specific to Each Smaller Cluster

Amazon EMR clusters are assigned an EC2 role that provides permissions to access

different AWS resources. You can assign different roles to your clusters so that these

roles have different access and permissions to resources, such as Amazon S3 buckets

or Amazon Kinesis Data Streams. This role assignment allows you to provide carefully

restricted permissions to each EMR cluster, preventing unintended actions and reducing

the scope of risk if any security events occur.

Security Controls

Depending on the use cases that a cluster serves, you can change the level of security

for the cluster. For example, if one cluster is used purely for batch processing that is

submitted from a workflow engine or via steps, securing this cluster at a user level may

not be a top priority. In this case, forgoing Kerberos configuration may be acceptable

since no one is interacting with the cluster. For a cluster that serves interactive use

cases, you may need to configure Kerberos, restrict SSH access, and follow other

security practices. For information on security controls available in Amazon EMR, see

Security in the Amazon EMR Management Guide.

Network Controls

You can assign different clusters to different security groups or place them in different

subnets that control access from specified network sources.

Disaster recovery

Using more than one cluster provides redundancy to minimize impact if a single cluster

goes down or is taken offline. The following examples are a couple use cases where

having multiple clusters can help:

• A cluster becomes unhealthy due to a software bug, network issue, or other

external dependencies being unavailable.

• A maintenance operation needs to occur such as a software upgrade, patching

that requires a machine reboot, or bouncing of applications.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 24

Common Cluster Segmentation Schemes

Lifecycle Stages

One of the typical approaches to deciding how to segregate clusters is based on having

dedicated clusters for separate stages in your lifecycle, such as testing, beta, and

production. This way, jobs that are not ready for production can run on their own

dedicated cluster and do not interfere or compete with production jobs for resources or

writing of data results. Having different clusters for separate stages also lets you test

jobs on clusters that have newer versions of applications. This approach lets you test

upgrades before upgrading your beta or production environments. To further isolate

your workflows and scenarios, you can apply a separate instance role in Amazon EMR

that disallows beta jobs to write their results to production S3 locations, protecting them

from accidental deletions or modifications arising from your beta stage environment.

Workload Types

Clusters that serve end users who submit ad hoc queries typically require stricter

security controls. They also must use different applications, such as Apache Hue and

Apache Zeppelin. These interactive workload clusters usually have peak usage times

during business hours and low usage at all other times. Configuring automatic scaling

policies for these clusters is beneficial, especially if you run them on Spot Instances.

Clusters used for batch/ETL workloads also tend to have peak usage times that are

usually different from those of interactive workload clusters used for queries. Batch/ETL

workload clusters can leverage automatic scaling so that workloads scale independently

of other clusters and can scale up and down. For more information, see Using

Automatic Scaling in Amazon EMR.

Time-Sensitive Jobs

Another common strategy for cluster segmentation is creating separate clusters based

on whether their jobs are time-sensitive. When a repeated job's completion time must

be consistent, creating and running the job on a separate cluster is a way to ensure that

the job can obtain a predictable and consistent amount of resources each time that job

must run. In addition, you can use more powerful and expensive hardware when

running time-sensitive jobs.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-automatic-scaling.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-automatic-scaling.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 25

Job Length

Running long jobs may consume available resources and take them away from other,

shorter running jobs. Running separate clusters for long-running and short-running jobs

can help short-running jobs complete faster, improve their SLA, and improve the SLA of

workflows in general if they are in the critical path. Clusters that run short-running jobs

also have a higher chance of completing jobs when Spot Instances are used because

the chance of a job being interrupted by EC2 is lower.

Group/Organization Types

Some organizations create clusters per groups of users that share the same security

requirements and ownership of EMR resources. This approach helps with restricting

access to those groups, and also allows the administrators to allocate costs to the

groups by using resource tagging. Having several, smaller clusters dedicated to

separate groups also helps you isolate resources usage. With this approach, one group

within your organization does not exhaust the resources of other groups using the same

cluster. In addition, this approach reduces the risk that one group gains access to

another group’s data.

Additional Considerations for Segmentation

Segmenting your clusters too finely increases costs marginally. Add master nodes to a

cluster to manage the cluster, although these instances do not need to be as powerful

as the core and task nodes. In addition, adding more clusters adds complexity to your

infrastructure because resources must be tracked. Users generally handle this

complexity by using an orchestrator to ensure that resources are provisioned and shut

down when appropriate, and build monitors to ensure that clusters are shut down when

idle for a period of time. For a sample solution of this approach, see Optimize Amazon

EMR costs with idle checks and automatic resource termination using advanced

Amazon CloudWatch metrics and AWS Lambda on the AWS Big Data Blog.

Finally, using multiple clusters also reduces the efficiency of instances, because they

are not being shared by other jobs. However, this scenario can be offset by using

automatic scaling.

https://aws.amazon.com/blogs/big-data/optimize-amazon-emr-costs-with-idle-checks-and-automatic-resource-termination-using-advanced-amazon-cloudwatch-metrics-and-aws-lambda/
https://aws.amazon.com/blogs/big-data/optimize-amazon-emr-costs-with-idle-checks-and-automatic-resource-termination-using-advanced-amazon-cloudwatch-metrics-and-aws-lambda/
https://aws.amazon.com/blogs/big-data/optimize-amazon-emr-costs-with-idle-checks-and-automatic-resource-termination-using-advanced-amazon-cloudwatch-metrics-and-aws-lambda/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 26

Securing your Resources on Amazon EMR

Amazon EMR has a comprehensive range of tools and methods to secure your data

processing in the AWS Cloud. This chapter provides information on Network Security,

Authentication (proving identity), Authorization (granting identities to resources),

Auditing (which identities accessed which resources when), Encryption, and Patching.

At the end of this chapter, we provide examples of common customer setups that meet

different use cases.

EMR Security Best Practices

Design early with security in mind. Implementing security designs at the beginning of

migration saves time and reduces complexity because the architecture is built with

security in mind. Large changes may require more effort when security becomes a

requirement after implementation has been completed.

Ensure that the supporting department is involved early in security architecture.

Have the department that reviews and approves architectures for security involved in

the process as early as possible, and keep them up-to-date with decisions related to

security. They may be able to give you advice earlier in the process to reduce or avoid

design changes later in the process.

Understand the risks. Security is mainly about minimizing attack surfaces and

minimizing impact should a system become compromised. No system can be entirely

secured.

Obtain security exceptions. Security departments may provide security exceptions for

rules that may no longer apply or where the risk of compromise is reduced. Getting

security exceptions may significantly reduce the risk and scope of work needed to get

approvals from a security department. For example, you may not need SELinux for

Amazon EMR clusters that process batch jobs and in which there is no interactivity with

users.

Use different security setups for different use cases. Batch and ETL clusters that do

not have user interaction likely require a different security configuration than a cluster

that is used in an interactive way. Clusters with interaction may have several users and

processes that interact with a cluster and each user requiring different levels of access

with each other. Clusters that are used for batch usually require much lower security

controls than an interactive cluster.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 27

Authentication

Authentication is the process of an entity (a user or application) proving its identity to an

application or system. When logging into an application or system, a user generally

provides a login and password to prove that they are the user they are claiming to be.

Other methods for authentication exist, such as providing certificates or tickets.

Authentication Between User and System

Figure 8: Authentication between user and system, applications

There are several ways to authenticate a user to an EMR cluster and/or applications on

the Amazon EMR cluster.

SSH Keys as Authentication

The easiest but least secure solution is to provide SSH keys to users that you want to

have access to an Amazon EMR cluster. Those users with the keys can then SSH into

the cluster and use any resources that the cluster has access to. With no other security

features, those users that can log on to a cluster can run commands as root, and can

access AWS resources that the Amazon EC2 instance role has access to.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 28

This method is typically used when there are a small number of users or groups.

Multiple EMR clusters can be started with different permissions and SSH keys, and the

keys are distributed to users that have access to each cluster. Rotate the SSH keys

periodically to ensure that the impact of leaked keys is limited. This is not a

recommended approach if Amazon EMR clusters have access to sensitive data.

Lightweight Directory Access Protocol (LDAP) Authentication

Several applications support authentication against Active Directory or other directory

services using lightweight directory access protocol (LDAP). With this method, users

must provide the credentials that they normally use which are then sent to the on-

premises Active Directory server for validation. Once these credentials are validated,

the user then has access to the application.1

After a user is validated to an application, there are two ways a job can be submitted. In

the first scenario, an application uses its own identity to submit a job for processing. For

example, if Apache Hue is the application, then the Hue user submits the job and that

job is run by the defined user hue. The second way to submit the job is through an

application that impersonates the user to run that job. This method allows administrators

to track usage of users and makes it easier to identify misuse of the system. By default,

Apache Hue submits jobs impersonated by the user.

By default, Apache Hadoop's default authentication method is set to simple, which

means that there is no user authentication. We recommend that you change this setting

if the cluster is being used by multiple users. If Apache Hadoop is set up to use

Kerberos and a YARN/HDFS job is submitted with Apache Spark or Apache Hive, then

the end users must have an OS level account on each node as YARN/HDFS. In some

cases, these accounts must be created manually and synced using something like

SSSD. Mappings from users to their group membership are also required in which

LDAP or SSSD can be used. If this is a requirement, we recommend that you use LDAP

to authenticate users, and use Amazon EMR with Kerberos to automate the OS

accounts syncing. Or, you can also enable Hadoop to do user-to-group mappings via

LDAP. See Hadoop Groups Mappings in the Apache Hadoop documentation for built-in

Hadoop implementations for these mappings. For more information, refer to Appendix

C: Sample LDAP Configurations.

The following table lists Amazon EMR supported applications and instructions on how to

enable LDAP, if supported.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/GroupsMapping.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 29

Table 1: Amazon EMR Supported Applications and LDAP Support

Application

Supports

LDAP? Notes

Apache Hive Yes HiveServer2 can be used to authenticate against LDAP. Details

on HiveServer2 setup are located on the Apache Hive Wiki. When

LDAP is configured, Java Database Connectivity (JDBC) and

Beeline connections require a user login and password.

Note: We recommend that you use LDAPS to ensure that

unencrypted credentials are not shared.

Presto Yes See LDAP Authentication in Presto documentation for details on

the different configuration parameters.

Apache Spark No Use Hue or Apache Zeppelin to authenticate the user and then

submit the job to Spark.

Apache Hue Yes See Configure Hue For LDAP users in the Amazon EMR Release

Guide for setup instructions, and Using LDAP via AWS Directory

Service to Access and Administer Your Hadoop Environment on

the AWS Big Data Blog for a step-by-step guide.

Apache

Zeppelin

Yes Apache Zeppelin uses Apache Shiro to configure authentication.

For steps on enabling Shiro, see Shiro Authentication for Apache

Zeppelin.

Apache

HBase

No Use Kerberos as an authentication mechanism.

Kerberos

Kerberos is the most secure authentication and authorization mechanism available on

Amazon EMR. Kerberos works by having users provide their credentials and obtain a

https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2
https://prestodb.io/docs/current/security/ldap.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/hue-ldap.html
https://aws.amazon.com/blogs/big-data/using-ldap-via-aws-directory-service-to-access-and-administer-your-hadoop-environment/
https://aws.amazon.com/blogs/big-data/using-ldap-via-aws-directory-service-to-access-and-administer-your-hadoop-environment/
https://zeppelin.apache.org/docs/0.6.2/security/shiroauthentication.html
https://zeppelin.apache.org/docs/0.6.2/security/shiroauthentication.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 30

ticket to prove identity from a central Authentication Server. That ticket can then be

used to grant access to resources within your cluster. For Kerberos to be used

effectively for authentication, Amazon EMR clusters should create a one-way trust

between the Kerberos server running on the Amazon EMR master node and the

Kerberos server that is on-premises. An example flow is provided in EMR Kerberos

Flow for directly interacting with HiveServer2.

Most applications within Amazon EMR support Kerberos as an authentication method.

For a complete list, see Supported Applications in the Amazon EMR Management

Guide.

Authentication Between Applications

Similar to users, applications and service accounts require authentication when

interacting with each other. There are several ways this happens within Amazon EMR.

(See Figure 8.)

Kerberos

Kerberos is the recommended method for application-to-application authentication.

When using Kerberos authentication, applications authenticate themselves with a Key

Distribution Center (KDC) installed on the master node, and authenticate other

applications connecting to it. For more information on Kerberos enabled workflows on

Amazon EMR, see Appendix B: EMR Kerberos Workflow.

Presto

The Amazon EMR version of Presto allows nodes within a cluster to authenticate using

LDAPS. To set up node-to-node authentication, set up Presto using LDAPS. See Using

SSL/TLS and Configuring LDAPS with Presto on Amazon EMR in the Amazon EMR

Release Guide for details.

SSL/TLS Between Nodes

See Encryption for Data in Transit for how to enable SSL/TLS between nodes through

Amazon EMR security configuration. Using SSL certificates to authenticate between

nodes can provide protection against a rogue node from joining a cluster.

Authorization

Authorization is the act of allowing or denying an identity to perform an action. Using

authentication to determine what an identity can do first requires that the identity has

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos-principals.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/presto-ssl.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/presto-ssl.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 31

validated who they are. This section provides the various mechanisms available that

can limit what an identity can do.

Figure 9: Example of authorization flow

Application Authorization

For the Hadoop ecosystem, there are several possible solutions for authorization, like

having individual applications control what users can do, or having central processes or

applications that can manage policies across several applications. For applications that

manage policies across the Hadoop ecosystem, see Hadoop Authentication

Authorization Data Governance Solutions Comparison Matrix.

Apache Ranger

Apache Ranger provides authorization policies to manage a wide variety of applications,

including YARN Resource Queues, Apache HBase, and so on.

https://docs.google.com/spreadsheets/d/1uh6pb6tljKXU1Ko3klQKG4kX7gilgdnAOjVGs8q1xrk/edit#gid=0
https://docs.google.com/spreadsheets/d/1uh6pb6tljKXU1Ko3klQKG4kX7gilgdnAOjVGs8q1xrk/edit#gid=0
https://ranger.apache.org/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 32

See Implementing Authorization and Auditing using Apache Ranger on Amazon

EMR for information on how to enable Apache Ranger on an EMR cluster using a

bootstrap action.

Apache Knox

Apache Knox provides perimeter security for your Hadoop resources. Users connect to

Knox and can be authenticated and authorized through a Knox Gateway. The gateway

then forwards the users traffic to Hadoop resources without having to directly connect to

them. Knox can be configured to allow groups to dictate the resources a user may

access, such as Apache HBase UIs.

See Authentication in the Apache Knox Gateway Users Guide for more information.

Hue, Zeppelin, Hive (LDAP)

For applications that integrate with LDAP, such as Hue, Zeppelin, and Hive, these

applications can be set up to only allow users that belong to certain groups. See the

following links for helpful resources.

• Authenticate Hue Users with LDAP

• HiveServer2 Authentication/Security Configuration

• Configure Zeppelin for Authentication: LDAP and Active Directory

Storage Level Authorization (Amazon S3)

If you have an EMR clusters with multiple users who need different levels of access to

data in Amazon S3, you can segregate your EMR clusters or have EMRFS assume

different IAM roles based on the user or group making the request.

Separation of EMR Clusters for Different Permissions

The easiest way to segregate permissions among different groups of users is to create

individual EMR clusters that assume different Amazon EC2 roles with the S3

permissions needed for that group of users, and then authenticate users to use the

cluster. For example, have an EMR cluster that is dedicated to ML users that have

access to appropriate data for analysis. Then, have a separate cluster for end users that

only has access to the output of the analyses that the ML users created.

https://aws.amazon.com/blogs/big-data/implementing-authorization-and-auditing-using-apache-ranger-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/implementing-authorization-and-auditing-using-apache-ranger-on-amazon-emr/
https://knox.apache.org/books/knox-1-1-0/user-guide.html#Authentication
https://www.cloudera.com/documentation/enterprise/latest/topics/hue_sec_ldap_auth.html
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-Authentication/SecurityConfiguration
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_zeppelin-component-guide/content/config-secure-prod.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 33

Figure 10: Separation of EMR clusters for different permissions

EMR File System (EMRFS) Authorization

EMRFS Authorization allows a single cluster to be used by multiple groups of users

while providing different S3 permissions for different users. Depending on the user, that

user's group, or the S3 location, EMRFS can assume a different role and interact with

S3 based on the permissions of that role.

A role mapping is required between a user, group, or S3 location, and the role that

EMRFS assumes.

For example, consider two users, Henry and Martha, and two AWS IAM Roles, analysts

and data_scientist. An EMRFS mapping could say that when Henry is accessing S3,

ERMFS assumes the analysts role, and assumes the data_scientist role for Martha.

If using Kerberos for Hadoop YARN, then it is required that the user’s accounts are

registered on each of the nodes on Hadoop and that there is a defined way to map

users to groups. This mapping could be done manually through bootstrap actions, or by

having a mechanism to access users from an on-premises Active Directory. Using

SSSD to read identity information, including user-to-group mappings, automates this

process. AWS automates the setup of a 1-way trusting using EMR Kerberos. See Use

Kerberos Authentication for more details.

You can update rules while the cluster is running by updating emrfs-site.xml on all

nodes on the cluster. EMRFS detects and applies the new mappings.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 34

NOTE: If your users are able to access the Instance Profile of your instance, then they

are able to assume any role that EMRFS can assume. This method is not

recommended if users can SSH into your cluster or run arbitrary code, such as running

Spark, Scala, or SparkPy jobs.

AWS Lake Formation

AWS Lake Formation is a service that aims to simplify and accelerate the creation of

data lakes. Amazon EMR integrates with Lake Formation and its security model to allow

fine-grained access control to Amazon S3. Users authenticate against either identity

provider through SAML, and the principal is used to determine if it has the appropriate

access to the columns within a table and partitions in AWS Glue Data Catalog in S3.

Metadata Authorization

Hive, Presto, and Spark SQL all leverage a table metastore, also known as a Data

Catalog, that provides metadata information about the tables that are available to be

queried. Access to metadata can restrict users to access only table data, which

indirectly can restrict which data they can access on S3.

Apache Ranger

Apache Ranger provides a set of plugins that you install and configure on supported

applications, such as Hive, HDFS, and YARN. The plugins are invoked during user

actions and allow or deny actions based on policies provided to the Ranger

server. Ranger can set policies on databases and tables within Hive to allow users and

groups to access a subset of Hive tables and databases. Ranger also provides the

ability to do column-level authorization, column masking, and row-level filtering. The

policies are managed on the Ranger web console, and they can interact with your LDAP

server.

For details on how to achieve this on Amazon EMR, see Implementing Authorization

and Auditing using Apache Ranger on Amazon EMR on the AWS Big Data Blog.

Hive SQL Authorization

Hive SQL authorization provides another mechanism to control which users have

access to tables and databases. For more information, see SQL Standard Based Hive

Authorization on the Apache Hive Wiki.

https://aws.amazon.com/lake-formation/
https://aws.amazon.com/blogs/big-data/implementing-authorization-and-auditing-using-apache-ranger-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/implementing-authorization-and-auditing-using-apache-ranger-on-amazon-emr/
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 35

AWS Data Catalog Authorization

AWS Glue Data Catalog allows you to restrict access to databases or tables based on

the IAM principals IAM policy. See Authentication and Access Control for AWS Glue for

more details.

Encryption

You can implement data encryption to help protect data at rest in Amazon S3 and in

cluster instance storage, and data in transit. You can also use a custom Amazon Linux

AMI to encrypt the EBS root device volume of cluster instances.

Encryption for Data in Transit

Amazon EMR security configurations enable you to choose a method for encrypting

data in transit using Transport Layer Security (TLS). You can do either of the following:

• Manually create PEM certificates, zip them in a file, and reference them from

Amazon S3.

• Implement a certificate custom provider in Java and specify the S3 path to the

JAR.

See Encrypt Data in Transit and At Rest in the Amazon EMR Management Guide for

details on how to use EMR security configuration to configure encryption on transit and

which applications are supported. We highly recommend that you encrypt all interaction

with your cluster, including all UI-based applications and endpoints.

Encryption for Data at Rest

You have multiple options to encrypt data at rest in your EMR clusters. EMR by default

uses the EMR File System (EMRFS) to read from and write data to Amazon S3. To

encrypt data in Amazon S3, you can specify one of the following options:

• SSE-S3: Amazon S3 manages the encryption keys for you.

• SSE-KMS: You use an AWS Key Management Service (AWS KMS) customer

master key (CMK) to encrypt your data server-side on Amazon S3. Be sure to

use policies that allow access by Amazon EMR.

• CSE-KMS/CSE-C: Amazon S3 encryption and decryption take place client-side

on your Amazon EMR cluster. You can use keys provided by AWS KMS (CSE-

KMS) or use a custom Java class that provides the master key (CSE-C).

https://docs.aws.amazon.com/glue/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption.html
https://aws.amazon.com/kms/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 36

See Encrypt Data in Transit and At Rest in the Amazon EMR Management Guide for

details on how to use EMR security configuration.

Root Volume

To encrypt the root volume, you must use a Custom AMI. See Creating a Custom AMI

with an Encrypted Amazon EBS Root Device Volume in the Amazon EMR Management

Guide for details.

EBS Volumes

There are two mechanisms that allow you to encrypt data on non-root volumes, which

typically stores HDFS and other application data. They are HDFS Transparent

Encryption for application-managed encryption and LUKS encryption for OS-managed

encryption. For documentation on both approaches, see At-rest Encryption for Local

Disks in the Amazon EMR Management Guide.

Although both mechanisms can be enabled, the recommendation for EMR is to only

enable LUKS encryption, if possible. This approach minimizes the amount of overhead

due to encryption while still maintaining data being encrypted at rest.

Perimeter Security

Establishing perimeter security is foundational to Amazon EMR Security. This process

involves limiting access to the EMR cluster itself and using an “edge” node (gateway) as

a host. Users and systems can use this edge node directly and then have all other

actions issued from this gateway into the cluster itself.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-localdisk
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-localdisk

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 37

Figure 11: Perimeter security

Apache Knox

Apache Knox is an Application Gateway that provides a single endpoint to interact with

multiple applications and multiple clusters, as well as an authentication layer to the

applications and clusters that supports SAML, LDAP, and other authentication methods.

Knox is useful for several use cases:

• If you require HTTPS between the client and Apache Knox: Apache Knox

supports TLS so clients can connect to Knox over a secure channel, regardless

if the application on the cluster supports TLS or not.

• If you require an authentication layer: Apache Knox provides an authentication

layer that supports several types of authentication mechanisms that can be used

for instances where the cluster application does not support it. For example,

Knox supports single sign-on (SSO) which can be used as Hadoop Resource

Manager does not support it.

• Apache Knox records actions that are executed per user request or those that

are produced by Knox internal events.

However, Apache Knox does have some limitations, and it does not provide fine-

grained access control.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 38

Network Security

This document does not provide information on how to properly set up a VPC, subnets,

security groups, and Network ACLs. For information on setting up VPCs, see Control

Network Traffic with Security Groups.

Best Practices for Network Security

• If your cluster is for batch processing and a user or another application does not

need to access it, launch the cluster in a private subnet with an S3 endpoint and

any other required endpoints. See Configure Networking for more information.

• If your cluster is in a private subnet, and it requires access to an AWS service

that does not have a VPC endpoint or requires access to the internet, create a

NAT instance. See Scenario 2: VPC with Public and Private Subnets (NAT) for

more information.

• If you are using a private subnet and creating an S3 endpoint, use a restrictive

S3 policy for the endpoint. The minimum policy requirement is documented at

Amazon EMR 2.x and 3.x AMI Versions.

• If you require your cluster to be in a private subnet, but need interactive access

to the cluster, create a bastion host (also known as an edge node) that sits in a

public subnet and connect to your EMR cluster from it. This setup allows you to

enforce security policies on the edge node, but not on the EMR cluster. See

Securely Access Web Interfaces on Amazon EMR Launched in a Private

Subnet on the AWS Big Data Blog for a step-by-step guide.

• If you can forgo SSH access to your non-interactive cluster, it can simplify

security requirements on the EMR cluster.

Auditing

The ability to audit compute environments and understand where the data in the cluster

is coming from and how it's being used is a key requirement for many customers. There

are a variety of ways that you can support this requirement within EMR.

Amazon S3

Amazon EMR can be configured to push all application, daemon, and provisioning logs

to Amazon S3 by enabling logging. See Configure Cluster Logging and Debugging for

more information.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-vpc-subnet.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/private-subnet-iampolicy.html
https://aws.amazon.com/blogs/big-data/securely-access-web-interfaces-on-amazon-emr-launched-in-a-private-subnet/
https://aws.amazon.com/blogs/big-data/securely-access-web-interfaces-on-amazon-emr-launched-in-a-private-subnet/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-debugging.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 39

Apache Ranger

Apache Ranger plugins provide the ability to push auditing data into Apache Solr for

future analysis. Apache Ranger also pushes auditing information within the Ranger UI.

AWS CloudTrail

AWS CloudTrail documents every API call made to AWS services and contains

information such as the callers AWS access key, source IP, agent used make the call,

and so on. When using Amazon EMR, there are several groups of API calls that are

stored. The first group is at the EMR service level, where APIs are called for cluster

management, such as creating a cluster, terminating clusters, and running steps.

Secondly, when a running cluster is attempting to access a resource, such as S3, Glue

Data Catalog, and KMS, the credentials that the cluster used are stored in AWS

CloudTrail. See Logging Amazon EMR API Calls in AWS CloudTrail for more details on

how to enable and use CloudTrail.

To help meet compliance requirements, CloudTrail logs can be exported to Amazon S3,

and then queried by Amazon Athena to be able to detect unauthorized or suspicious

activity. See Querying AWS CloudTrail Logs for more information on how to query from

Amazon Athena.

Amazon CloudWatch Logs

Rather than using the EMR log pusher to push logs to S3, Amazon CloudWatch Log

agent can be used to push logs to CloudWatch Logs. This approach has the benefit of

making the logs searchable, and being able to stream these logs to another system,

such as Amazon Elasticsearch Service, or use AWS Lambda to push the logs to other

systems, like Splunk.

To use this approach, you must install and configure the Amazon CloudWatch Agent,

and configure it to watch the Hadoop log directories. It then starts to push logs to

Amazon CloudWatch Logs, where you can set up log retention and export targets

based on your auditing requirements.

Apache Knox

If you are using Apache Knox as a gateway for perimeter security or proxying, you can

also configure it to log all actions a user does on all resources that it interacts with.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/logging_emr_api_calls.html
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 40

Software Patching

Amazon EMR provides new releases on a regular basis, adding new features, new

applications, and general updates. We recommend that you use the latest release to

launch your cluster whenever possible.

OS Level Patching

When an EC2 instance starts, it applies all OS non-kernel patches. You can view

installed patches by running yum updateinfo list security installed from an

AWS Command Line Interface (AWS CLI).

To install other OS level patches, we recommend three approaches:

• Upgrade to a newer AMI - the latest patches, including Linux kernel patches, are

applied to newer AMIs. Check our Release Notes for which versions have

upgraded applications and check the application release notes to see if there is

a fix for your issue.

• If you require more flexibility over which patches are applied, use custom AMIs.

This approach allows you to apply new patches to the AMI and deploy them by

restarting your clusters.

• Contact AWS Support and provide the issue and patches that you need. Support

may be able to provide workarounds.

If you have a long running cluster, you can use EC2 Patch Manager. This approach

requires that your instance has SSM up and running. EMR cluster patching requires that

you to apply patches to a cluster in a maintenance window so that nodes can be

restarted in bulk, especially the master node. Or, you can apply patches to one node at

a time to ensure that HDFS and jobs are not interrupted. Make sure to contact AWS

Support before applying any patches. If instances must be rebooted during the patch

process, make sure to turn on termination protection before patching. See Using

Termination Protection for details.

Application Level Patching

There are a couple options to patch applications within Amazon EMR:

• Upgrade to a newer AMI - newer AMIs include recent patches. View the Release

Notes for which versions have upgraded applications and check the applications

release notes to see if there is a fix for your issue.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/UsingEMR_TerminationProtection.html#ProtectingaNewJobFlow
https://docs.aws.amazon.com/emr/latest/ManagementGuide/UsingEMR_TerminationProtection.html#ProtectingaNewJobFlow
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 41

• Contact AWS Support and provide the issue and patches that you need.

Depending on severity, support may provide other workarounds or in extreme

cases, may be able to create a bootstrap action that provides the patch.

Note: We recommend that you do not apply and install patches on your cluster unless

you have contacted AWS Support and the EMR service team. In certain software

upgrade scenarios, you may need to assume operational burden of maintaining the

patches.

Software Upgrades

General recommendations for upgrading Amazon EMR AMIs are:

• Read the Amazon EMR Release Notes to see version changes for applications,

such as Hive, HBase, and so on.

• Read the release notes of the open source software packages, such as Hive,

HBase, and so on, and check for any known issues that could impact existing

workflows.

• Use a test environment to test the upgraded software. This approach is

important to isolate testing workloads from production workloads. For example,

some version upgrades of Hive update your Hive Metastore schemas which may

cause compatibility issues. If someone starts and uses Hive with the newer

version, it could impact production.

• Test performance and data quality between the old and new versions. When

moving versions in Hive, compatibility issues or bugs may occur that can impact

data quality and performance.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 42

Common Customer Use Cases

Batch Processing EMR Clusters in a Private Subnet

Figure 12: Batch processing EMR clusters in a private subnet

Use Case

• Secured EMR clusters batch processing data in ETL fashion.

• Users do not need to directly access the clusters.

When To Use

• Having an ETL only use case may allow for reduced security requirements

compared to clusters in which users interactively access.

• This design works well when Amazon EMR clusters are being used as transient

clusters.

Implementation

1. Create a VPC and private subnet with an S3 endpoint.

2. Disable SSH to the EMR clusters.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 43

3. If extra security is required, complete these steps through security configuration:

a. Configure Kerberos without a one-way trust to enable application-to-

application security.

b. Enable encryption on data in transit and data at rest.

4. Implement S3 bucket policies to read-only access requests from the VPC and

write access from end users and applications writing to S3.

5. Secure EMR API calls using IAM policies to restrict access to clusters that

require it.

6. Submit work to the EMR cluster by one of the following ways:

o Use EMR Steps API to submit work.

o Install Oozie, Airflow, or a similar application on the master node and have it

orchestrate your workloads.

Using a Bastion Host/Edge Node

Figure 13: Using a bastion host/edge node

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 44

Use Case

• Securing an EMR cluster is not necessary because it’s running in a private

subnet with highly controlled access controls to it.

• You can control which AMI you want to use on the bastion host. For example, if

users can only access an internally managed Red Hat Linux, then bastion host

can run that AMI, while EMR clusters continue to use Amazon Linux.

• Once a user is authenticated on a bastion host, then they should have access to

all the resources on the EMR cluster.

When to Use

• You want to control access to the EMR cluster and have all users interact with

EMR through the bastion host/edge node.

• You want to segregate job submission and EMR processes running on the

master and data nodes.

Implementation

1. Create EMR clusters within a private subnet with VPC endpoints that allow traffic

to required AWS services, like Amazon S3, AWS KMS, Amazon DynamoDB.

2. Create a bastion host on an EC2 instance in a public subnet. Traffic from the

public subnet must be able to access the clusters in the private subnet.

3. Do not allow SSH access to EMR clusters.

4. Access the clusters through a UI, like Hue, Zeppelin, or Jupyter, or provide SSH

access to the bastion host/edge node.

5. If SSH is allowed, ensure that the bastion host/edge node uses SSSD or another

mechanism to allow users to log in with their on-premises credentials.

6. Use an elastic load balancer (ELB) that routes traffic to clusters for load

balancing and disaster recovery within needing to change configurations on the

bastion host.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 45

Separate EMR Clusters for Different Use Cases

Figure 14: Separate EMR clusters

Use Case

• There is small number of end user groups, all of whom share the same level of

permissions to the same data.

• The data being accessed is not highly sensitive data.

Implementation

1. Create different EC2 Instance Roles for each EMR cluster that represents the

permissions you want end users to have access to.

2. Enable LDAP authentication to the applications that the end users are using, like

Hue and Zeppelin. You want Hue and Zeppelin to not impersonate the user. If

impersonation is required, you need to either manually create users and groups,

or set up SSSD on all nodes and go to your on premises LDAP.

3. Disable SSH to the cluster.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 46

Data Migration

Using Amazon S3 as the Central Data Repository

Many customers on AWS use Amazon S3 as their central repository, more commonly

referred as a data lake, to securely collect, store, and analyze their data at a massive

scale.2 Organizations with data warehouses, are realizing the benefits of data lakes to

enable diverse query capabilities, data science use cases, and advanced capabilities for

discovering new information models. To build their data lakes on AWS, customers often

use Amazon S3 as the central storage repository instead of a Hadoop Distributed File

System (HDFS).

Amazon S3 is built to store and retrieve any amount of data, with unmatched

availability, and can deliver 99.999999999% (11 nines) of durability. Amazon S3

provides comprehensive security and compliance capabilities that meet even the most

stringent regulatory requirements.

The following figure shows a high-level overview of the data lake architectural

pattern, with Amazon S3 as the central storage repository.

Figure 15: Data lake architecture with Amazon S3

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 47

Benefits of using Amazon S3

Some of the key benefits of using Amazon S3 as the storage platform include:

• Decoupling of storage from compute and data processing – In traditional

Apache Hadoop and data warehouse solutions, storage and compute resources

are tightly coupled, making it difficult to optimize costs and data processing

workflows. With your data in Amazon S3, you can launch as much or as little

compute capacity as you need using Amazon Elastic Compute Cloud (EC2), and

you can use AWS analytics services to process your data. You can optimize

your EC2 instances to provide the right ratios of CPU, memory, and bandwidth

for best performance and even leverage Amazon EC2 Spot Instances.

• Centralized data architecture – Amazon S3 makes it easy to build a multi-

tenant environment, where many users can bring their own data analytics tools

to a common set of data. This approach improves both cost and data

governance over that of traditional solutions, which require multiple copies of

data to be distributed across multiple processing platforms.

• Integration with AWS services – Use Amazon S3 with Amazon Athena,

Amazon Redshift Spectrum, Amazon Rekognition, and AWS Glue to query and

process data. Amazon S3 also integrates with AWS Lambda serverless

computing to run code without provisioning or managing servers. With all of

these capabilities, you only pay for the actual amounts of data you process and

for the compute time that you consume.

• Standardized APIs – Amazon S3 RESTful APIs are simple, easy to use, and

supported by most major third-party independent software vendors (ISVs),

including leading Apache Hadoop and analytics tool vendors. This allows

customers to bring the tools they are most comfortable with and knowledgeable

about to help them perform analytics on data in Amazon S3.

Migrating Your Data From On-premises

The first step to building data lakes on AWS is to move data to the cloud. When

migrating the data to Amazon S3, the physical limitations of bandwidth and transfer

speeds may restrict the ability to move data without major disruption, high costs, and

time. To help customers move their data from their data center to AWS, AWS provides

multiple options, including:

• The ability to move petabytes to exabytes of data to AWS using AWS Snowball

and AWS Snowmobile appliances.

https://aws.amazon.com/snowball/
https://aws.amazon.com/snowmobile/?nc2=h_m1

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 48

• The ability to move large quantities of data over a dedicated network connection

between your data center and AWS with AWS Direct Connect

• The ability to move data in real time from Relational Databases using Data

Migration Service, and from internet sources such as websites and mobile apps

using Amazon Kinesis.

Petabytes to Exabytes of Data on a One-time Basis

AWS Snowball and AWS Snowmobile

AWS Snowball is a petabyte-scale data transport solution that uses secure devices to

transfer large amounts of data into and out of AWS. You transfer data to AWS

Snowball, through the Snowball Client, which is installed on a physical workstation that

hosts the data that you want to transfer. For best practices, see How to Transfer

Petabytes of Data Efficiently in the AWS Snowball User Guide.

Customers who are using Hadoop Distributed File System (HDFS) can also copy data

directly from HDFS to an AWS Snowball using the Snowball Client. To copy data from

HDFS to Snowball, you must install Snowball Client on an on-premises host that can

access the HDFS cluster, and then copy files from HDFS to S3 via Snowball. In

addition, the S3 SDK Adapter for Snowball provides an S3 compatible interface to the

Snowball Client for reading and writing data on a Snowball. Customers who prefer a

tighter integration can use the S3 Adapter to easily extend their existing applications

and workflows to seamlessly integrate with Snowball.

AWS Snowmobile is an exabyte-scale data transfer service used to move large

amounts of data to AWS. We recommend that you use AWS Snowmobile to migrate

large datasets of 10 PB or more in a single location. For datasets less than 10 PB or

distributed in multiple locations, use AWS Snowball. Make sure to evaluate the amount

of available bandwidth in your network backbone. If you have a high-speed backbone

with hundreds of Gb/s of spare throughput, then you can use Snowmobile to migrate the

large datasets all at once. If you have limited bandwidth on your backbone, you should

consider using multiple Snowballs to migrate the data incrementally.

https://aws.amazon.com/directconnect/
https://aws.amazon.com/kinesis/?nc2=h_m1
https://docs.aws.amazon.com/snowball/latest/ug/transfer-petabytes.html
https://docs.aws.amazon.com/snowball/latest/ug/transfer-petabytes.html
https://aws.amazon.com/importexport
https://aws.amazon.com/importexport/tools/
https://aws.amazon.com/snowball/resources/#Tools

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 49

Note: As a general rule, if it takes more than one week to upload your
data to AWS using the spare capacity of your existing internet connection,
then you should consider using Snowball. For example, if you have a 100-
Mb connection that you can solely dedicate to transferring your data and
need to transfer 100 TB of data, it will take more than 100 days to
complete data transfer over that connection. On the other hand, the same
amount of data can be transferred in about a week, by using multiple
Snowballs.

For more information on when to use Snowball for data transfer, see AWS Snowball

FAQs.

Large Quantities of Data on an Ongoing Basis

AWS Direct Connect and VPN Connection

AWS Direct Connect provides you with dedicated, fast connections from your premises

to the AWS network. AWS Direct Connect may be right choice if you need to transfer

large quantities of data to AWS on an ongoing basis. AWS Direct Connect lets you

establish 1 Gbps or 10-Gbps dedicated network connections (or multiple connections)

between AWS networks and one of the AWS Direct Connect locations. It uses industry-

standard VLANs, which allow you to access resources running within an Amazon VPC

using private IP addresses.

Figure 16: AWS Direct Connect

https://aws.amazon.com/snowball/faqs/
https://aws.amazon.com/snowball/faqs/
https://aws.amazon.com/directconnect/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 50

In addition to AWS Direct Connect, you can also enable communication between your

remote network and your VPC by creating an encrypted connection known as a VPN

connection. A VPN connection is created using Internet Protocol security (IPsec) over

the internet. You can create a VPN Connection by attaching a virtual private gateway to

the VPC, creating a custom route table, updating your security group rules, and creating

an AWS managed VPN connection.

Note: We recommend that you use AWS Direct Connect for large ongoing
data transfer needs, since AWS Direct Connect can reduce costs,
increase bandwidth, and provide a more consistent network experience
than internet-based VPN connections. VPN connections are a good
solution if you have an immediate need, have low to modest bandwidth
requirements, and can tolerate the inherent variability in internet-based
connectivity.

Within the connection established between your on-premises environment using either

of these methods, you can use AWS Direct Connect to easily migrate your data into

Amazon S3 on an ongoing basis, using any of the following approaches.

Accessing Amazon S3 from Hadoop

Apache Hadoop has a connector for Amazon S3 (referred to as S3N or S3A), which can

be leveraged with the DistCp tool to migrate the data from HDFS. The command to

transfer data typically looks like the following:

hadoop distcp hdfs://source-folder s3a://destination-bucket

Many times, the reason for the migration is a lack of compute capacity in the on-

premises cluster. Customers in that situation leverage the S3DistCp tool provided by

Amazon EMR to pull the data from HDFS onto Amazon S3. For more information on

best practices in this scenario, see the AWS Big Data Blog post Seven Tips for Using

S3DistCp on Amazon EMR to Move Data Efficiently Between HDFS and Amazon S3.

You can leverage a commercially available solution such as WANDisco Fusion

and Cloudera BDR to move data from HDFS onto Amazon S3.

You can also leverage Apache Hadoop and Amazon EMR integration with Amazon S3,

and have the data processing workflows write directly to Amazon S3. For example, you

can run Apache Sqoop jobs on an Amazon EMR cluster to extract data from a Relation

Database and write it to Amazon S3.

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#S3N
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#S3A
https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/UsingEMR_s3distcp.html
https://aws.amazon.com/blogs/big-data/seven-tips-for-using-s3distcp-on-amazon-emr-to-move-data-efficiently-between-hdfs-and-amazon-s3/
https://aws.amazon.com/blogs/big-data/seven-tips-for-using-s3distcp-on-amazon-emr-to-move-data-efficiently-between-hdfs-and-amazon-s3/
https://aws.amazon.com/quickstart/architecture/hybrid-data-lake-with-wandisco-fusion/
http://blog.cloudera.com/blog/2017/08/use-amazon-s3-with-cloudera-bdr/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 51

AWS Glue

AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it

easier to prepare and load your data for analytics. AWS Glue can also discover your

data and stores the associated metadata (for example, a table definition and schema) in

the AWS Glue Data Catalog. AWS Glue is designed to simplify the tasks of moving and

transforming your datasets for analysis. It’s a serverless, fully managed service built on

top of the popular Apache Spark execution framework.

AWS Glue can access on-premises relational databases via Java Database

Connectivity (JDBC) to crawl a data store and catalog its metadata in the AWS Glue

Data Catalog. The connection can be also used by any ETL job that uses the data store

as a source or target, like writing the data back to Amazon S3. The figure below

illustrates the workflow to extract data from a Relational Databases, transform the data,

and store the results in Amazon S3.

Figure 17: AWS Glue Data Catalog

For more information, see the AWS Big Data Blog post How to extract, transform, and

load data for analytic processing using AWS Glue.

AWS DataSync

AWS DataSync is a managed online data transfer service that simplifies, automates,

and accelerates moving and replicating large amounts of data between on-premises

storage systems and AWS storage services such as Amazon S3 and Amazon EFS,

over the internet or AWS Direct Connect. DataSync automatically scales and handles all

of the tasks involved in moving data, monitoring the progress of transfers, encryption

and validation of data transfers, and notifying customer of any failures. DataSync

https://aws.amazon.com/glue/
https://aws.amazon.com/blogs/database/how-to-extract-transform-and-load-data-for-analytic-processing-using-aws-glue-part-2/
https://aws.amazon.com/blogs/database/how-to-extract-transform-and-load-data-for-analytic-processing-using-aws-glue-part-2/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 52

connects to existing storage systems and data sources with a standard storage protocol

(NFS), and uses a purpose-built network protocol and scale-out architecture to

accelerate transfer to and from AWS.

AWS Storage Gateway

AWS Storage Gateway allows you to integrate legacy on-premises applications with

Amazon S3, and is used for backup, tiering, and local access to objects stored in

Amazon S3. The File Gateway configuration of Storage Gateway offers on-premises

devices and applications low-latency access to the data in Amazon S3 via an NFS

connection. This means that you can easily integrate applications and platforms that

don’t have native Amazon S3 capabilities — such as on-premises lab equipment,

mainframe computers, databases, and data warehouses — to directly write their files

into Amazon S3. Files written to this mount point are converted to objects stored in

Amazon S3 in their original format without any proprietary modification.

Note: We recommend that you use AWS DataSync to rapidly copy data
out from your Hadoop Cluster into Amazon S3. You can use DataSync for
fast transfer of existing data to Amazon S3, and the File Gateway
configuration of Storage Gateway for subsequent low-latency access to
this data from on-premises applications.

Event and Streaming Data on a Continuous Basis

AWS Database Migration Service

AWS Database Migration Service (AWS DMS) helps you migrate databases to AWS

easily and securely. AWS DMS performs continuous data replication using change data

capture (CDC). Most database management systems manage a transaction log that

records changes made to the database contents and to metadata. By using engine-

specific API operations and functions, AWS DMS reads the transaction log and

captures the changes made to the database in a non-intrusive manner.

You can use AWS DMS to migrate data from any of the supported database sources to

Amazon S3. When using Amazon S3 as a target in an AWS DMS task, both full load

and change data capture (CDC) data is written to comma-separated-values (CSV)

format. For more information on how to query this data, see the AWS Database Blog

post on Using AWS Database Migration Service and Amazon Athena to Replicate and

Run Ad Hoc Queries on a SQL Server Database.

https://aws.amazon.com/dms/
https://aws.amazon.com/blogs/database/using-aws-database-migration-service-and-amazon-athena-to-replicate-and-run-ad-hoc-queries-on-a-sql-server-database/
https://aws.amazon.com/blogs/database/using-aws-database-migration-service-and-amazon-athena-to-replicate-and-run-ad-hoc-queries-on-a-sql-server-database/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 53

Note: For use cases that require a database migration from on-premises
to AWS or database replication between on-premises sources and
sources on AWS, we recommend that you use AWS DMS. Once your
data is in AWS, you can use AWS Glue to move and transform the data.

Amazon Kinesis Data Firehose

Amazon Kinesis Data Firehose is a fully managed service for delivering real-time

streaming data directly to Amazon S3. Amazon Kinesis Data Firehose automatically

scales to match the volume and throughput of streaming data, and requires no ongoing

administration. Amazon Kinesis Data Firehose can concatenate multiple incoming

records, and then deliver them to Amazon S3 as a single S3 object. This is an important

capability because it reduces Amazon S3 transaction costs and transactions per second

load.

Amazon Kinesis Data Firehose can also be configured to transform streaming data

before it’s stored in Amazon S3. Its transformation capabilities include compression,

encryption, data batching, and Lambda functions. Amazon Kinesis Data Firehose can

compress data before it’s stored in Amazon S3. It currently supports GZIP, ZIP, and

SNAPPY compression formats. See the following diagram for an example workflow.

Figure 18: Amazon Kinesis Data Firehose Architecture

In Figure 18, an agent writes data from the source into an Amazon Kinesis Data

Firehose. An example is Amazon Kinesis Agent, which can write data from a set of files

to an Amazon Kinesis Data stream. The AWS Database Blog post on Streaming

https://aws.amazon.com/kinesis/data-firehose/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
https://aws.amazon.com/blogs/database/streaming-changes-in-a-database-with-amazon-kinesis/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 54

Changes in a Database with Amazon Kinesis provides another example of such agent.

Once the event is streamed into an Amazon Kinesis Data Firehose Data Stream, then

Kinesis Data Firehose delivers the data to an Amazon S3 bucket based on the

configuration. You can also configure a Kinesis Data Firehose to deliver data into

Apache Parquet format using the schema from AWS Glue Data Catalog.

Optimizing an Amazon S3-Based Central Data

Repository

By using Amazon S3 as the central repository for your data lake, you have already

optimized the total cost of ownership (TCO) by decoupling storage and compute, and

paying for compute based on the actual need and usage. AWS and Amazon S3 have

several features that can optimize the storage footprint in your data lake to further

reduce costs. By using columnar file formats, you can not only speed up your queries

but also reduce costs. In this section, we look at few such optimizations you can do with

your Amazon S3-based central data repository.

Optimizing Storage Cost

Amazon S3 offers a range of storage classes designed for both frequently and

infrequently accessed data. In addition, customers can use Amazon S3 Glacier for long-

term archive. Amazon S3 offers configurable lifecycle policies for managing your data

throughout its lifecycle. The next section covers options available in AWS for optimizing

your storage cost by tiering your data across storage classes and Amazon S3 Glacier.

Amazon S3 Storage Classes

Amazon S3 Standard (S3 Standard) offers high durability, availability, and

performance object storage for frequently accessed data. Because it delivers low

latency and high throughput, S3 Standard is the right choice for storing your data that is

accessed frequently, like big data analytics.

Amazon S3 Intelligent-Tiering (S3 Intelligent-Tiering) offers the same low latency

and high throughput performance of S3 Standard, but allows you to further optimize

storage costs by automatically moving data between two tiers - one tier that is optimized

for frequent access and another lower-cost tier that is optimized for infrequent access.

For a small monthly monitoring and automation fee per object, Amazon S3 monitors

access patterns of the objects in S3 Intelligent-Tiering, and moves the ones that have

not been accessed for 30 consecutive days to the infrequent access tier. It is the ideal

https://aws.amazon.com/blogs/database/streaming-changes-in-a-database-with-amazon-kinesis/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 55

storage class for long-lived data with access patterns that are unknown or

unpredictable.

Amazon S3 Standard-Infrequent Access (S3 Standard-IA) offers the high durability,

high throughput, and low latency of S3 Standard, with a low per GB storage price and

per GB retrieval fee. S3 Standard-IA is ideal for data that is accessed less frequently,

but requires rapid access when needed.

Amazon S3 One Zone-Infrequent Access (S3 One Zone-IA) stores data in a

single Availability Zone (AZ) and hence offers a lower-cost option (20% less than storing

it in S3 Standard-IA) for infrequently accessed data that does not require the availability

and resilience of S3 Standard or S3 Standard-IA storage classes. S3 One Zone-IA is

ideal for storing backup copies or easily re-creatable data.

Amazon S3 Glacier

Amazon S3 Glacier is a low-cost storage service that provides durable storage with

security features for data archiving and backup. Amazon S3 Glacier has the same data

durability (99.999999999%) as Amazon S3 and the same integration with AWS security

features. Amazon S3 Glacier can be integrated with Amazon S3 by using Amazon S3

lifecycle management on data assets stored in Amazon S3, so that data assets can be

seamlessly migrated from Amazon S3 to Amazon S3 Glacier. Amazon S3 Glacier is a

great storage choice when low storage cost is paramount, data assets are rarely

retrieved, and retrieval latency of several minutes to several hours is acceptable.

Amazon S3 Lifecycle Management

Amazon S3 lifecycle management allows you to create data lifecycle rules, which can

be used to automatically migrate data assets to a lower-cost tier of storage, such as

Amazon S3 Standard - Infrequent Access or Amazon S3 Glacier, or let them expire

when they are no longer needed. A lifecycle configuration, which consists of an XML

file, comprises a set of rules with predefined actions that you want Amazon S3 to

perform on data assets during their lifetime. Lifecycle configurations can perform actions

based on data asset age and data asset names, but can also be combined with S3

object tagging to perform granular management of data assets.

Amazon S3 Storage Class Analysis

One of the challenges of developing and configuring lifecycle rules for the data lake is

gaining an understanding of how data assets are accessed over time. It makes

economic sense to transition data assets to a more cost-effective storage or archive tier

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 56

if those objects are infrequently accessed. Otherwise, data access charges associated

with these more cost-effective storage classes could negate any potential savings.

Amazon S3 provides Amazon S3 storage class analysis to help you understand how

data lake data assets are used. Amazon S3 storage class analysis uses machine

learning algorithms on collected access data to help you develop lifecycle rules that

optimize costs.

Tiering Your Data Lake Storage

A data lake generally has raw data being ingested from many sources, which is then

transformed and optimized for ad hoc querying and on-going analysis. But many

advanced uses, like machine learning and artificial intelligence, consist of building data

models and then training and refining these models using the raw historical data. In

addition, by keeping the historical raw data, you can go back and reprocess historical

data to provide new insights in the transformed data. Since these historical data assets

are infrequently accessed and may be large in size, they are often well suited to be

stored in the S3 Standard-IA storage class, which is optimized for infrequent data

access. This data can then be further moved to Amazon S3 Glacier for long-term

archival using lifecycle policies.

Another tiering approach you can use in a data lake is to keep processed data and

results, such as that needed for compliance and audit purposes, in an Amazon S3

Glacier vault. Amazon S3 Glacier Vault Lock allows data lake administrators to easily

deploy and enforce compliance controls on individual Glacier vaults via a lockable

policy. Administrators can specify controls such as Write Once Read Many (WORM) in

a Vault Lock policy and lock the policy from future edits. Once locked, the policy

becomes immutable and Amazon S3 Glacier enforces the prescribed controls to help

achieve your compliance objectives, and provide an audit trail for these assets using

AWS CloudTrail.

Optimizing Cost and Performance

You can also use optimize your use of Amazon S3 around cost and performance.

Amazon S3 provides a high-performance foundation for the data lake because its

enormous scale provides virtually limitless throughput and high transaction rates. Using

Amazon S3 best practices for data asset naming ensures high levels of performance.

These best practices can be found in the Amazon Simple Storage Service Developers

Guide.

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 57

Partition the Data

Partitioning is an important technique for organizing datasets so they can be queried

efficiently. Partitioning organizes data in a hierarchical directory structure based on the

distinct values of one or more columns. For example, you may decide to partition your

application logs in Amazon Simple Storage Service (Amazon S3) by date, broken down

by year, month, and day. Log files that correspond to a single day's worth of data are

then placed under a prefix such

as s3://my_bucket/logs/year=2018/month=01/day=23/. Services like Amazon

Athena, Amazon Redshift Spectrum, and AWS Glue can use this layout to filter data by

partition value without having to read all of the underlying data from Amazon S3.

Use Columnar Data Formats

Another area of optimization is to use an optimal data format for storing the transformed

and normalized dataset. Columnar formats can compress data better thereby reducing

the storage cost, and also substantially increase query performance. Apache Parquet

and Apache ORC are two such columnar formats, which can reduce the required

storage footprint, improve query performance, and reduce querying costs for AWS

services like Amazon Athena and Amazon Redshift Spectrum, which charge by amount

of data scanned.

Bias Toward Large File Sizes

Big data processing runs more efficiently when the tasks can be parallelized over

multiple files, each of which can be further split to increase the parallelism further.

However, if your files are too small (generally fewer than 64 MBs or so), the processing

engine may be spending additional time with the overhead of opening Amazon S3 files,

listing prefixes, getting object metadata, setting up data transfer, reading file headers,

and reading compression dictionaries. However, if your file cannot be split and the files

are too large, the query processing waits until a single reader has completed reading

the entire file. That can reduce parallelism.

One remedy to solve your small file problem is to use the S3DistCP utility on Amazon

EMR. You can use it to combine smaller files into larger objects. You can also use

S3DistCP to move large amounts of data in an optimized fashion from HDFS to Amazon

S3, Amazon S3 to Amazon S3, and Amazon S3 to HDFS.

http://docs.aws.amazon.com/emr/latest/ReleaseGuide/UsingEMR_s3distcp.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 58

Using AWS Glue to Transform and Normalize Data

AWS Glue jobs help you transform and normalize data to optimize query performance.

AWS Glue supports writing to both Parquet and ORC formats, which can make it easier

and faster for you to transform data to an optimal format for Amazon Athena.

Further, AWS Glue crawlers not only infer file types and schemas, they also

automatically identify the partition structure of your dataset when they populate the

AWS Glue Data Catalog. The resulting partition columns are available for querying in

AWS Glue ETL jobs or query engines like Amazon Athena.

The following diagram shows how to transform ingested data in CSV format into Apache

Parquet for querying by Amazon Athena with improved performance and reduced cost.

For more information on this architecture, see Build a Data Lake Foundation with AWS

Glue and Amazon S3.

Figure 19: Transforming data with AWS Glue

https://aws.amazon.com/blogs/big-data/build-a-data-lake-foundation-with-aws-glue-and-amazon-s3/
https://aws.amazon.com/blogs/big-data/build-a-data-lake-foundation-with-aws-glue-and-amazon-s3/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 59

Understand How Applications Work with Amazon S3

As we highlighted earlier in this book, applications such as Hive, Spark, and

MapReduce work with Amazon S3 by mapping the HDFS APIs to Amazon S3 APIs (like

EMRFS available with Amazon EMR). Although for most of the APIs, there is a direct

mapping between the HDFS APIs and Amazon S3, some of the file system APIs, such

as rename and seek, do not have an equivalent API in Amazon S3, and are mapped in

an indirect manner. Further, semantic differences exist between Amazon S3, an object

store, HDFS, and a file system, such as prefixes versus directories. The overview

section of the Hadoop integration with AWS documentation provides a good introduction

to such semantic differences.

Because of these indirect mappings or semantic differences, when using the open

source applications on Amazon EMR, you may sometimes see performance issues or

job failures. Many applications also require specific customizations to work with Amazon

S3, such as those in Hive Blobstore Optimizations or Amazon S3 Optimized

Committer, available with Spark on Amazon EMR. The application-specific sections in

this guide also provide you with some of these considerations and how to optimize them

to work with Amazon S3.

https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#Overview
https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#Overview
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-Blobstore(i.e.AmazonS3)
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 60

Data Catalog Migration

Apache Hive is an open source data warehouse and analytics package that runs on top

of an Apache Hadoop cluster. Hive is one of the applications that can run on Amazon

EMR. A Hive metastore contains a description of the table and the underlying data on

which it is built, including the partition names and data types. There are three modes for

Hive metastore deployment: embedded metastore, local metastore, and remote

metastore. When migrating a Hadoop on-premises cluster to Amazon EMR, you must

follow a different strategy depending on how the Hive metastore is being deployed. This

chapter provides the different patterns used to deploy a Hive metastore and how to

migrate an existing metastore to Amazon EMR.

Hive Metastore Deployment Patterns

Apache Hive ships with the Derby database, an embedded database backed by local

disk. This database is used for embedded metastores and but we do not recommend

that you use Derby as it cannot scale for production-level workloads. In Amazon EMR,

by default, Hive records metastore information in a MySQL database on the master

node's file system. When a cluster terminates, all cluster nodes are shut down, including

the master node. When this happens, local data is lost because the node's file systems

use ephemeral storage. To avoid this scenario, we recommend that you create an

external Hive metastore outside of the cluster. There are two options for an Amazon

EMR external metastore:

• AWS Glue Data Catalog

• Amazon RDS database or Amazon Aurora database

For an FAQ on these options, refer to Appendix D: Data Catalog Migration FAQs.

AWS Glue Data Catalog

The AWS Glue Data Catalog provides a unified metadata repository across a variety of

data sources and data formats, integrating with Amazon EMR, Amazon RDS, Amazon

Redshift, Redshift Spectrum, Amazon Athena, and any application compatible with the

Apache Hive metastore. The benefits of using the AWS Glue Data Catalog are that you

don't have to manage the Hive metastore database instance separately, don't have to

maintain ongoing replication, and don't have to scale up the instance. An AWS Glue

Data Catalog is fully managed and serverless, highly available, fault-tolerant, maintains

data replicas to avoid failure, and expands hardware depending on the usage. When

creating a new Amazon EMR cluster, you can choose an AWS Glue Data Catalog as

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 61

the Hive metastore. (Note: This option is only available on Amazon EMR version 5.8.0

or later.)

Figure 20: Using AWS Glue Data Catalog as the Hive metastore

Configuration within Amazon EMR Console

Apache Hive, Presto, and Apache Spark all use Hive metastore. Within the Amazon

EMR console, you have the option to use AWS Glue Data Catalog for any of those

three applications. The following figure shows this setting as it appears in the console

under Advanced Options.

Figure 21: AWS Glue Data Catalog settings in Amazon EMR

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 62

Configuration within AWS CLI or Amazon EMR API

The Hive site configuration file must reflect an AWS Glue Data Catalog for Hive

metastore. To do that, point the hive.metastore.client.factory.class property

to AWSGlueDataCatalogHiveClientFactory, like below:

[

 {

 "Classification": "hive-site",

 "Properties": {

 "hive.metastore.client.factory.class":

"com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"

 }

 }

]

This setting can be passed as part of application configuration when creating an

Amazon EMR cluster. See Configuring Applications for more details about how to pass

application configurations.

Considerations

• You can enable encryption for an AWS Glue Data Catalog. For details, see

Setting Up Encryption in AWS Glue.

• Column statistics, Hive authorizations, and Hive constraints are not currently

supported. To see a list of AWS Glue Data Catalog's constraints, see Using the

AWS Glue Data Catalog as the Metastore for Hive.

• An AWS Glue Data Catalog has versions, which means a table can have

multiple schema versions. AWS Glue stores that information in AWS Glue Data

Catalog, including the Hive metastore data.

Amazon RDS or Amazon Aurora

There are two main steps to deploy an external Hive metastore:

1. Create an Amazon RDS (MySQL database) or Amazon Aurora database.

2. Configure the hive-site.xml file to point to MySQL or Aurora database.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/glue/latest/dg/set-up-encryption.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 63

Figure 22: Creating Hive metastore on Amazon RDS or Amazon Aurora

Create a MySQL or Amazon Aurora Database

1. Create the database.

o To create a MySQL database on Amazon RDS, see Create and Connect to

a MySQL Database with Amazon RDS.

o To create an Amazon Aurora database, see Creating an Amazon Aurora DB

Cluster.

2. Note the URL, user name, password, and database name.

3. Update the security group to allow connections between the Amazon EMR

cluster and a MySQL database.

Configure Amazon EMR for External Hive Metastore

1. Create a configuration file containing hive-site classification info as given below.

o javax.jdo.option.ConnectionDriverName should reflect the driver

org.mariadb.jdbc.Driver (preferred driver)

o Point the following three settings to the newly created database:

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

[

 {

https://aws.amazon.com/getting-started/tutorials/create-mysql-db/
https://aws.amazon.com/getting-started/tutorials/create-mysql-db/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 64

 "Classification": "hive-site",

 "Properties": {

 "javax.jdo.option.ConnectionURL":

"jdbc:mysql:\/\/hostname:3306\/hive?createDatabaseIfNotExist=true",

 "javax.jdo.option.ConnectionDriverName":

"org.mariadb.jdbc.Driver",

 "javax.jdo.option.ConnectionUserName": "username",

 "javax.jdo.option.ConnectionPassword": "password"

 }

 }

]

2. When using Amazon EMR in the console, pass this information as JSON from

Amazon S3 or embedded text:

Figure 23: Configuration settings as embedded text

3. When using AWS CLI, pass the hive-configuration.json configuration file

as a local file or from Amazon S3:

aws emr create-cluster --release-label emr-5.17.0 --instance-type

m4.large --instance-count 2 \

--applications Name=Hive --configurations ./hive-configuration.json

--use-default-roles

Figure 24: Configuration file as local file

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 65

aws emr create-cluster --release-label emr-5.17.0 --instance-type

m4.large --instance-count 2 \

--applications Name=Hive --configurations s3://emr-sample/hive-

configuration.json --use-default-roles

Figure 25: Configuration file from Amazon S3

Considerations

A Hive metastore is a single point of failure. Amazon RDS doesn't automatically

replicate databases, so it's highly recommended that you enable replication when using

Amazon RDS to avoid any failure. To learn more about how to create a database

replica in a different Availability Zone, refer to the following sources:

• How do I create a read replica for an Amazon RDS database?

• Working with Read Replicas

Hive Metastore Migration Options

When migrating Hadoop-based workloads from on-premises to the cloud, you must

migrate a Hive metastore as well. Depending on the migration plan and requirements, a

metastore can be migrated in two different ways: a one-time migration that migrates an

existing Hive metastore completely to AWS, or an on-going migration that migrates the

Hive metastore, but keeps a copy on-premises. In this scenario, the two metastores are

synced in real time during the migration phase. The following section discusses these

two scenarios in detail.

One-Time Metastore Migration

This section focuses on a set of options to consider when migrating an existing Hive

metastore completely to AWS. This situation is applicable to a scenario where the

organization plans to use the Hive metastore on AWS. The following figure illustrates

this scenario:

https://aws.amazon.com/premiumsupport/knowledge-center/create-read-replica-rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 66

Figure 26: One-time metastore migration

Existing Hive Metastore to AWS Glue Data Catalog

In this case, the goal is to migrate existing Hive metastore from on-premises to an AWS

Glue Data Catalog. You can use AWS Glue ETL job to extract metadata from your Hive

metastore, and use AWS Glue jobs to load the metadata and update AWS Glue Data

Catalog. See Migration between the Hive Metastore and the AWS Glue Data Catalog on

GitHub document to learn more about those options:

Existing Hive Metastore to Amazon RDS

In this case, you are not leveraging an AWS Glue Data Catalog, instead, you are

moving the Hive metastore data from an on-premises database to Amazon RDS.

Depending on which database is currently being used to store the Hive metastore data,

you need to take different steps to migrate them to the corresponding Amazon RDS

instance. For example:

• MySQL on on-premises → MySQL on Amazon RDS or Amazon Aurora

• PostgreSQL on on-premises → PostgreSQL on Amazon RDS or Amazon

Aurora

• Oracle on on-premises → Oracle on Amazon RDS

Here are few resources that cover how to migrate those databases to AWS:

• Migrate On-Premises MySQL Data to Amazon RDS

https://github.com/aws-samples/aws-glue-samples/tree/master/utilities/Hive_metastore_migration
https://aws.amazon.com/blogs/aws/migrate-mysql-data-to-amazon-rds-and-back/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 67

• Importing Data into PostgreSQL on Amazon RDS

• Migrating Data from a PostgreSQL DB Instance to an Aurora PostgreSQL DB

Cluster

• Migrating Data from a MySQL DB Instance to an Amazon Aurora MySQL DB

Cluster

On-going Metastore Sync

This pattern is used mainly for large-scale migrations when you want to migrate an on-

premises Hive metastore to AWS, but also want to keep running the Hive metastore in

your data center as well as in the cloud during the migration phase. In that case, on-

going sync is required so that both Hive metastores are up-to-date. For a given time,

only one application should be used for updating the Hive metastore, otherwise the

metastore will be out-of-sync.

Figure 27: Ongoing metastore sync

AWS Database Migration Service is a data migration service and can be used to create

on-going replication. This blog post Replicating Amazon EC2 or On-Premises SQL

Server to Amazon RDS for SQL Server discusses how to achieve ongoing replication

for SQL Server, but the same method applies to other databases.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Procedural.Importing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Migrating.RDSPostgreSQL.Replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Migrating.RDSPostgreSQL.Replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.html
https://aws.amazon.com/dms/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 68

Multitenancy on EMR

Amazon EMR provides a comprehensive set of features to build highly secure

multitenant Hadoop cluster resources and data. Multitenancy on Amazon EMR offers

mechanisms to isolate data and resource from different tenants and also provide

controls to prevent a single application, user, and queue from monopolizing cluster

resources. Multitenancy comes with its own set of challenges. For example,

implementing multitenancy at all stages of a pipeline involves an understanding of the

nuances of processes and tools involved; metering tenant usage of resources can be

hard especially if the tenants share metadata and compute resources; scalability and

time involvement can be difficult as new tenants onboard; and applying robust security

controls overall can be daunting task.

This chapter discusses steps to implement multitenancy on Amazon EMR along key

dimensions, such as user, data, and resource isolation followed by recommended best

practices.

Broadly speaking, there are two different conceptual models of isolating users, data,

and resources when building multitenant analytics on Amazon EMR. They are:

• Silo Mode

• Shared Mode

Silo Mode

In a silo mode, each tenant gets their own Amazon EMR cluster with specific tools for

processing and analyzing their datasets. Data is stored in the tenant’s S3 bucket or

HDFS on the cluster. Hive metastore is typically on the cluster or stored externally on

Amazon RDS.

Example Silo Scenario

The following diagram is example of a silo scenario in Amazon EMR. In this scenario,

there are three different users – a data engineer, an analyst, and a data scientist – each

launching their own clusters. A data engineer installs tools like Spark and Hive to

manipulate and store the processed results in S3. An analyst runs tools like Spark SQL

and Presto to explore datasets and send the query results to his own S3 bucket. Finally,

a data scientist may use the EMR cluster to run ML or Deep Learning frameworks.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 69

Figure 28: Example silo mode scenario

In this model, you can configure your cluster to be automatically terminated after all of

the steps of your processing complete. This setup is referred to as a transient cluster. A

transient cluster not only provides total segregation per tenant but can also decrease

costs as the cluster is charged only for the duration of the time it runs. Table 2 lists the

advantages and disadvantages of using silo mode with Amazon EMR.

Table 2: Advantages and disadvantages of silo mode

Advantage Disadvantage

Provides complete isolation of data and

resources.

Sharing data across clusters (especially

when using HDFS) can be difficult

Can be cost effective when used with

Spot Instances and transient clusters.

Launching individual clusters can be

expensive.

Easy to measure usage of resources per

tenant.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 70

Shared Mode

In a shared mode, tenants share the Amazon EMR cluster with tools installed for

processing/analyzing/data science – all in one cluster. Datasets are stored in the

tenant’s S3 bucket or the tenant’s HDFS folder on the cluster. The Hive metastore can

be on the cluster or externally on Amazon RDS or AWS Glue Data Catalog. In many

organizations, this shared scenario is more common. Sharing clusters between

organizations is a cost-effective way of running large Hadoop installations since this

allows them to derive benefits of economies of scale without creating private clusters.

A large multi-node cluster with all the tools and frameworks installed can support a

variety of users. In addition, this infrastructure can also be used by end users who can

launch edge nodes to run their data science platforms.

Despite the cost effectiveness, sharing a cluster can be a cause for concern as a tenant

might monopolize resources and cause the SLA to be missed for other tenants. For

example, an analyst can issue a long running query on Presto or Hive and much of the

cluster resources. Or, a data scientist might train a model over massive amounts of

data.

Figure 29: Example shared mode scenario

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 71

Table 3 lists the advantages and disadvantages of launching an Amazon EMR cluster in

a shared mode.

Table 3: Advantages and disadvantages of using shared mode

Advantage Disadvantage

Less operational burden as there is one

cluster to maintain.

Hard to measure usage and resources when

you have many tenants

Can be cost effective if the cluster is well-

utilized.

Configuring the YARN scheduler can be

difficult and complex.

 Cannot customize the cluster for individual

workloads. It is not possible for data

engineers and data scientists to have

different configurations (instance type,

instance type, volumes, etc.) for their specific

workload.

 One configuration to fit all use cases. Cluster

configuration is immutable and teams must

work on the application optimization to

improve the performance of their workload as

opposed to adjusting the cluster

configuration.

 Software cannot be upgraded without

upgrading all applications.

 Large blast radius if something goes wrong

with the cluster.

Considerations for Implementing Multitenancy on

Amazon EMR

Multitenant architecture with Amazon EMR requires careful thought and planning along

critical dimensions, including user, data, and resource isolation.

User Isolation

Authentication

Authentication of users is a critical piece in securing the cluster resources and

preventing unauthorized access to data. On Amazon EMR, you can authenticate users

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 72

through an LDAP server or set up Kerberos to provide strong authentication through

secret-key cryptography. When you use Kerberos authentication, Amazon EMR

configures Kerberos for the applications, components, and subsystems that it installs on

the cluster so that they are authenticated with each other.

Figure 30: User authentication with LDAP or Kerberos

When you use Kerberos with Amazon EMR, you can choose to set it up as a cluster-

dedicated KDC or an external KDC with different architecture options. Regardless of the

architecture that you choose, you configure Kerberos using the same steps. First, you

create a security configuration. When you create the cluster, you specify the security

configuration and compatible cluster-specific Kerberos options. Then, you create HDFS

directories for Linux users on the cluster that match user principals in the KDC.

You can then use an Amazon EC2 key pair to authorize SSH client connections to

cluster instances.

Data Isolation

After the users authenticate, you must consider what data assets they are authorized to

use. You can choose to implement authorization on Amazon EMR at the storage layer

or server layer. By default, the policy attached to the EC2 role on your cluster

determines the data that can be accessed in Amazon S3. With EMRFS authorization,

you can specify the IAM role to assume when a user or group uses EMRFS to access

S3. Choosing the IAM role for each user or group enables fine-grained access control

for S3 on multiuser Amazon EMR clusters.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 73

Note: EMRFS doesn’t prevent users that run Spark applications or users that access

the EMR cluster via SSH from bypassing EMRFS and assuming different IAM roles.

This limitation is addressed in AWS Lake Formation.

Figure 31: Authorization at storage and server layers

Figure 32: Fine-grained access control with EMRFS authorization

Resource Isolation

On Amazon EMR, you can use different YARN queues to submit jobs. Each of the

YARN queues may have a different resource capacity and be associated with specific

users and groups on the Amazon EMR cluster. The YARN Resource Manager UI shows

a list of available queues.

https://aws.amazon.com/lake-formation/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 74

Note: YARN queues apply to only applications that run on YARN (for example, YARN

queues are not used by Presto applications).

Figure 33: YARN Resource Manager UI

For example, user engineer from the engineers group can log in to the EMR master

node and submit jobs to the engineers YARN queue:

ssh -l engineer <<emr-dns>>

[engineer@ 10-10-1-222 ~] spark-submit --queue engineers --class

org.apache.spark.examples.SparkPi --master yarn

/usr/lib/spark/examples/jars/spark-examples.jar

Figure 34: Example code on Amazon EMR

In this example, user engineer is submitting a Spark job and passing a parameter “—

queue” to reflect which queue it should use to run that Spark job. The YARN

ResourceManager UI shows the same job.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 75

Figure 35: User engineer submitting Spark job in YARN

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 76

Extract, Transform, Load (ETL) on Amazon

EMR

Orchestration on Amazon EMR

Orchestration applications are heavily used in the Apache Hadoop ecosystem to

integrate and monitor multiple applications centrally. They manage complex

interdependent jobs, maintain each of the application's states, and execute based on a

pre-defined pattern. There are a number of orchestration applications that are available

for Hadoop, among those Apache Oozie is a widely used workflow scheduler system.

You can also use AWS Step Functions and AWS Glue to orchestrate and schedule

multiple applications. When migrating workloads from an on-premises Hadoop cluster to

Amazon EMR, in addition to the applications that are running on the Hadoop cluster, the

orchestration tool must be migrated so that it can effectively orchestrate applications in

the cloud. This section discusses the steps to migrate an orchestration application from

an on-premises Hadoop cluster, other orchestration options available for Amazon EMR,

and recommended best practices for migration.

Migrating Apache Oozie to Amazon EMR

Apache Oozie is a Java web application that manages and schedules Apache Hadoop

jobs. Oozie combines multiple jobs and creates a directed acyclic graph (DAG) of

actions that can be scheduled based on time or events. Oozie uses a database that

stores each jobs' metadata. By default, Oozie is configured to use the embedded Derby

database. However, for better reliability and availability in production workloads, make

sure to use an external database, such as MySQL, PostgreSQL, Oracle, and so on).

Oozie uses XML to define its workflows and coordinators.

Oozie is included with Amazon EMR release version 5.0.0 and later. You can select

Oozie in Software Configuration of the Amazon EMR console:

https://oozie.apache.org/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/glue/latest/dg/trigger-job.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 77

Figure 36: Oozie selection during Amazon EMR software configuration

You can also select Oozie by configurating options through the AWS CLI:

aws emr create-cluster --release-label emr-5.17.0 --instance-type

m4.large --instance-count 2 --applications Name=Hadoop Name=Hive

Name=Oozie --name "TestCluster"

When migrating Apache Oozie from an on-premises Hadoop cluster to Amazon EMR,

follow this order:

1. Migrate the Oozie database (optional).

2. Migrate Oozie jobs.

Migrate Oozie Database

These steps are only required if you want to migrate your Oozie job history from the on-

premises cluster to Amazon EMR. In this scenario, some of the Oozie database links

may break because they refer to old cluster's host addresses. Therefore, we

recommend that you start with an empty Oozie database when migrating to Apache

Oozie on Amazon EMR.

Apache Oozie comes with a dump and load utility that you can use to dump an existing

database into a file and load it later into a new database.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 78

1. Log in to the host where the existing Oozie server is running and execute this

command.

Note: In Amazon EMR, the oozie-setup.sh file is located in this file path:

/usr/lib/oozie/bin/

./oozie-setup.sh export /folder/oozie_db.zip

2. Using AWS CLI, upload the oozie_db.zip file into Amazon S3:

aws s3 cp oozie_db.zip s3://migration/oozie/oozie_db.zip

3. Log in to Amazon EMR master node and download the oozie_db.zip file from

Amazon S3.

ssh -i <<key>> hadoop@<<amazon-emr-master-node>>

aws s3 cp s3://migration/oozie/oozie_db.zip oozie_db.zip

4. Change the oozie-site.xml file to point to a new target database. Here is the

default configuration related to Oozie database settings:

For example, if you are planning to use MySQL on Amazon RDS, create the

Amazon RDS instance and then update the oozie-site.xml file to reflect the

RDS configuration.

<property>

 <name>oozie.service.JPAService.jdbc.driver</name>

 <value>com.mysql.jdbc.Driver</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.url</name>

 <value>jdbc:mysql://<<rds-host>>:3306/oozie</value>

 </property>

<property>

 <name>oozie.service.JPAService.jdbc.username</name>

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 79

 <value>mysql-username</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.password</name>

 <value>mysql-password</value>

</property>

5. Create the Oozie database in the new RDS instance and grant privileges as

appropriate to the Oozie user:

$ mysql -u root -p

Enter password:

mysql> create database oozie default character set utf8;

Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'localhost'

identified by 'oozie';

Query OK, 0 rows affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'%' identified by

'oozie';

Query OK, 0 rows affected (0.00 sec)

6. Load the previous oozie_db.zip database dump to this new database on

AWS:

./oozie-setup.sh import oozie_db.zip

After importing, the CLI shows how many database rows you have imported and their

respected table names.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 80

Figure 37: Successful database import

7. Restart the Oozie server to reflect the new configuration and database:

sudo restart oozie

Note: Depending on the database, the driver's jar needs to be placed in the Oozie

classpath on Amazon EMR, the location is: /var/lib/oozie.

Migrate Oozie Jobs

Migrate Oozie jobs from an on-premises Hadoop cluster to Amazon EMR is straight-

forward. If you have not migrated an Oozie database to Amazon EMR, then just move

all Oozie job-related files to Amazon EMR. Moving job-related files includes the

following files:

• job.properties

• workflow.xml

• coordinator.xml

• Bundle files

• external parameter files

• any dependent file

To move these files quickly, take these steps:

1. Compress all of the Oozie related files into a single archive file.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 81

2. Upload that archive file to Amazon S3.

3. Download that file to an Amazon EMR master node.

4. Extract the compressed file to appropriate folders.

5. Modify the individual files to reflect the Amazon EMR cluster settings (that is,

nameNode, resourceManager, and so on.

6. Resubmit those Oozie jobs on Amazon EMR.

Considerations

Consider these issues when migrating the Oozie database and jobs.

• The Oozie native web interface is not supported on Amazon EMR. To use a

front-end interface for Oozie, use the Hue application running on Amazon EMR.

For more information, see Hue.

• Like Amazon EMR, by default, Oozie is configured to use the embedded Derby

database. We recommend that you use an Amazon RDS instance to host an

Oozie database.

• You can use Amazon S3 to store workflow XML files. To do so, you must place

S3 library files in the Oozie classpath. Follow these steps:

a. Open a command-line and use this command to locate the emrfs-hadoop-

assembly file in the Amazon EMR master node.

[hadoop@ip-10-0-30-172 spark]$ locate emrfs-hadoop-assembly

/usr/share/aws/emr/emrfs/lib/emrfs-hadoop-assembly-2.26.0.jar

b. Copy the emrfs-hadoop-assembly file to the /usr/lib/oozie/lib

directory.

[hadoop@ip-10-0-30-172 spark]$ sudo cp

/usr/share/aws/emr/emrfs/lib/emrfs-hadoop-assembly-2.26.0.jar

/usr/lib/oozie/lib

c. Restart the Oozie server.

[hadoop@ip-10-0-30-172 spark]$ sudo restart oozie

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hue.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 82

The following is a sample workflow.xml file that executes SparkPI using Oozie's

Spark action. In this sample, spark-examples-jar and workflow.xml are stored in

an Amazon S3 bucket (s3://tm-app-demos/oozie).

<workflow-app xmlns='uri:oozie:workflow:1.0' name='SparkPi-S3'>

<start to='spark-node' />

<action name='spark-node'>

<spark xmlns="uri:oozie:spark-action:1.0">

<resource-manager>${resourceManager}</resource-manager>

<name-node>${nameNode}</name-node>

<master>${master}</master>

<name>SparkPi</name>

<class>org.apache.spark.examples.SparkPi</class>

<jar>s3://tm-app-demos/oozie/lib/spark-examples.jar</jar>

</spark>

<ok to="end" />

<error to="fail" />

</action>

<kill name="fail">

<message>Workflow failed, error

message[${wf:errorMessage(wf:lastErrorNode())}]

</message>

</kill>

<end name='end' />

</workflow-app>

This sample is the corresponding job.properties file. See Figure 38 for the Amazon

S3 bucket that is created for the Oozie files.

nameNode=hdfs://ip-10-0-30-172.ec2.internal:8020

resourceManager=ip-10-0-30-172.ec2.internal:8032

master=yarn-cluster

queueName=default

examplesRoot=examples

oozie.use.system.libpath=true

#oozie.wf.application.path=${nameNode}/user/${user.name}/oozie/spar

k

oozie.wf.application.path=s3://tm-app-demos/oozie

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 83

Figure 38: Amazon S3 bucket for Oozie related files

AWS Services for Orchestration

AWS services can be used to create orchestration for Hadoop-based jobs. The

following services are some of the popular orchestration options on AWS.

AWS Step Functions

AWS Step Functions lets you coordinate multiple AWS services into serverless

workflows so you can build and update applications quickly. Using Step Functions, you

can design and run workflows that stitch together services. Workflows are made up of a

series of steps, with the output of one step acting as input into the next. Application

development is simpler and more intuitive using Step Functions because it translates

your workflow into a state machine diagram that is easy to understand, easy to explain

to others, and easy to change. You can monitor each step of execution as it happens,

which means you can identify and fix problems quickly. Step Functions automatically

triggers and tracks each step, and retries when there are errors, so your application

executes in order and as expected.

The following image is an example of how AWS Step Functions orchestrates multiple

Apache Spark jobs.

https://aws.amazon.com/step-functions/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 84

Figure 39: Multiple Apache Spark jobs orchestrated with AWS Step Functions

For more information on how to integrate AWS Step Functions to create orchestration

for Hadoop-based jobs, see these blog posts:

• Orchestrate Apache Spark applications using AWS Step Functions and Apache

Livy

• Orchestrate multiple ETL jobs using AWS Step Functions and AWS Lambda

AWS Data Pipeline

AWS Data Pipeline is a service that helps you reliably process and move data between

different AWS compute and storage services, as well as on-premises data sources, at

specified intervals. With AWS Data Pipeline, you can regularly access your data where

it’s stored, transform and process it at scale, and efficiently transfer the results to AWS

services such as Amazon S3, Amazon RDS, Amazon DynamoDB, and Amazon EMR.

https://aws.amazon.com/blogs/big-data/orchestrate-apache-spark-applications-using-aws-step-functions-and-apache-livy/
https://aws.amazon.com/blogs/big-data/orchestrate-apache-spark-applications-using-aws-step-functions-and-apache-livy/
https://aws.amazon.com/blogs/big-data/orchestrate-multiple-etl-jobs-using-aws-step-functions-and-aws-lambda/
https://aws.amazon.com/datapipeline/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 85

AWS Data Pipeline helps you easily create complex data processing workloads that are

fault tolerant, repeatable, and highly available.

For more information on how to configure AWS Data Pipeline for Amazon EMR and

how it can be used for orchestration see these resources:

• ETL Processing Using AWS Data Pipeline and Amazon Elastic MapReduce

• Launch a Cluster Using the AWS Data Pipeline Console

• Automate Recurring Clusters with AWS Data Pipeline

Other Orchestration Options

Some open source applications for orchestration have gained popularity due to

community adoption and a rich feature-set. This section covers Apache Airflow and

Luigi and how these applications can be used on AWS to create orchestration for

Hadoop-based jobs.

Apache Airflow

Airflow is an open-sourced task scheduler that helps manage ETL tasks. Apache Airflow

workflows can be scheduled and managed from one central location. With Airflow’s

Configuration as Code approach, automating the generation of workflows, ETL tasks,

and dependencies is easy. It helps developers shift their focus from building and

debugging data pipelines to focusing on the business problems.

Apache Airflow can be installed on an Amazon EC2 instance or on Amazon EMR

master node through bootstrap. It comes with a variety of connectors that help to

integrate it with different AWS services.

For more information on how Airflow can be installed and integrated to run jobs on

Amazon EMR, see Build a Concurrent Data Orchestration Pipeline Using Amazon EMR

and Apache Livy on the AWS Big Data Blog.

Luigi

Luigi is another open-sourced application you can use to build a complex pipeline of

batch jobs. It handles scheduling, dependency resolution, workflow management and

includes command line tool integration.

https://aws.amazon.com/blogs/big-data/etl-processing-using-aws-data-pipeline-and-amazon-elastic-mapreduce/
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-emr-jobflow-console.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-recurring.html
https://airflow.apache.org/index.html
https://airflow.apache.org/concepts.html
https://aws.amazon.com/blogs/big-data/build-a-concurrent-data-orchestration-pipeline-using-amazon-emr-and-apache-livy/
https://aws.amazon.com/blogs/big-data/build-a-concurrent-data-orchestration-pipeline-using-amazon-emr-and-apache-livy/
https://github.com/spotify/luigi

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 86

Best Practices for Orchestration

There are some points to be consider when building robust and fault-tolerant

orchestration for Hadoop-based jobs. Like Hadoop, an orchestration tool should be

scalable so that it can handle a massive number of jobs and can scale proportionally

with Hadoop scaling. Here are some of the best practices to consider when creating

orchestration for Hadoop jobs:

• Most of the orchestration applications use a default, embedded database to

store job metadata. For production workloads, we recommend that you use a

separate database for better performance and availability.

• When possible, use managed or serverless orchestration service to reduce

ongoing manual involvement.

• Integrate with notification services, such as Amazon SNS and Amazon

CloudWatch, so that appropriate parties are immediately notified upon failure

and can be involved proactively.

• Make sure that the orchestration application can handle both asynchronous and

synchronous job and task execution for better performance and reduced

overhead.

• The orchestration application should monitor job execution and management so

that developers can monitor everything centrally.

• The orchestration application should be able to handle failure gracefully.

• If you use Apache Airflow, make sure to use cluster-mode configuration for

production workloads.

Use the following table to determine the most appropriate orchestration application for

your use case.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 87

Table 4: Orchestration applications

Migrating Apache Spark

Apache Spark applications are a common workload on Amazon EMR. Because

Amazon EMR clusters can be configured to use specific instance types and can easily

scale out to a large number of workloads, Apache Spark is effective for optimizing

compute resources for both performance and cost.

Use Cases for Migrating Apache Spark

There are several use cases to consider when migrating to Spark on Amazon EMR. In

many cases, the existing environment is one large cluster that has a specific amount of

resources dedicated to executing Spark jobs. With Amazon EMR, you can continue to

use one large shared cluster, or you can use On-Demand Instance clusters to isolate

resources on a per-job basis. The On-Demand Instance approach allows you to take

advantage of different instance types in addition to ensuring that Spark is fully using the

resources of each cluster. However, this approach does require more planning and

automation around the creation of Amazon EMR clusters before running a Spark job.

Shared Cluster

In a shared cluster, be aware of how many concurrent jobs you expect to run at any

given time. By default, EMR configures executors to use the maximum number of

resources possible on each node through the usage of the maximizeResourceAllocation

property. On a shared cluster, you may need to manually configure Spark cores,

memory, and executors. For details, see Best practices for successfully managing

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#emr-spark-maximizeresourceallocation
https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 88

memory for Apache Spark applications on Amazon EMR on the AWS Big Data Blog.

The shared cluster is appropriate for interactive use cases, such as if you are using

Jupyter notebooks.

When using a shared cluster, we recommend that you use the dynamic allocation

setting in Amazon EMR to both automatically calculate the default executor size and to

allow resources to be given back to the cluster if they are no longer used. Dynamic

allocation is enabled by default on Amazon EMR.

Dedicated Clusters per Job

Using a separate cluster per each Spark job is beneficial for scheduled Spark jobs. This

approach helps isolate the Spark job to prevent resource contention, allows for

optimization of the job depending on if it's a CPU-, GPU-, or memory-intensive

workload, and ensures that you only pay for the resources you use during the duration

of the job. The Amazon EMR maximizeResourceAllocation setting helps ensure

that the entire cluster's resources are dedicated to the job. For more information, see

Using maximizeResourceAllocation in the Amazon EMR Release Guide.

Optimize Cost with Amazon EC2 Spot Instances

A common way to decrease cost with Spark jobs on EMR is by using EC2 Spot

Instances. When using EMR release version 5.9.0 or later, Spark on EMR includes a

set of features to help ensure that Spark gracefully handles node termination in case of

a manual resize or an automatic scaling policy request.3) Amazon EMR 5.11.0 includes

a spark.decommissioning.timeout.threshold that further improves Spark

resiliency when using Spot Instances. Therefore, if you use Spot Instances, make sure

that you are using Amazon EMR release version 5.11.0 or later.

Use Instance Fleets

Instance fleets are a feature of Amazon EMR that allows you to specify target capacity

based on a specific set of units. These units could represent cores, memory, or any

arbitrary reference. Instance fleets are useful if you know that your Spark job requires a

certain amount of resources, and you want to mix and match capacity across both EC2

instance type and Availability Zone. With instance fleets, you select a VPC network and

a set of EC2 subnets, and the feature searches Availability Zones in the subnets you

selected until it finds the desired capacity.

Unfortunately, Instance Fleets do not support multiple core or task groups or allow for

automatic scaling. If you have a dynamic workload that requires either of those features,

https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#spark-dynamic-allocation
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#emr-spark-maximizeresourceallocation

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 89

you must use Instance Groups. For more information on configuring your cluster, see

Cluster Configuration Guidelines and Best Practices in the Amazon EMR Management

Guide.

Spark File Write Performance

In Amazon EMR 5.14.0, the default FileOutputCommitter algorithm has been

updated to use version 2 instead of version 1. This update reduces the number of

renames, which improves application performance. Any Spark applications being

migrated to EMR should use the most recent available Amazon EMR version to take

advantage of this update and other performance improvements. In addition, Amazon

EMR version 5.20.0 includes an S3-optimized committer that is enabled by default. The

EMRFS S3-optimized committer is an alternative OutputCommitter implementation that

is optimized for writing files to Amazon S3 when using EMRFS.

S3 Select with Spark

In certain scenarios, using S3 Select with Spark can result in both increased

performance and decreased amount of data transferred between Amazon EMR and

Amazon S3. S3 Select allows applications to retrieve only a subset of data from an

object. As of EMR 5.17.0, S3 Select is supported with CSV and JSON files. If your

query filters out more than half of the original dataset and your network connection

between Amazon S3 and EMR has good transfer speed, S3 Select may be suitable for

your application.

EMRFS Consistent View

When chaining Spark jobs that write data to S3, ensure that the data written by one job

is the same data read by subsequent jobs. Due to the S3 Data Consistency Model,

object metadata may not always be available if you immediately list objects after a large

set of writes. With consistent view enabled, EMRFS maintains a metadata store of

objects it expects to be in Amazon S3 and returns the set of objects listed in that

metadata store for subsequent jobs.

Note: Consistent View is intended for a set of chained jobs or applications
that control all reads and writes to S3, such as an Apache HBase on S3
EMR deployment. It is not intended to be used for a globally consistent
view of all objects in your S3 bucket.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3-optimized-committer.html
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapreduce/OutputCommitter.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3select.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-consistent-view.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 90

AWS Glue Data Catalog

For Amazon EMR 5.8.0 and later, Spark supports using the AWS Glue Data Catalog as

the metastore for Spark SQL. If you plan to migrate to Spark on EMR, first determine if

you can migrate your existing metastore to AWS Glue. Using AWS Glue Data Catalog

has the benefit of not just being a managed metadata catalog, but it also integrates with

a number of different AWS products, including Presto and Apache Hive on EMR,

Amazon Athena, Amazon Redshift Spectrum, Amazon SageMaker, and Amazon

Kinesis Data Firehose. In combination with AWS Glue crawlers, the Data Catalog can

generate schema and partitions and provide for fine-grained access control to

databases and tables.

Troubleshooting Spark jobs on an EMR Cluster

To debug common issues, view the history and log files of these applications:

• For Spark Web UIs, access the Spark HistoryServer UI port number at 18080 of

the EMR cluster's master node. For more information, see Accessing the Spark

Web UI

• For YARN applications, including Spark jobs, access the Application history

tab in the Amazon EMR console. Up to seven days of application history is

retained, including details on task and stage completion for Spark. For more

information, see View Application History.

• By default, Amazon EMR clusters launched via the console automatically

archive log files to Amazon S3. You can find raw container logs in Amazon S3

and view them while the cluster is active and after it has been terminated. For

more information, see View Log Files.

Migrating Apache Hive

Apache Hive is one of the popular applications used by Amazon EMR customers as a

data warehouse. As with any migration, you have several considerations to make.

Hive Metastore

By default, Amazon EMR clusters are configured to use a local instance of MySQL as

the Hive metastore. To allow for the most effective use of Amazon EMR, you should use

a shared Hive metastore, such as Amazon RDS, Amazon Aurora, or AWS Glue Data

Catalog.4 If you require a persistent metastore, or if you have a metastore shared by

different clusters, services, applications, or AWS accounts, we recommend that you use

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-webui.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-webui.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-cluster-application-history.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view-web-log-files.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 91

AWS Glue Data Catalog as a metastore for Hive. For more information, see Configuring

an External Metastore for Hive.

Upgrading

Hive upgrades couple with Hive metastore updates. The Hive metadata database

should be backed up and isolated from production instances because Hive upgrades

may change the Hive schema, which may cause compatibility issues and problems in

production. You can perform upgrades using the -upgradeSchema command in the

Hive Schema Tool. You can also use this tool to upgrade the schema from an older

version to the current version.

Hive Execution Engine

Apache Tez is the supported and default execution engine for Hive clusters on EMR. In

most cases, Tez provides improved performance. However, if you are migrating from

the older version of Hive that used the MapReduce execution (MR) engine, certain jobs

may require changes.

Hive 2.3.0 added support for Spark as an execution engine, but this setup is not

supported on EMR without changes to the underlying Hive jars in Spark. This is not a

supported configuration on EMR.

Tez Container Size

If you have large input files that cannot be split, or if the map portion of a job exceeds

the default memory limits of a container, you will require a larger Tez container size. On

Amazon EMR, the default container setting is -1, which means that the value of

mapreduce.map.memory.mb is used. The default values of that setting depend on the

specific instance type selected for your EMR cluster. For this setting and other default

values, see Task Configuration.

The desired value depends upon the specifics of your job. It must be at least as the

same value as the mapreduce.map.memory.mb setting.

If the Tez container runs out of memory, the following error message appears:

Container

[pid=1234,containerID=container_1111222233334444_0007_02_000001] is

running beyond physical memory limits. Current usage: 1.0 GB of 1

GB physical memory used; 1.9 GB of 5 GB virtual memory used.

Killing container.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-metastore-external-hive.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-metastore-external-hive.html
https://cwiki.apache.org/confluence/display/Hive/Hive+Schema+Tool
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-config.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 92

HDFS vs S3 Considerations

A benefit of EMR is the ability to separate storage and compute requirements through

the use of Amazon S3 as your primary data store. This approach allows you to save

costs over HDFS by scaling your storage and compute needs up or down

independently. Amazon S3 provides infinite scalability, high durability and availability,

and additional functionality such as data encryption and lifecycle management. That

said, Hadoop was designed with the expectation that the underlying filesystem would

support atomic renames and be consistent. There are several options to consider if list

and read-after-write immediate consistency are required as part of your workflow.

EMRFS Consistent View

EMRFS consistent view is an optional feature that allows EMR clusters to check for list

and read-after-write consistency for Amazon S3 objects written by or synced with

EMRFS. It is ideal for working with chained MapReduce jobs writing to S3 or specific

applications on EMR such as HBase that control all read and write operations to S3.

Hive Tez Merge files

Merge files performs a number of operations that invalidate S3 read-after-write

consistency and can result in missing data. Therefore, we recommend that you do not

use the hive.merge.tezfiles without enabling EMRFS consistent view. An

alternative would also be performing any INSERT OVERWRITE or ALTER CONCATENATE

statements on transient HDFS-backed EMR clusters and copying the results back to S3

using s3-dist-cp.

Other ways that EMR customers have solved large-scale consistency issues include

implementing a custom manifest file approach to their jobs instead of using S3 list

operations to retrieve data, or by building their own metadata stores, such as Netflix

Iceberg.

Hive Blobstore Optimization

Hive blobstore optimizations are intended to increase the performance of intermediate

MR jobs on Hive. However, when performing simple Hive queries with S3-backed

tables, such as INSERT OVERWRITE or ALTER TABLE CONCATENATE, this setting can

sometimes result in increased execution times and missing data. This issue is caused

by implementing that feature on queries that are not multi-staged MR jobs. This

scenario results in Hive using Amazon S3 as the scratch directory during the job. As a

result, the number of renames on S3 increases as the job progresses through writing

https://github.com/Netflix/iceberg
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.blobstore.optimizations.enabled

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 93

scratch data, copying to another S3 temporary location, and finally copying to the final

S3 location.

If you disable this setting, the scratch directory for the job is relocated to HDFS. If you

prefer this scenario, make sure to allocate enough space on the EMR cluster to

accommodate this change. By default, the distcp job that occurs at the end of the

process is limited to a maximum of 20 mappers. If you find this job is taking too long,

particularly if you are processing terabytes of data, you can manually set the number of

max mappers using the following code in your Hive job:5

SET distcp.options.m=500

Job Throughput and Scheduling

By default, EMR uses the Hadoop CapacityScheduler for allocating resources in the

cluster. The CapacityScheduler allows large cluster sharing and provides capacity

guarantees for each organization. The CapacityScheduler supports queues that can

allow an organization to grant capacity in a multitenant cluster. You can configure the

CapacityScheduler by modifying the capacity-scheduler classification during EMR

cluster creation.

In some cases, the FairScheduler may be more desirable for clusters where it is

acceptable for a job to consume unused resources.

Configure FairScheduler

You can configure FairScheduler in a couple ways when creating an EMR cluster.

Modify the yarn-config.json file

1. Use the following configuration below in the yarn-config.json file.

[

 {

 "Classification": "yarn-site",

 "Properties": {

 "yarn.resourcemanager.scheduler.class":

"org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairS

cheduler"

 }

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 94

 }

]

2. Modify the AWS CLI command to match the following code example and use

this command to start a cluster with the config file created above.

aws emr create-cluster \

 --applications Name=Spark Name=Ganglia \

 --ec2-attributes "${EC2_PROPERTIES}" \

 --service-role EMR_DefaultRole \

 --release-label emr-5.20.0 \

 --log-uri ${S3_LOGS} \

 --enable-debugging \

 --name ${CLUSTER_NAME} \

 --region us-east-1 \

 --instance-groups \

 --configurations file://yarn-config.json

InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge

InstanceGroupType=CORE,InstanceCount=4,InstanceType=m3.xlarge)

Edit software settings in the console

1. Sign in to the AWS Management Console and open the Amazon EMR console at

https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster, Go to advanced options.

3. Choose Spark.

4. Under Edit software settings, leave Enter configuration selected and enter

the following configuration:

classification=yarn-

site,properties=[yarn.resourcemanager.scheduler.class=org.apache.ha

doop.yarn.server.resourcemanager.scheduler.fair.FairScheduler]

5. Choose Create cluster.

Maintaining a High Availability Hive-Based Cluster

Hive clusters are often long-running due to the nature of one-time queries that can

come in at any time. Although it's uncommon to lose the master node of an Amazon

https://console.aws.amazon.com/elasticmapreduce/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 95

EMR cluster, it is possible in a cloud environment. There are a couple approaches to

maintaining a highly available Hive-based cluster.

Warm Failover

In a warm failover scenario, in addition to a primary cluster, a secondary, smaller cluster

is kept running. If a failure occurs, clients can be redirected to the new cluster, either

manually or by updating an entry in Amazon Route 53. You can configure the

secondary cluster with a small number of nodes, and then if it becomes the primary

cluster, use automatic scaling to increase the number of nodes.

Multi-Cluster Configuration

Because all data is stored on S3, all clients do not need to go through the same cluster.

You can configure multiple clusters with a load balancer or expose a job submittal

framework to consumers of the environment. These clusters can be shared among all

clients or shared on a per-team basis depending on internal requirements. One of the

benefits of this approach is that in the event of a cluster failure, the overall impact to the

customer base is limited to just those queries executing on the single cluster that fails.

In addition, you can configure automatic scaling so that each cluster scales

independently of each other. If the clusters are segmented on a per-team basis, this

approach ensures that any one team's jobs don’t impact the performance of another

team's jobs.

However, using multiple clusters means using multiple master nodes, one each for a

cluster. Therefore, you need additional EC2 instances that you wouldn't have to pay for

if you used only a single cluster. However, with the EC2 instance pricing model of pay-

per-second with a one-minute minimum, in the case of multiple clusters, you can save

costs by choosing to activate only the cluster needed to perform the tasks rather than

running one single cluster all of the time. You can configure the logic for this setup

inside an AWS Lambda function that calls the activation on the pipeline. Then, you can

start up or take down a cluster without impacting another cluster's activities.

Ephemeral Design

Ephemeral clusters can mitigate the cost and operational requirements of having a

single, long-running cluster. This approach is useful if you have predictable short-lived

jobs, but may not be appropriate if you have consumers that are constantly querying

data on an ongoing basis.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 96

Frequently Asked Questions

How do I implement transactions and compactions on Amazon EMR?

Although not officially supported on EMR using S3 as the primary data store, if you

currently have Hive transactions enabled, contact your account team or support and to

further investigate implementing it on EMR on S3 with certain requirements.

How to I troubleshoot loading data from Amazon S3?

A common mistake is using Amazon S3 like a typical file system. There are certain

differences that you must consider if you're moving from HDFS to Amazon S3. For

details, see Are you experiencing trouble loading data to or from Amazon S3?.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-troubleshoot-errors-io.html#emr-troubleshoot-errors-io-1

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 97

Providing Ad Hoc Query Capabilities

Considerations for Presto

Choosing between Amazon Athena and PrestoDB

Amazon Athena is a serverless interactive query engine that executes SQL queries on

data that rests in Amazon S3. Many customers use Athena for a wide variety of use

cases, including interactive querying of data to exploring data, to powering dashboards

on top of operational metrics saved on S3, to powering visualization tools, such as

Amazon QuickSight or Tableau. We strongly recommend that you consider Amazon

Athena for these types of workloads. Athena is easy to integrate with, has several

features, such as cost management and security controls, and requires little capacity

planning. All of these characteristics lead to lower operational burden and costs.

However, there are some use cases where PrestoDB may be better suited than

Amazon Athena. For example, consider the following priorities:

• Cost reduction: If cost reduction is your primary goal, we recommend that you

estimate cost based on both approaches. You may find that the load and query

patterns are cheaper to run using Presto on Amazon EMR. See if cost

increases, if any, outweigh the benefits of running and maintaining a Presto

cluster on EMR that is able to scale and provides availability, versus the features

that Amazon Athena provides.

• Performance requirements: If your use case includes a high sensitivity to

performance choose to fine-tune a Presto cluster to meet the performance

requirements.

• Critical features: If there are features that Amazon Athena does not currently

provide, such as the use of custom serializer/deserializers for custom data

types, or connectors to data stores other than those currently supported, then

Presto on EMR may be a better fit.

For performance tips and best practices for Athena and Presto, see Top 10

Performance Tuning Tips for Amazon Athena on the AWS Big Data Blog.

https://aws.amazon.com/athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 98

Metadata Management

AWS Glue as a Data Catalog

Starting with Amazon EMR release 5.10.0, Amazon EMR can use AWS Glue Data

Catalog as the default Hive metastore for Presto. See the Data Catalog Migration

chapter for more information on this approach. The benefits included in that chapter

also apply to Presto running on Amazon EMR.

When using AWS Glue Data Catalog with Presto on Amazon EMR, the authorization

mechanism (such as Hive SQL authorization) is replaced with AWS Glue Based

Policies.

You are also required to separately secure the underlying data in Amazon S3. You can

secure this data by using an S3 bucket policy or AWS IAM policy. You may find it more

efficient to use IAM policies as you can centralize access to both Amazon S3 and the

AWS Glue Data Catalog.

For more information on using the AWS Glue Data Catalog, see Easily manage table

metadata for Presto running on Amazon EMR using the AWS Glue Data Catalog on the

AWS Big Data Blog. For existing limitations on the interaction between Presto and AWS

Glue Data Catalog, see Considerations When Using AWS Glue Data Catalog.

EMRFS and PrestoS3FileSystem Configuration

By default, Presto running on Amazon EMR release version 5.12.0 or later can use

EMRFS to access data on Amazon S3. Presto running on previous releases of EMR

only uses the PrestoS3FileSystem, a component of the Hive connector.

Accessing data via EMRFS allows you to configure Amazon S3 encryption

requirements in an EMR Security Configuration. With EMRFS, you can also use

separate IAM roles within your Presto Cluster to control access to data according to a

user, group, or Amazon S3 location.

For EMR release version 5.12.0 or later, you can switch from using EMRFS to using the

PrestoS3FileSystem. This approach may be beneficial if your organization is still relying

on Hive SQL Based authorization and Hive metastore running on an RDMBS. For

additional details on configuring the PrestoS3FileSystem on Amazon EMR, see EMRFS

and PrestoS3FileSystem Configuration.

https://aws.amazon.com/blogs/big-data/easily-manage-table-metadata-for-presto-running-on-amazon-emr-using-the-aws-glue-data-catalog/
https://aws.amazon.com/blogs/big-data/easily-manage-table-metadata-for-presto-running-on-amazon-emr-using-the-aws-glue-data-catalog/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-presto-glue.html#emr-presto-glue-knownissues
https://prestodb.io/docs/current/connector/hive.html#amazon-s3-configuration
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-presto-considerations.html#emr-presto-prestos3
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-presto-considerations.html#emr-presto-prestos3

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 99

HBase Workloads on Amazon EMR

Apache HBase on Amazon S3 using Amazon EMR can introduce significant cost

savings for read-heavy workloads.6 Due to the ability to use Amazon S3 as the primary

storage mechanism, the HBase cluster can be much smaller than typical HBase

deployments.

For details on tuning HBase for best performance on Amazon S3, see Migrate to

Apache HBase on Amazon S3 on Amazon EMR: Guidelines and Best Practices on the

AWS Big Data Blog.

HBase Upgrades

For HBase upgrades, we recommend that you run the newer version of HBase

alongside the previous version until all testing is complete. Take a snapshot from HBase

and use that snapshot to start a new cluster with the upgraded version. You can run

both clusters simultaneously and perform updates and reads from both clusters. When

testing is complete, you can shut down the old cluster. If you encounter any issues that

require rolling back the upgrade, you can move back to the old cluster.

Optimize Bulk Loads on HBase on S3

A common approach when migrating an existing cluster to HBase on S3 using EMR is

to use bulk loads. Although this approach can be an effective way to bootstrap your new

cluster, there are several ways you can optimize bulk loads for the best performance.

Depending on your version of HBase and where your generated StoreFiles are, the

command to perform the bulk load is similar to the following code:

hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles \

 <s3://bucket/storefileoutput/> <tablename>

When you run that command on a node, the following steps are executed.

1. List available StoreFiles in the storefileoutput location

2. Determines what region a StoreFile should go in and if that StoreFile fits in the

given region.

https://aws.amazon.com/blogs/big-data/migrate-to-apache-hbase-on-amazon-s3-on-amazon-emr-guidelines-and-best-practices/
https://aws.amazon.com/blogs/big-data/migrate-to-apache-hbase-on-amazon-s3-on-amazon-emr-guidelines-and-best-practices/
http://hbase.apache.org/book.html#arch.bulk.load

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 100

3. If the StoreFile is too large for the Region (based on

hbase.hregion.max.filesize), or if the Region has split since the files were

created, the master node splits the StoreFile into two files and add these two

new files back into the list of StoreFiles to process.

4. For each Region that has StoreFiles to load, a request is issued to the

necessary RegionServer to initiate a BulkLoad.

5. The RegionServer copies the StoreFile to the target file system, then loads the

StoreFile into HBase.

Figure 40: Overview of CompleteBulkLoad process

As with any distributed system, the performance of this process depends on available

CPUs and network bandwidth.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 101

Optimize S3 Uploads

You can optimize S3 uploads by adjusting size settings:

• fs.s3.threadpool.size: By default, this setting is 20, but you can increase it to

increase the number of parallel multipart uploads that are occurring. You may

need to use an instance with a higher number of CPUs to increase this setting.

• fs.s3n.multipart.uploads.split.size: Increase setting when you're uploading

large files to help avoid reaching multipart limits.

Increase Threads on the Master

The master node (or whichever node you run LoadIncrementalHFiles on) performs two

primary steps: splitting StoreFiles (if they don't fit in the Region) and coordinating the

BulkLoads with each responsible RegionServer. These actions happen in a thread pool

that is by default the size of the number of available CPUs on the node. For example, if

your master node is a small m4.large with only two vCPUs, your entire bulk load

process can be blocked if two StoreFiles must be split. You can address this issue in

two ways:

• Use a larger node with more vCPUs.

• Define hbase.loadincremental.threads.max variable when running the job

However, even if you have 100 RegionServers, the LoadIncrementalHFiles command

is only be able to use as many of them as is defined in the

hbase.loadincremental.threads.max variable. If your node has eight vCPUs, only

eight region servers are used. You can likely increase that variable to the number of

RegionServers you have, but if your master must split StoreFiles, it could get bogged

down quickly.

Increase RPC Timeout

If you have generated large StoreFiles (upwards of 10 GB) or if you have a high number

of StoreFiles for a specific RegionServer, your LoadIncrementalHFiles command may

occasionally return an “Error connecting to server” message due to a

CallTimeoutException. This behavior is normal, but the issue results in multiple attempts

to perform the BulkLoad and typically results in a failed load.

To work around this issue, you can increase the RPC timeout by using the

hbase.rpc.timeout variable when starting your job.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 102

Monitoring your Bulk Load

While the bulk load is running, the HBase UI does not include enough metrics to

carefully monitor the bulk load. For better insight into the bulk load, start your EMR

cluster with Ganglia. In addition to general CPU and network metrics, Ganglia includes

a number of HBase metrics. Specifically, regionserver.Server.Bulkload_count

can show you how many bulk loads have finished across each RegionServer.

Figure 41: Ganglia region server bulk load count

Debugging your Bulk Load

If you run into issues, you can enable debugging on HBase to for more detailed

information on those issues. To enable debugging, set the

log4j.logger.org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles

variable to DEBUG.

Summary and Examples of Optimization Strategies

This section included three ways to optimize bulk loads:

• Make the best available use of Amazon S3 and network bandwidth.

• Make the best available use of CPU on the master node.

• Change HBase settings for our expected workload.

For all of the configuration variables above, you can specify these as command-line

variables to LoadIncrementalHFiles, or you can configure these settings cluster-wide

using various Hadoop configuration files. See the following examples.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 103

Increasing Threads and RPC Timeout

This command shows setting the number of threads to 20 and the HBase RPC timeout

to 10 minutes.

hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles \

 -Dhbase.loadincremental.threads.max=20 \

 -Dhbase.rpc.timeout=600000 \

 <s3://bucket/storefileoutput/> \

 <tablename>

Define HBase on S3 Settings and Enable Debugging

If you create your cluster through the AWS CLI, the JSON file below shows a typical

configuration file. The file defines HBase on S3 settings and enables DEBUG and

TRACE logging on two HBase classes.

[

 {

 "Classification": "hbase",

 "Properties": {

 "hbase.emr.storageMode": "s3"

 }

 },

 {

 "Classification": "hbase-site",

 "Properties": {

 "hbase.rootdir": "s3://<bucket>/<hbaseroot>",

 "hbase.hregion.max.filesize": "21474836480",

 }

 },

 {

 "Classification": "hbase-log4j",

 "Properties": {

"log4j.logger.org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFil

es": "DEBUG",

 "log4j.logger.org.apache.hadoop.hbase.ipc.RpcServer":

"TRACE"

 }

 }

]

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 104

Migrating Apache Impala

If you are running Apache Impala and are looking to migrate it to Amazon EMR, we

recommend that you use Amazon Athena or Presto. See Migrating Presto for more

details on how to choose Amazon Athena over PrestoDB.

If you must use Impala due to a use case that is not covered by Presto or Athena, then

you have three options to install Impala:

• Manually install Impala on Amazon EC2.

• Use a bootstrap action to install Impala on Amazon EMR.

• Use a third-party cloud provider that installs and manages Impala.

Because Impala is not a managed application, AWS Support and Amazon EMR service

teams are not able to support an Impala installation.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 105

Operational Excellence

Upgrading Amazon EMR Versions

One best practice to upgrade your Amazon EMR releases in a regular cadence.

Upgrading your clusters software ensures that you are using the latest and greatest

features from open source applications. The following are a few benefits of staying up-

to-date with software upgrades:

• Performance enhancements enable applications to run faster.

• Bug fixes make the infrastructure more stable.

• Security patches help keep your cluster secure.

These benefits apply to both the open source application software and the Amazon

EMR software needed to manage the open source software.

The following figure is a sample of Amazon EMR 5.x software releases and

corresponding open source application versions from July 2018 through December

2018. At the time of this document, Amazon EMR releases a new version approximately

every 4–6 weeks, which pulls the latest version of the software. For complete list of

releases and release notes, see Amazon EMR 5.x Release Versions.

Figure 42: Sample of Amazon EMR 5.x Release Versions

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/images/emr-releases-5x.png

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 106

See Software Patching for recommendations on when it may be appropriate to patch

software on your Amazon EMR cluster.

Upgrade Process

When upgrading software, the risk of regression exists in terms of performance and

data quality. Upgrades may change API interfaces so that your code may no longer run

as is on the new framework. Upgrades can also introduce new bugs, which can cause

applications to fail. AWS provides a best effort to identify regressions in open source

software before Amazon EMR releases by running a large suite of integrations tests but

some regressions may be difficult to identity. Therefore, it is imperative that each

release is tested before making it available to your users. However, the more often you

upgrade, the smaller number of changes between versions, which reduces the effort in

upgrading as the risk of regressions are reduced.

Recommended Upgrade Steps

Figure 43: Recommended upgrade steps

Research Changes and outstanding issues

All open source applications have release notes available and most provide JIRA for

issue tracking. Before an upgrade, you can save time by doing research to look for

bugs, issues, or configuration updates.

Table 5 lists common open source applications, their release notes, and issue tracking

systems. For Amazon EMR, see Amazon EMR 5.x Release Versions.

Table 5: Application Links for Release Notes and Issue Tracking

Application Release Notes Issue Tracking

Hadoop https://hadoop.apache.org/old/releas

es.html

https://issues.apache.org/jira/projects

/HADOOP/issues

Hive https://hive.apache.org/downloads.ht

ml

https://issues.apache.org/jira/projects

/HIVE/issues

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html
https://hadoop.apache.org/old/releases.html
https://hadoop.apache.org/old/releases.html
https://issues.apache.org/jira/projects/HADOOP/issues
https://issues.apache.org/jira/projects/HADOOP/issues
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://issues.apache.org/jira/projects/HIVE/issues/
https://issues.apache.org/jira/projects/HIVE/issues/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 107

Application Release Notes Issue Tracking

Spark https://spark.apache.org/releases/ https://issues.apache.org/jira/projects

/SPARK/issues

Presto https://prestodb.github.io/docs/current

/release.html

https://github.com/prestodb/presto/iss

ues

HBase https://hbase.apache.org/downloads.

html

https://issues.apache.org/jira/projects

/HBASE/issues

Test a Subset of Applications/Queries

Before users test the new release or configuration, we recommend that you test the

version with a subset of use cases that is representative of the overall usage. This

approach ensures that any configuration issues are caught before deployment.

Fix Issues

If you find an issue when testing a version, follow these steps:

1. Check if a configuration value can fix the issue. For example, see if you can use

a configuration value to disable a problematic new feature or enhancement.

2. Check if the issue has already been identified and fixed in a later version. If

there is a fix in a later version, notify an AWS Support engineer. AWS will

evaluate if it can be included in our next release.

3. Change the application or query to avoid the issue.

4. Contact AWS Support to see if any workarounds exist.

5. Abandon the upgrade if there is no workaround and wait for a release that has

the required fix.

Set up A/B Testing (Recommended)

The next step is to gradually move the workload to the new configuration. This approach

provides you with the option to abort the upgrade if a serious issue is found in your

production environment. If you are using Amazon EMR for interactive user querying,

setting up a router helps move the load from one cluster to another in a controlled

fashion (Figure 44). You can also use a load balancer that supports both traffic

weighting and sticky sessions.

https://spark.apache.org/releases/
https://issues.apache.org/jira/projects/SPARK/issues
https://issues.apache.org/jira/projects/SPARK/issues
https://prestodb.github.io/docs/current/release.html
https://prestodb.github.io/docs/current/release.html
https://github.com/prestodb/presto/issues
https://github.com/prestodb/presto/issues
https://hbase.apache.org/downloads.html
https://hbase.apache.org/downloads.html
https://issues.apache.org/jira/projects/HBASE/issues
https://issues.apache.org/jira/projects/HBASE/issues
https://console.aws.amazon.com/support/home

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 108

Figure 44: Using a router to gradually move load

Complete Upgrade

Complete your upgrade by moving all of your Amazon EMR clusters to the new version.

Finally, discontinue use of the older version.

Best Practices for Upgrading

• Upgrades require time and effort – make sure that your teams schedule

upgrades and allow for the time it takes to complete upgrades.

• Be aware of dependencies that can change when upgrading.

• When performing manual testing, replicate your Hive metastore to ensure that

the schema remains backward compatible.

• If you can, track performance of the jobs to ensure that a significant regression

has not occurred.

• Split your clusters by applications. This approach allows you to upgrade

components individually, rather than as a package.

• Research what has changed between releases so that issues are easier to

identify.

• Use Amazon Route 53 to automatically register clusters. This approach makes it

easier for users to point to them. For more information on setting up Amazon

Route 53, see Dynamically Create Friendly URLs for Your Amazon EMR Web

Interfaces on the AWS Big Data Blog.

https://aws.amazon.com/blogs/big-data/dynamically-create-friendly-urls-for-your-amazon-emr-web-interfaces/
https://aws.amazon.com/blogs/big-data/dynamically-create-friendly-urls-for-your-amazon-emr-web-interfaces/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 109

General Best Practices for Operational Excellence

Configure all of your EMR clusters as transient clusters

Configuring all of your Amazon EMR clusters as transient clusters has many benefits.

Transient clusters are clusters that are started, perform some work and then shut down.

For clusters to be transient, state cannot be kept on the cluster as the state is removed

when the cluster is shut down. This approach makes disaster recovery easier and

quicker, makes Amazon EMR upgrades easier and quicker, and allows you to separate

your storage and compute resources for independent scaling.

Provision your resources in an automated way

Use AWS CloudFormation scripts that call AWS Command Line Interface (AWS CLI) or

SDK code to automatically provision EMR clusters. This approach allows the clusters to

be created consistently and for cluster changes to be tracked more easily.

Ensure that all of your code, scripts, and other artifacts exist within
source control

By ensuring all of your code, scripts, and other artifacts exist within source control, you

can track what has changed over time. In addition, you can track down the changes that

may have impacted your environment’s operation. This approach also allows you to

deploy the artifacts in different stages, such as a beta environment, and reduces the

chances that a bad artifact moves from one stage to another.

Monitor your clusters for abnormal behavior and employ automatic
scaling

Specifically, make sure to watch for long running or stuck jobs as well as disk or HDFS

capacity issues.

Consider using AWS Glue, Amazon Redshift, or Amazon Athena

Although Amazon EMR is flexible and provides the greatest amount of customization

and control, there is an associated cost of managing Amazon EMR clusters, upgrades,

and so on. Consider using other managed AWS services that fulfill your requirements

as they may have lower operational burden, and in some cases, lower costs. If one of

these services does not meet your use case requirements, then use Amazon EMR.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 110

Testing and Validation

After you have established a process for migrating your data from your source systems

and have analytics jobs running, ensuring that your jobs are getting good data and

defining rules around your data becomes increasingly important.

Unit tests are usually written for code, but testing data quality is often overlooked.

Incorrect or malformed data can have an impact on production systems. Data quality

issues include the following scenarios:

• Missing values can lead to failures in the production system that require non-null

values.

• Changes in the distribution of data can lead to unexpected outputs of machine

learning models.

• Aggregations of incorrect data can lead to ill-informed business decisions.

This chapter covers multiple methods of checking data quality, but the approaches

covered here are not exhaustive. There are many third-party vendors and partners that

offer solutions around data profiling and data quality, but these are out of scope for this

document. The approaches and best practices described here can and should be

applied to address data quality.

Data Quality Overview

Data quality is essentially the measurement of how well your data meets the

expectations of its consumers. Stated another way, it is the correctness of the data

relative to the construct or object that it is trying to model. Because this is a hard

concept to define for data in general, consider data quality from the perspective of the

following dimensions:

• Completeness measures how comprehensive your data is.

• Uniqueness looks at duplication within your data.

• Timeliness ensures that your data is fresh and available within your

requirements/SLAs.

• Validity measures how well your data conforms to defined schemas, syntax,

and requirements.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 111

• Accuracy measures how correct your data is in representing objects within the

scope of requirements.

• Consistency evaluates if your data has differences when looking at references

to the same object or relationships between objects.

This is not a complete list of data dimensions. Organizations can use other metrics and

attributes as dimensions for their own data quality needs.

Check your Ingestion Pipeline

Data integrity can be considered a crucial part of data quality checks. One of the most

important areas to check is whether the ingested raw data is correct.

To validate that data was migrated correctly from the source system to the target

system, you should first understand the existing mechanism that your tool uses for

ensuring that data is valid. For example, consider Apache Sqoop. Sqoop validates a

data copy job through the use of the --validate flag, which performs a row count

comparison between the source and target. For example:

$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table

WIDGETS –validate

However, there are various limitations with how Sqoop performs this validation. Sqoop

does not support:

• An all-tables option

• A free-form query option

• Data imported into Hive or HBase

• A table import with --where argument

• Incremental imports

Although some of these issues can be mitigated, the underlying problem is that Sqoop

fundamentally only performs row count comparisons. To validate every single value

transferred, you must reverse your data flow with Sqoop and push the freshly copied

data back to the source system. After this reverse push, you can compare the old data

against the new data with hashes or checksums. Because this is an expensive

operation, this scenario is one where you must consider risk acceptance and data

policy.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 112

As part of your migration, you must determine the level of certainty around data

accuracy and have a corresponding and quantifiable metric for it. The stringency of your

requirements determines cost, complexity, and performance implications of your

migration strategy, and could possibly impact the performance of your overall solution.

In addition, depending on the level of acceptable risk, alternate approaches, such as

sampling or application-level validation, may be viable options.

Another example is with the AWS CLI, where questions around data quality

(specifically, integrity) often arise when using it to transfer data from source systems to

Amazon S3. It is important to understand the characteristics of your target destination

as well as exactly how the AWS CLI and other tools help validate data that is copied.

This way, you can establish reasonable data quality goals and thoroughly address and

answer questions from your architecture teams and business owners.

The following list is some common questions that arise when you use AWS CLI and

other data movement tools. Specifically:

• Does the AWS CLI validate objects as they land into Amazon S3?

• How does the AWS CLI validate the objects?

• Does Amazon S3 expose the checksum used?

• What happens in the case of multi-part uploads in Amazon S3? How do you

calculate a checksum for parts as well as the whole object?

• How can you validate that an uploaded object’s checksum is accurate without

relying on the Amazon S3 ETag?

Overall Data Quality Policy

Frequently, the sources of data, and the processes used to extract them while building

and testing initial analytics jobs and models, are different from those used in production

for analytics or inferencing. For example, initial research (asking “is it possible?” and

data discovery) is frequently performed on sample, cleaned, simplistic, and possibly

enriched data extracted from a data lake or established data sources, for convenience

and speed of access. The implicit assumption is that the data operated on in production

is the same and can be provided quickly enough to act on, but this scenario doesn’t

always apply; especially in environments where there is a firm boundary between

development and production environments. This assumption should be tested to ensure

that the analytics job or machine learning model will work as expected. Create a

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 113

diagram of the data pipeline used to build the model showing where all data is from and

how it is transformed. This diagram can help you identify potential challenges.

Also, create diagrams of the data pipeline and data catalog to be used in production.

Make note of the similarities and differences between the two pipelines.

• If they are the same, then they are likely subject to the same errors. Are these

errors important?

• If they are not the same, then different sources or different processing has been

applied. Do any of these differences impact your analytics jobs or ML models?

How do you know?

Share the diagrams and summaries with subject matter experts and project sponsors.

Discuss the differences and get agreement that they appear reasonable to all

stakeholders. If the gap between the two pipelines is found to be too large (a subjective

assessment), consider other approaches to sourcing data that are more representative

of the data in production circumstances.

The more data sources that are involved, the more disparate the data sources that are

to be merged. Similarly, the more data transformation steps that are involved, the more

complex the data quality challenge becomes.

Estimating Impact of Data Quality

During initial analytics jobs, it is usual to begin with cleaned data (for example, from a

data lake), or to clean data before running the initial jobs. For example:

• When merging data, data might be dropped if no direct key match is found.

• Records with null or extreme values might be dropped.

Frequently, there are many individual cleaning and transformation steps performed

before the data is used for analytics or ML training. However, when the job or model is

used in production, the data used is generally coming from a different source (i.e.

production data), and comes to the model’s inference endpoint through a different

production-focused path. Your analytics job, ETL workflow, or ML model was built to

work well for cleaned data inputs off of the development or test dataset. To ensure that

your job in production behaves the same as it did in a lower environment, consider

comparing statistics and validating the model against unclean data inputs.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 114

Compare Statistics

To ensure that the analytics job or model performs well in production, add a formal

checkpoint that compares the source input data to the data job model actually used to

train on. Make sure to evaluate the data from both a quantitative and qualitative

perspective.

Quantitative Evaluation

In your quantitative evaluation, review counts, data durations, and the precision of the

data inputs in addition to any other quantifiable indicators that you have defined.

Compare counts to identify, track, and highlight data loss, and test against what seems

reasonable. What percentage of source data was used to actually build and test the

model? Is there any potential bias as a result of unintentionally dropped data from a

merge? Is the data storage subsystem filtering, averaging, or aggregating results after

some time period (for example, for log messages)?

Review data duration and retention to determine what time period each dataset covers.

Are all of the potentially relevant business cycles included, especially during peak load?

Quantify precision, by comparing the mean, median, and standard deviation of the data

source and the data used to train the model. Calculate the number or percentage of

outliers. For lower dimensional data or key variables, box plots can provide a quick

visual assessment of reasonableness. Quantifying precision in this way helps you to

scope out what ‘expected’ values should be and build out alerts to notify you for data

that is outside of this scope.

Qualitative Evaluation

Accuracy is equally important as precision, but likely can only be assessed qualitatively.

For example, based on experience and sample exploration, how confident are you that

the data is accurate? Are there sufficient anecdotes of errors? For example, do

operators report this sensor is always running high? The actions to take based on this

evaluation vary widely. A frequent result is to segment the data based on some factor

discovered during the analysis and take a different action on each segment. For

example, in a study of intelligent transport systems, a set of sensors were identified as

misconfigured and routed to be repaired, whereas another subset was used in traffic

analysis.7

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 115

Validate Model Against Unclean Data Inputs

A simple but powerful technique to validate your data model is to take a subset of data

that was eliminated during every cleaning or transformation step from the raw data and

compare it to the data eventually used to run the job. Then, assess the resulting

outputs. Does the endpoint provide reasonable responses in all cases? Use the results

to identify where checks and error handling should be added. Should error handling be

added to the inference endpoint? Or, should the applications that are calling the jobs be

required to identify and remove problematic inputs, or handle problematic outputs?

Tools to Help with Data Quality

Instead of having to implement all of this on your own, here are some vendor and open

source tools to help you with the data quality process:

Apache Griffin

Apache Griffin is an open source data quality solution for big data that supports both

batch and streaming modes. It offers a unified process to measure your data quality

from different perspectives, helping you build trusted data assets and therefore boosting

your confidence for your business.

You can combine Griffin with tools such as StreamSets or Apache Kafka to have an

end-to-end streaming workflow that performs data quality checks for you.

Deequ

Deequ is a library built on top of Apache Spark for defining "unit tests for data", which

measure data quality in large datasets. It allows you to calculate data quality metrics on

your dataset, define and verify data quality constraints, and be informed about changes

in the data distribution. Instead of implementing checks and verification algorithms on

your own, you can focus on describing how your data should look. Deequ is

implemented on top of Apache Spark and is designed to scale with large datasets that

typically live in a distributed filesystem or a data warehouse.

https://griffin.apache.org/
https://github.com/awslabs/deequ
https://spark.apache.org/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 116

Support for Your Migration

AWS Professional Services

AWS Professional Services provides a global specialty practice to support focused

areas of enterprise cloud computing. Specialty practices deliver targeted guidance

through best practices, frameworks, tools, and services across solution, technology, and

industry subject areas. Their deep expertise helps you take advantage of business and

technical benefits available in the AWS Cloud.

Specific to Amazon EMR, the domain expertise of the Data Analytics practice helps

organizations derive more value from their data assets using AWS services. Specific to

Hadoop Migrations, AWS Professional Services has a prescriptive and proven

methodology. This methodology includes an alignment phase and launch phase, which

are both described in the following sections.

Hadoop Migration Alignment to Amazon EMR and Amazon S3 Data
Lake (and AWS Stack)

AWS Professional Services partners with you to learn and document your current state

environment and the desired future state outcomes. Although the scope of this phase is

mutually confirmed, the following list is activities suggested to be covered during the

Hadoop migration alignment phase.

• Business understanding: Confirm business drivers and success metrics.

• Identification and documentation of value drivers to inform future state

architecture decisions. Considerations given to internal SLA targets and existing

and new business value.

• Data prioritization: Use business drivers and technical considerations as

prioritization criteria for the defined scope.

• Data assessment: Assess end-to-end data flow architecture to recommend a

future state Hadoop environment inclusive of source and target destinations, file

formats, and so on.

• Technical understanding: Deconstruct Hadoop workloads to determine a

migration path to Amazon EMR.

• Hands-on labs for existing application mapping (e.g., Impala to Presto) or use

cases (e.g., data science notebooks)

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 117

• Security deep dive (Ranger, Sentry, Kerberos, LDAP, IAM)

• Confirm AWS Glue or Amazon RDS Data Catalog options.

• EMR service pricing exercise/what-if analysis

• Provide a detailed work plan for delivery of a migration to Amazon EMR.

Given the dependency Amazon EMR has with Amazon S3, the second section of the

alignment phase focuses on the S3 data lake.

• AWS Lake Formation service introduction for future-proofing the architecture

inclusive of serverless capabilities, as interested. Services include Amazon

QuickSight and AWS Lake Formation plus serverless services AWS Glue and

Amazon Redshift Athena.

• Provide recommendations on data ingestion architecture.

• Provide recommendation on data storage architecture approach that meets

security, control and access requirements.

• Provide recommendations on Data Catalog approach.

• Provide recommendation on data serving layer for downstream applications or

users for access to the catalog and perform data exploration for self-service.

• Provide recommendations for on boarding users to the platform to enable ease

and reusability.

• Provide recommendations on decoupling compute and storage for a cost

optimized data lake.

Hadoop Migration Alignment and S3 data lake outcomes:

• Identification of up to five use cases

• Closure Architecture document aligning requirements to architectural design

• Detailed migration path for execution of the EMR Launch work

• AWS Services Cost Estimate (Platform Spend)

• Closure Architecture document aligning requirements to architectural design

• Recommendations on picking right tools for job based on usage

• S3 bucket strategy built on AWS for workloads defined

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 118

Amazon EMR Launch

During the Amazon EMR Launch implementation, the AWS Professional Services team

provides an Amazon EMR platform foundation architecture that enables Hadoop

workloads to execute with compute decoupled from storage on an Amazon S3 data lake

using infrastructure as code. The AWS Professional Services team helps in the

following areas:

• Deploying Amazon EMR using AWS CloudFormation templates.

• Guidance in designing and implementing data security requirements on Amazon

EMR.

• Ensuring EMR can access defined S3 buckets.

• Setting up IAM roles, security groups, and Active Directory using

CloudFormation templates.

• Setting up AWS Glue or Amazon RDS for external Apache Hive Metastore for

Amazon EMR.

• Setting up Amazon EMR cluster and performing tuning one workload

The goals of the Amazon EMR Launch phase include:

• A defined workload automated and tuned on EMR

• Automated EMR Infrastructure as Code to support transient clusters and end-

user access for development and research.

• Documented performance and testing results.

• Refined AWS Services Cost Estimate (Platform Spend)

For more information on work effort, timeline and cost, contact your Sales team or click

here to connect directly with AWS Professional Services leadership.

AWS Partners

In addition to AWS Professional Services team, AWS has a robust network of firms

included in the AWS Service Delivery Program. The AWS Service Delivery Program is a

validation program that identifies and endorses APN Partners with customer experience

and a deep understanding of specific AWS services. Firms that meet the criteria are

listed by geography and can be found on the Amazon EMR Partner site.

mailto:aws-proserv-data-analytics-leads@amazon.com?subject=Information%20Request%20-%20On%20premise%20Hadoop%20Migration%20to%20Amazon%20EMR
https://s3-us-west-2.amazonaws.com/service-delivery.awspartner.com/Checklists/Amazon+EMR+Service+Delivery+Partner+Validation+Checklist_06272018.pdf
https://aws.amazon.com/emr/partners/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 119

AWS Support

AWS Support plans are designed to give you the right mix of tools and access to
expertise so that you can be successful with AWS while optimizing cost, performance,
and managing risk.

Basic Support for Amazon EMR

Basic Support is included for all AWS customers and includes:

• Customer Service and Communities - 24x7 access to customer service,

documentation, whitepapers, and support forums.

• AWS Trusted Advisor - Access to the seven core Trusted Advisor checks and

guidance to provision your resources following best practices to increase

performance and improve security.

• AWS Personal Health Dashboard - A personalized view of the health of AWS

services, and alerts when your resources are impacted.

AWS Premium Support for Amazon EMR

For applications and configuration found within our documentation, AWS Support

provides the necessary protocols to resolve your issue. However, since an Amazon

EMR cluster can be infinitely customized, applications and configurations that are

outside of our documentation, including changes on Custom AMI features (previously

called AMIs for EMRs Bring Your Own AMI feature), are supported at best effort as long

as the AMI has not been deprecated.8 The Amazon EMR team recommends engaging

your Technical Account Manager to find a supported solution or to minimize the risk

associated with a particular customization.

AWS Premium Support includes:

• Answering “how to” questions about AWS services and features

• Providing best practices to help you successfully integrate, deploy, and manage

applications in the AWS Cloud.

• Troubleshooting API and AWS SDK issues

• Troubleshooting operational or systemic problems with AWS resources

• Troubleshooting issues with the AWS Management Console or other AWS tools

• Debugging problems detected by EC2 health checks

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://aws.amazon.com/premiumsupport/technology/personal-health-dashboard/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 120

• Troubleshooting third-party applications such as OS, web servers, email, VPN,

databases, and storage configuration

AWS Premium Support does not include:

• Code development

• Debugging custom software

• Performing system administration tasks

• Tuning queries

Third-Party and Marketplace Support

Third-party products, including partner solutions, are typically outside of any AWS

Support team scope. Although we may be able to help on a best effort basis, we

suggest you source guidance from the AWS Partner Network or directly from the

company offering the product.

Several AWS Marketplace products offer support, either directly in Marketplace or

through the originating vendor website. For more information, see New – Product

Support Connection for AWS Marketplace Customers.

Contributors

Contributors to this document include:

• Nikki Rouda, Principal Product Marketing Manager, AWS

• Mert Hocanin, Big Data Architect, AWS

• Rajesh Ramchander, Sr. Big Data Consultant, AWS

• Bruno Faria, EMR Solutions Architect, AWS

• Rahul Bhartia, Principal Big Data Architect, AWS

• Tanzir Musabbir, Sr. Big Data Specialist SA, AWS

• Radhika Ravirala, Sr. Specialist SA, AWS

• Damon Cortesi, Big Data Architect, AWS

• Tony Nguyen, Sr. Consultant, AWS Professional Services

• Drew Alexander, Principal Business Development, AWS

https://aws.amazon.com/blogs/aws/new-product-support-connection-for-aws-marketplace-customers/
https://aws.amazon.com/blogs/aws/new-product-support-connection-for-aws-marketplace-customers/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 121

• Jason Berkowitz, Practice Manager – Data Lake, AWS

• Matthew Liem, Big Data Consultant, AWS

Additional Resources

For additional information, see these resources:

• Amazon EMR webpage

• About Amazon EMR Releases

• AWS Big Data Blog

Blog Posts

• A Hybrid Cloud Architecture Ah-Ha! Moment

• 4 Dos and Don’ts When Using the Cloud to Experiment

• Top Performance Tuning Tips for Amazon Athena

• Untangling Hadoop YARN

• Orchestrate Apache Spark applications using AWS Step Functions and Apache

Livy

• Orchestrate multiple ETL jobs using AWS Step Functions and AWS Lambda

• Top 10 Performance Tuning Tips for Amazon Athena

• Easily manage table metadata for Presto running on Amazon EMR using the

AWS Glue Data Catalog

Whitepapers & Guides

• Amazon EMR Release Guide

• Amazon EMR Management Guide

• Getting Started with Amazon EMR

• Building a Multitenant Storage Model on AWS

• Big Data Analytics Options on AWS

https://aws.amazon.com/emr/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://aws.amazon.com/blogs/big-data/
https://aws.amazon.com/blogs/enterprise-strategy/a-hybrid-cloud-architecture-ah-ha-moment/
https://aws.amazon.com/blogs/enterprise-strategy/4-dos-and-donts-when-using-the-cloud-to-experiment/
http://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://blog.cloudera.com/blog/2015/09/untangling-apache-hadoop-yarn-part-1/
https://aws.amazon.com/blogs/big-data/orchestrate-apache-spark-applications-using-aws-step-functions-and-apache-livy/
https://aws.amazon.com/blogs/big-data/orchestrate-apache-spark-applications-using-aws-step-functions-and-apache-livy/
https://aws.amazon.com/blogs/big-data/orchestrate-multiple-etl-jobs-using-aws-step-functions-and-aws-lambda/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/easily-manage-table-metadata-for-presto-running-on-amazon-emr-using-the-aws-glue-data-catalog/
https://aws.amazon.com/blogs/big-data/easily-manage-table-metadata-for-presto-running-on-amazon-emr-using-the-aws-glue-data-catalog/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://aws.amazon.com/emr/getting-started/
https://d0.awsstatic.com/whitepapers/Multi_Tenant_SaaS_Storage_Strategies.pdf
http://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 122

Analysts Reports

• The Economic Benefits of Migrating Apache Spark and Hadoop to Amazon EMR

• The Forrester Wave: Cloud Hadoop/Spark Platforms, Q1 2019

Media

• AWS re:Invent Videos

• Amazon EMR on YouTube

Document Revisions

Date Description

August 2019 Updated title and introduction.

June 2019 First publication.

https://d1.awsstatic.com/analyst-reports/IDC%20Economic%20Benefits%20of%20Migrating%20to%20EMR%20White%20Paper.pdf
https://pages.awscloud.com/Forrester-Wave-Cloud-HadoopSpark-Platforms-Q1-2019.html?trk=ar_card
https://reinventvideos.com/?
https://www.youtube.com/user/AmazonWebServices/search?query=EMR

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 123

Appendix A: Questionnaire for Requirements

Gathering

For migrating from on-premises to Amazon EMR, Amazon Athena, and AWS Glue, this

questionnaire helps you take inventory of the current architecture and the possible

requirements for migration.

Current Cluster Setup

• What does the current cluster look like?

o How many nodes?

o How much data is stored on the cluster?

• Which distribution of Apache Hadoop and/or Apache Spark are you running on?

Cluster Use

• How much of the cluster is being used on average, during peak, during low

times?

o How many users, what percentage of CPU and memory?

o Where are users located? One time zone or spread globally?

• How much of the data is being accessed regularly?

• How much new data is added on a monthly basis?

• What kind of data formats are the source, intermediate, and final outputs?

• Are workloads segregated in any manner? (i.e. with queues or schedulers)

Maintenance

• How is the cluster being administrated right now?

• How are upgrades being done?

• Are there separate development and production clusters?

• Is there a backup cluster or data backup procedure?

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 124

Use Cases

Batch Jobs

• How many jobs per day?

• What is the average time they run?

• When do they usually run?

• What types of work do the batch jobs run? (i.e. machine learning, aggregation,

data format translation, and so on). (Optimize for machine types.)

• What frameworks or languages do the batch jobs use? (i.e. Apache Spark,

HiveQL, and so on)

• Are there service level agreements (SLAs) to downstream consumers?

• How are jobs promoted to the batch environment?

• How are jobs submitted to the cluster?

• Are jobs designed to be idempotent?

Interactive Use Cases

• Is there interactive access to a cluster?

• Who is using the clusters?

• How are the clusters secured?

• How many people are using them?

• What tools or apps do people use to connect?

• If using Spark, how are Spark jobs deployed and submitted?

Amazon Athena Use Cases

• What is the query load? Is Amazon Athena more appropriate for your use case?

AWS Glue Use Cases

• What load is expected on AWS Glue?

• Is there an existing Hive Data Catalog? Can the data catalog be migrated to

AWS Glue?

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 125

Security Requirements

• Are you using Kerberos?

• Are you using a directory service? Which one?

• Are there fine-grained access control requirements? How is read/write access

restricted?

• Are users allowed to create their own tables? How do you track data lineage?

TCO Considerations

Growth expectations over time

• How much will the data grow over time?

• How much will compute needs grow over time?

• Are there network transfer costs to be aware of? (Include costs both during

migration and after migration, for example, cross-region replication.)

• Is there a target date for decommissioning the existing environment?

• What is the cost of maintaining the existing infrastructure during transition?

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 126

Appendix B: EMR Kerberos Workflow

MIT’s open source version of KDC is installed on Amazon EMR. The KDC uses default

settings. For a detailed explanation on its configuration and operation, see MIT’s

Kerberos documentation.

The subsections in this appendix show how users interact with a Kerberos enabled

Amazon EMR cluster and flow of messages.

EMR Kerberos Cluster Startup Flow for KDC with One-

Way Trust

Figure 45: EMR Kerberos Cluster Startup Flow for KDC with One-Way Trust

In this flow, each node has a provisioning script that is responsible for:

• (Master node only) Creates the KDC and configures it for 1-way trust.

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 127

• (All nodes) Start realmd to join Active Directory, which then configures SSSD to

handle user and group mapping requests and create keytab.

• (All nodes) Create application principles and keytabs for each application and

sub-application.

• When a new node comes up in the cluster, its provisioning script performs the

same operations: creates principles within the KDC on the master node for all

the applications running locally, creates the keytab file, joins the node to Active

Directory (if configured), starts the applications.

EMR Kerberos Flow Through Hue Access

Figure 46: EMR Kerberos Flow through Hue access

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 128

1. Users log into Hue (or Zeppelin) using their on-premises credentials.

2. Hue authenticates those credentials using LDAP(S) with the on-premises Active

Directory.

3. Once authenticated, the user can submit Hive queries.

4. Hue submits those queries and tells HiveServer2 to run the job as the user (i.e.

impersonation.)

5. HiveServer2 submits the job to resource manager for processing.

6. During the execution of the job, Hadoop authenticates and authorizes the user

by using SSSD to verify the user account on the local node.

EMR Kerberos Flow for Directly Interacting with

HiveServer2

Figure 47: EMR Kerberos flow for directly interacting with HiveServer2

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 129

1. User authenticates using credentials for the local KDC and receives a Kerberos

ticket.

2. User submits a query and the Kerberos ticket to HiveServer2.

3. HiveServer2 requests the local KDC to validate the Kerberos ticket.

4. The local KDC requests the on-premises KDC to validate the Kerberos ticket.

5. HiveServer2 submits the job to Resource Manager for processing as the user.

6. During the execution of the job, Hadoop authenticates and authorizes the user

by using SSSD to verify the user account on the local node.

EMR Kerberos Cluster Startup Flow

Figure 48: EMR Kerberos cluster startup flow

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 130

1. User accesses the master node through SSH and authenticates with user

credentials.

2. If the user needs a Kerberos ticket, the user must kinit (kinit -k -t <keytab>

<principal>) to get a Kerberos ticket using their credentials from the local KDC.

3. The local KDC uses on-premises KDC to authenticate the user and return a

Kerberos ticket.

4. User submits the query and the Kerberos Ticket to HiveServer2.

5. HiveServer2 requests that the local KDC validate the ticket.

6. The local KDC requests the on-premises KDC to validate the ticket.

7. HiveServer2 submits the job to Resource Manager for processing as the user.

8. During job execution, Hadoop uses SSSD to authenticate and authorize the user

account on the local node.

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 131

Appendix C: Sample LDAP Configurations

Example LDAP Configuration for Hadoop Group

Mapping

Below shows a sample Amazon EMR configuration file to set up Hadoop Group

Mapping to use LDAP directly. Use this setup for clusters without Kerberos.

[

{

 "classification":"core-site",

 "properties":{

 "hadoop.security.group.mapping.ldap.search.attr.member":"m

ember",

 "hadoop.security.group.mapping.ldap.search.filter.user":"(

objectclass=*)",

 "hadoop.security.group.mapping.ldap.search.attr.group.name

":"cn",

 "hadoop.security.group.mapping.ldap.base":"dc=corp,dc=emr,

dc=local",

 "hadoop.security.group.mapping":"org.apache.hadoop.securit

y.LdapGroupsMapping",

 "hadoop.security.group.mapping.ldap.url":"ldap://172.31.93

.167",

 "hadoop.security.group.mapping.ldap.bind.password":"Bind@U

ser123",

 "hadoop.security.group.mapping.ldap.bind.user":"binduser@c

orp.emr.local",

 "hadoop.security.group.mapping.ldap.search.filter.group":"

(objectclass=*)"

 },

 "configurations":[

]

 }

]

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 132

Example LDAP Configuration for Hue

[

 {

 "classification":"hue-ini",

 "properties":{

 },

 "configurations":[

 {

 "classification":"desktop",

 "properties": { },

 "configurations":[

 {

 "classification":"auth",

 "properties":{

 "backend":"desktop.auth.backend.LdapBackend"

 },

 "configurations": []

 },

 {

 "classification":"ldap",

 "properties":{

 "bind_dn":"binduser@corp.emr.local",

 "trace_level":"0",

 "search_bind_authentication":"false",

 "debug":"true",

 "base_dn":"dc=corp,dc=emr,dc=local",

 "bind_password":"Bind@User123",

 "ignore_username_case":"true",

 "create_users_on_login":"true",

 "ldap_username_pattern":"uid=<username>,cn=use

rs,dc=corp,dc=emr,dc=local",

 "force_username_lowercase":"true",

 "ldap_url":"ldap://172.31.93.167",

 "nt_domain":"corp.emr.local"

 },

 "configurations":[

 {

 "classification":"groups",

 "properties":{

 "group_filter":"objectclass=*",

 "group_name_attr":"cn"

 },

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 133

 "configurations": [] },

 {

 "classification":"users",

 "properties":{

 "user_name_attr":"sAMAccountName",

 "user_filter":"objectclass=*"

 },

 "configurations":[]

 }

]

 }

]

 }

]

 }

]

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 134

Appendix D: Data Catalog Migration FAQs

What are some of the limitations of using an AWS Glue Data Catalog
over a generic Hive metastore?

Column statistics, Hive authorizations, and Hive constraints are not supported on AWS

Glue Data Catalog. To see a list of AWS Glue Data Catalog constraints, see

Considerations when Using AWS Glue Catalog in Using the AWS Glue Data Catalog as

the Metastore for Hive.

What types of security features are available for an AWS Glue Data
Catalog?

You can enable encryption on an AWS Glue Data Catalog, and access to AWS Glue

actions are configurable through IAM policies. The default Amazon EMR EC2 role

(EMR_EC2_DefaultRole) allows the required AWS Glue actions. However, if you

specify a custom EC2 instance profile and permissions when you create a cluster,

ensure that the appropriate AWS Glue actions are allowed. For a list of available Glue

IAM policies, see AWS Glue API Permissions: Actions and Resources Reference.

Can multiple Amazon EMR clusters use a single AWS Glue Data
Catalog?

Yes, an AWS Glue Data Catalog can be used by one-to-many Amazon EMR clusters,

as well as Amazon Athena and Amazon Redshift.

Can an on-premises Hadoop cluster use AWS Glue Data Catalog?

No, AWS Glue Data Catalog libraries are not yet open source, and AWS Glue Data

Catalog cannot be used to connect from an on-premises Hadoop cluster.

When should I use a Hive metastore on Amazon RDS over an AWS
Glue Data Catalog?

If you want full control of your Hive metastore and want to integrate with other open-
source applications such as Apache Ranger and Apache Atlas, then use Hive
metastore on Amazon RDS. If you are looking for a managed and serverless Hive
metastore, then use AWS Glue Data Catalog.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/glue/latest/dg/api-permissions-reference.html

Amazon Web Services Amazon EMR Migration Guide Migration Guide

 Page 135

1 For a step-by-step guide on how to set up an LDAP server and integrate Apache Hue

with it, see Using LDAP via AWS Directory Service to Access and Administer Your

Hadoop Environment on the AWS Big Data Blog.

2 Example customers that use Amazon S3 as their storage layer for their data lakes

include NASDAQ, Zillow, Yelp, iRobot, and FINRA.

3 For more information on these features, see Configuring Node Decommissioning

Behavior.

4 For Amazon EMR versions 5.8.0 and later, you can configure Hive to use the AWS

Glue Data Catalog as its metastore. See Existing Hive Metastore to AWS Glue Data

Catalog in Data Catalog Migration.

5 Applies to Amazon EMR software version 5.20 and later.

6 For example, FINRA migrated a 700-TB HBase environment to HBase on Amazon S3.

For more information, see Low-Latency Access on Trillions of Records: FINRA’s

Architecture Using Apache HBase on Amazon EMR with Amazon S3.

7 V.M. Megler, Kristin Tufte, and David Maier, Improving Data Quality in Intelligent

Transportation Systems, https://arxiv.org/abs/1602.03100 (Feb. 9, 2016)

8 For information on support, see Amazon EMR What's New and the Amazon EMR

FAQs.

Notes

https://aws.amazon.com/blogs/big-data/using-ldap-via-aws-directory-service-to-access-and-administer-your-hadoop-environment/
https://aws.amazon.com/blogs/big-data/using-ldap-via-aws-directory-service-to-access-and-administer-your-hadoop-environment/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#spark-decommissioning
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html#spark-decommissioning
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://arxiv.org/abs/1602.03100
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-whatsnew.html
https://aws.amazon.com/emr/faqs/
https://aws.amazon.com/emr/faqs/

	Introduction
	Starting Your Journey
	Migration Approaches
	Re-Architecting
	Best Practices for Re-architecting

	Lift and Shift
	Best Practices for Lift and Shift

	Hybrid Architecture

	Prototyping
	Best Practices for Prototyping

	Choosing a Team
	General Best Practices for Migration

	Gathering Requirements
	Obtaining On-Premises Metrics

	Cost Estimation and Optimization
	Optimizing Costs
	Workload Type
	Instance Type

	Storage Optimization
	Partition Data
	Optimize File Sizes
	Compress the Dataset
	Optimize File Formats

	Compute Optimization
	Spot Instances
	Reserved Instances
	Instance Fleets
	Amazon EMR Auto Scaling

	Cost Estimation Summary
	Optimizing Apache Hadoop YARN-based Applications
	About Apache Hadoop YARN and Job Optimization
	Optimizing and Monitoring Your Cluster
	Tuning Controls for Cluster Optimization

	Amazon EMR Cluster Segmentation Schemes
	Cluster Characteristics
	Machine Types and Cluster Sizes
	Applications, Application Versions, and Configuration
	Security
	IAM Roles Specific to Each Smaller Cluster
	Security Controls
	Network Controls

	Disaster recovery

	Common Cluster Segmentation Schemes
	Lifecycle Stages
	Workload Types
	Time-Sensitive Jobs
	Job Length
	Group/Organization Types

	Additional Considerations for Segmentation

	Securing your Resources on Amazon EMR
	EMR Security Best Practices
	Authentication
	Authentication Between User and System
	SSH Keys as Authentication
	Lightweight Directory Access Protocol (LDAP) Authentication
	Kerberos

	Authentication Between Applications
	Kerberos
	Presto
	SSL/TLS Between Nodes

	Authorization
	Application Authorization
	Apache Ranger
	Apache Knox
	Hue, Zeppelin, Hive (LDAP)

	Storage Level Authorization (Amazon S3)
	Separation of EMR Clusters for Different Permissions
	EMR File System (EMRFS) Authorization
	AWS Lake Formation

	Metadata Authorization
	Apache Ranger
	Hive SQL Authorization
	AWS Data Catalog Authorization

	Encryption
	Encryption for Data in Transit
	Encryption for Data at Rest
	Root Volume
	EBS Volumes

	Perimeter Security
	Apache Knox

	Network Security
	Best Practices for Network Security

	Auditing
	Amazon S3
	Apache Ranger
	AWS CloudTrail
	Amazon CloudWatch Logs
	Apache Knox

	Software Patching
	OS Level Patching
	Application Level Patching

	Software Upgrades
	Common Customer Use Cases
	Batch Processing EMR Clusters in a Private Subnet
	Using a Bastion Host/Edge Node
	Separate EMR Clusters for Different Use Cases

	Data Migration
	Using Amazon S3 as the Central Data Repository
	Benefits of using Amazon S3
	Migrating Your Data From On-premises
	Petabytes to Exabytes of Data on a One-time Basis
	AWS Snowball and AWS Snowmobile

	Large Quantities of Data on an Ongoing Basis
	AWS Direct Connect and VPN Connection
	Accessing Amazon S3 from Hadoop
	AWS Glue
	AWS DataSync
	AWS Storage Gateway

	Event and Streaming Data on a Continuous Basis
	AWS Database Migration Service
	Amazon Kinesis Data Firehose

	Optimizing an Amazon S3-Based Central Data Repository
	Optimizing Storage Cost
	Amazon S3 Storage Classes

	Amazon S3 Glacier
	Amazon S3 Lifecycle Management
	Amazon S3 Storage Class Analysis
	Tiering Your Data Lake Storage

	Optimizing Cost and Performance
	Partition the Data
	Use Columnar Data Formats
	Bias Toward Large File Sizes
	Using AWS Glue to Transform and Normalize Data
	Understand How Applications Work with Amazon S3

	Data Catalog Migration
	Hive Metastore Deployment Patterns
	AWS Glue Data Catalog
	Configuration within Amazon EMR Console
	Configuration within AWS CLI or Amazon EMR API
	Considerations

	Amazon RDS or Amazon Aurora
	Create a MySQL or Amazon Aurora Database
	Configure Amazon EMR for External Hive Metastore
	Considerations

	Hive Metastore Migration Options
	One-Time Metastore Migration
	Existing Hive Metastore to AWS Glue Data Catalog
	Existing Hive Metastore to Amazon RDS

	On-going Metastore Sync

	Multitenancy on EMR
	Silo Mode
	Example Silo Scenario

	Shared Mode
	Considerations for Implementing Multitenancy on Amazon EMR
	User Isolation
	Data Isolation
	Resource Isolation

	Extract, Transform, Load (ETL) on Amazon EMR
	Orchestration on Amazon EMR
	Migrating Apache Oozie to Amazon EMR
	Migrate Oozie Database
	Migrate Oozie Jobs
	Considerations

	AWS Services for Orchestration
	AWS Step Functions
	AWS Data Pipeline

	Other Orchestration Options
	Apache Airflow
	Luigi

	Best Practices for Orchestration

	Migrating Apache Spark
	Use Cases for Migrating Apache Spark
	Shared Cluster
	Dedicated Clusters per Job

	Optimize Cost with Amazon EC2 Spot Instances
	Use Instance Fleets
	Spark File Write Performance
	S3 Select with Spark
	EMRFS Consistent View
	AWS Glue Data Catalog
	Troubleshooting Spark jobs on an EMR Cluster

	Migrating Apache Hive
	Hive Metastore
	Upgrading
	Hive Execution Engine
	Tez Container Size

	HDFS vs S3 Considerations
	EMRFS Consistent View
	Hive Tez Merge files
	Hive Blobstore Optimization

	Job Throughput and Scheduling
	Configure FairScheduler
	Modify the yarn-config.json file
	Edit software settings in the console

	Maintaining a High Availability Hive-Based Cluster
	Warm Failover
	Multi-Cluster Configuration
	Ephemeral Design

	Frequently Asked Questions
	How do I implement transactions and compactions on Amazon EMR?
	How to I troubleshoot loading data from Amazon S3?

	Providing Ad Hoc Query Capabilities
	Considerations for Presto
	Choosing between Amazon Athena and PrestoDB
	Metadata Management
	AWS Glue as a Data Catalog
	EMRFS and PrestoS3FileSystem Configuration

	HBase Workloads on Amazon EMR
	HBase Upgrades
	Optimize Bulk Loads on HBase on S3
	Optimize S3 Uploads
	Increase Threads on the Master
	Increase RPC Timeout
	Monitoring your Bulk Load
	Debugging your Bulk Load
	Summary and Examples of Optimization Strategies
	Increasing Threads and RPC Timeout
	Define HBase on S3 Settings and Enable Debugging

	Migrating Apache Impala

	Operational Excellence
	Upgrading Amazon EMR Versions
	Upgrade Process
	Recommended Upgrade Steps
	Research Changes and outstanding issues
	Test a Subset of Applications/Queries
	Fix Issues
	Set up A/B Testing (Recommended)
	Complete Upgrade

	Best Practices for Upgrading

	General Best Practices for Operational Excellence
	Configure all of your EMR clusters as transient clusters
	Provision your resources in an automated way
	Ensure that all of your code, scripts, and other artifacts exist within source control
	Monitor your clusters for abnormal behavior and employ automatic scaling
	Consider using AWS Glue, Amazon Redshift, or Amazon Athena

	Testing and Validation
	Data Quality Overview
	Check your Ingestion Pipeline
	Overall Data Quality Policy
	Estimating Impact of Data Quality
	Compare Statistics
	Quantitative Evaluation
	Qualitative Evaluation

	Validate Model Against Unclean Data Inputs

	Tools to Help with Data Quality
	Apache Griffin
	Deequ

	Support for Your Migration
	AWS Professional Services
	Hadoop Migration Alignment to Amazon EMR and Amazon S3 Data Lake (and AWS Stack)
	Amazon EMR Launch

	AWS Partners
	AWS Support
	Basic Support for Amazon EMR
	AWS Premium Support for Amazon EMR
	Third-Party and Marketplace Support

	Contributors
	Additional Resources
	Blog Posts
	Whitepapers & Guides
	Analysts Reports
	Media

	Document Revisions
	Appendix A: Questionnaire for Requirements Gathering
	Current Cluster Setup
	Cluster Use
	Maintenance
	Use Cases
	Batch Jobs
	Interactive Use Cases
	Amazon Athena Use Cases
	AWS Glue Use Cases

	Security Requirements
	TCO Considerations
	Growth expectations over time

	Appendix B: EMR Kerberos Workflow
	EMR Kerberos Cluster Startup Flow for KDC with One-Way Trust
	EMR Kerberos Flow Through Hue Access
	EMR Kerberos Flow for Directly Interacting with HiveServer2
	EMR Kerberos Cluster Startup Flow

	Appendix C: Sample LDAP Configurations
	Example LDAP Configuration for Hadoop Group Mapping
	Example LDAP Configuration for Hue

	Appendix D: Data Catalog Migration FAQs
	What are some of the limitations of using an AWS Glue Data Catalog over a generic Hive metastore?
	What types of security features are available for an AWS Glue Data Catalog?
	Can multiple Amazon EMR clusters use a single AWS Glue Data Catalog?
	Can an on-premises Hadoop cluster use AWS Glue Data Catalog?
	When should I use a Hive metastore on Amazon RDS over an AWS Glue Data Catalog?

