
Architecting Amazon EKS for
PCI DSS Compliance

December 4, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction ... 6

PCI DSS compliance status of AWS services .. 7

AWS shared responsibility model .. 7

PCI DSS scope determination and validation .. 9

Securing an Amazon EKS Deployment ... 10

Network segmentation ... 10

Host and image hardening ... 13

Data protection ... 15

Tracking and monitoring access .. 18

Conclusion .. 22

Contributors ... 22

Document Revisions ... 22

Abstract

Companies are increasingly adopting the use of microservices and containers within

AWS to support their sensitive data workloads. This paper outlines the best practices

customers should consider when configuring Amazon Elastic Kubernetes Service

(Amazon EKS) for AWS Fargate or Amazon Elastic Compute Cloud (EC2) launch types

for Payment Card Industry Data Security Standard (PCI DSS) version 3.2.1 compliance.

It is not comprehensive of all PCI DSS controls, as some are not applicable to

containers and because customer environments vary.

The intended audience is system architects, developers, security personnel, and risk

and compliance personnel who are interested in architecting their AWS Cloud

environments for PCI DSS compliance.

This document was developed by AWS Security Assurance Services, LLC (AWS SAS),

which is a fully owned subsidiary of Amazon Web Services. AWS SAS is an

independent PCI Qualified Security Assessor (QSA) company (QSAC) that provides

AWS customers and partners with specific and prescriptive information for achieving

PCI DSS compliance in the AWS Cloud.

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 6

Introduction

The Payment Card Industry Data Security Standard (PCI DSS) provides technical and

operational guidance on securing payment card processing environments that is

applicable to people, processes, and technology. Entities that store, process, or transmit

cardholder data (CHD) must validate compliance of their cardholder data environment

(CDE) against the PCI DSS controls. Examples of such entities include merchants,

payment processors, and service providers.

AWS provides many services that have been attested to have met PCI DSS

compliance. You can refer to AWS Artifact, which is a central resource for compliance-

related information that provides on-demand access to AWS’ security and compliance

reports and select online agreements. Companies can use these services to reduce

compliance efforts. One area of continued growth is the use of AWS containerized

solutions.

A service listed as PCI DSS compliant does not mean that by default the use of that

service makes a customer’s environment compliant. Rather, it means the service has

the ability to be configured to meet PCI DSS requirements. Where parameters are

accessible and configurable by customers, it is the customer’s responsibility to ensure

they are configured to meet applicable compliance requirements. There may be

additional AWS services that are not included in the AWS PCI DSS assessment that

can still be used to meet PCI DSS controls.

AWS container solutions include our managed services: Amazon Elastic Container

Service (Amazon ECS) and Amazon Elastic Kubernetes Service (Amazon EKS). Each

service supports deployment containers on either AWS Fargate or Amazon Elastic

Compute Cloud (Amazon EC2). AWS Fargate is a serverless compute engine which

removes the need to provision and manage EC2 instances. For Amazon EC2

deployment, customers manage the underlying EC2 instances which host the

containers.

The benefits of transitioning workloads to container services include platform

independence, speed of deployment, and more efficient utilization of resources. It’s

important, as with any cloud workload, to understand how to architect for security when

adopting containers. The transient and dynamic nature of container environments

creates a continuously changing CDE that may make it difficult to assess.

Attack vectors for containerized applications are similar to those faced by non–

container-based application deployments with the addition of the container orchestration

https://aws.amazon.com/artifact/
https://aws.amazon.com/ecs
https://aws.amazon.com/ecs
https://aws.amazon.com/eks
https://aws.amazon.com/fargate
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 7

layer, referred to as the “control plane”. As with other application deployments, we

recommend that you continue to operate within best practices, including adherence to

Open Web Application Security Project’s (OWASP) concerns.

Container functions are typically architected to perform primary tasks, which in turn

creates a distributed environment. The services implemented by containers become

more network interdependent and require scheduling, scaling, and resource

management. Unlike virtual machines, containers share the operating system’s kernel.

This setup can provide a common point of attack that can be used to access all

containers for a given host. When running multiple containers on a single operating

system, all of the containers may share a common network interface. In this whitepaper,

we will discuss the various solutions that you can build around AWS services to mitigate

this security risk.

PCI DSS compliance status of AWS services

AWS is a Level 1 PCI DSS Service Provider, which enables customers to more easily

meet compliance requirements. The scope of the PCI DSS assessment assumes that

for each service, any data provided by the customer could include primary account

numbers (PAN) and sensitive authentication data (SAD), or impact the security of such

data. The assessment also includes all physical security requirements that apply to

AWS datacenters that support PCI DSS in-scope services.

The AWS Services in Scope by Compliance Program website lists the AWS services

that were included in the annual PCI DSS assessment, along with all other services by

compliance program. AWS service compliance is continually maintained and new

features are assessed to determine if they can inherit the compliance status of the

parent. New services are routinely added to the AWS portfolio and as these are added

to our assessment, they will also appear in this list. Customers can access AWS

compliance documentation through the AWS Management Console using AWS Artifact.

AWS Shared Responsibility Model

Security and Compliance is a shared responsibility between AWS and the customer.

The Shared Responsibility Model helps relieve the customer’s operational burden as

AWS operates, manages, and controls the components from the host operating system

and virtualization layer down to the physical security of the facilities in which the service

operates.

https://owasp.org/www-project-top-ten/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 8

The following figure provides an overview of the Shared Responsibility Model. The line

of responsibility may vary depending upon the implemented AWS service.

Shared Responsibility Model

AWS is responsible for the security and compliance of the Cloud, which refers to the

infrastructure that runs all of the services offered in the AWS Cloud. Cloud security at

AWS is the highest priority. AWS customers benefit from a data center and network

architecture that are built to meet the requirements of the most security-sensitive

organizations. This infrastructure consists of the hardware, software, networking, and

facilities that run AWS Cloud services.

Customers are responsible for the security and compliance in the Cloud, which consists

of customer configured systems and services provisioned on AWS. For PCI DSS

compliance, customer responsibility is all system components, including AWS

resources, in or connected to their CDE. For abstracted services, such as Amazon

Simple Storage Service (Amazon S3) or Amazon DynamoDB, responsibility includes

customer-configurable controls such as access controls, log settings, data lifecycle

policies, and encryption settings.

The division of responsibility will depend on the AWS service and implementation that

the customer selects. Amazon EKS is a good example that allows customers to choose

a serverless deployment of containers with AWS Fargate, or run containers on Amazon

EC2 infrastructure that is accessible by the customer.

https://docs.aws.amazon.com/security/
https://docs.aws.amazon.com/security/
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://aws.amazon.com/dynamodb

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 9

With AWS Fargate, customers are abstracted from the underlying host and are not

responsible for updating or patching the host system. This is in contrast with an Amazon

EKS deployment using Amazon EC2 hosts, where the customer is required to take on a

greater level of responsibility, such as controlling host access and applying security

patches.

If a customer can control a service parameter, then they are responsible for ensuring it

is configured to meet PCI DSS requirements.

PCI DSS scope determination and validation

It is critical is to understand the complete flow of cardholder data (CHD) within the

environment. The CHD flow determines the applicability of the PCI DSS, defines the

boundaries and components of a CDE, and therefore the scope of a PCI DSS

assessment. Accurate determination of the PCI DSS scope is key to defining the

security posture of the assessed workload and ultimately a successful assessment.

Customers must have a procedure for scope determination that assures its

completeness and detects changes or violations of the scope. Typically, the following

steps comprise the PCI DSS scope identification:

1. Identify the CHD flow. Define the lifecycle of CHD including the path of

consumption or entry of CHD in your environment, the subsequent processing

and storing of the CHD, and eventually the secure destruction, devaluation, or

exit of the CHD from your environment.

2. Identify all in-scope resources in your environment. Identify the various

types of AWS resources involved in receiving, processing, storing and

transmitting CHD making up the CHD flow.

3. Categorize the system. Categorize systems into abstracted and infrastructure

services. The scope identification and segmentation of those resources are

based on different types of connection, namely infrastructure service (OSI Layer

3–4) connection and abstracted services (OSI layer 7).

4. Design segmentation boundaries. Design segmentation boundaries to ensure

that all other AWS resources not involved in the CHD flow are segmented from

the CDE to ensure they can be excluded from the PCI DSS scope.

The ephemeral nature of containerized applications provides additional complexities

when considering a dynamically changing scope. As a result, customers need to

maintain an awareness of all container configuration parameters to ensure compliance

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 10

requirements are addressed throughout all phases of a container lifecycle, as will be

illustrated in the following sections.

Securing an Amazon EKS deployment

The following sections provide guidance on key topics that you should consider when

architecting a container-based environment for PCI DSS compliance. These sections

comprise the following categories.

• Network segmentation

• Host and container image hardening

• Data protection

• Restricting user access

• Event logging

• Vulnerability scanning and penetration testing

Each section provides an overview of the requirements along with best practice

recommendations to achieve compliance. The guidance is not all inclusive, as each

customer’s environment is unique. Collectively, the following recommendations provide

a defense-in-depth approach to securing a container-based environment.

Network segmentation

Controls within requirement 1 of the PCI DSS call for installing and maintaining a

firewall to protect cardholder data and require that systems be protected from

unauthorized access. Firewall, in this context, means inbound and outbound access

must be restricted to only approved ports and services. Although the use of network

segmentation is not a PCI DSS requirement, its usage is a highly relevant tool to reduce

the scope of a customer’s environment.

A dedicated AWS account provides the highest level of segmentation boundary that can

be achieved on the AWS platform. By design, all resources provisioned within an AWS

account are logically isolated from resources provisioned in other AWS accounts, even

within your own AWS Organizations. Using an isolated account for PCI DSS workloads

can help to establish strong access segmentation when designing your PCI application

to run on the AWS Cloud.

https://aws.amazon.com/organizations/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 11

Amazon Virtual Private Cloud (VPC) and subnets will provide further logical isolation of

CDE-related resources. You can deploy a VPC and subnets that meet the Amazon EKS

requirements through manual configuration, or by deploying the VPC and subnets

using eksctl, or an Amazon EKS provided AWS CloudFormation template.

Both eksctl and the AWS CloudFormation template create the VPC and subnets with

the required configuration. For more information, refer to Creating a VPC for your

Amazon EKS cluster.

By default, all pod-to-pod communication is allowed within a Kubernetes cluster.

Kubernetes network policies provide a mechanism to restrict network traffic not only

between pods but also between pods and external services. Kubernetes network

policies operate at layers 3 and 4 of the Open Systems Interconnection (OSI) model.

Network policies use pod selectors and labels to identify source and destination pods,

but can also include IP addresses, port numbers, protocol numbers, or a combination of

these. Calico is an open-source policy engine from Tigera that helps with network policy

enforcement and works well with Amazon EKS.

In addition to implementing the full set of Kubernetes network policy features, Calico

supports extended network polices with a richer set of features, including support for

layer 7 rules (for example, HTTP, when integrated with service mesh like AWS

AppMesh or Istio).

Calico policies can be scoped to namespaces, pods, service accounts, or globally.

When policies are scoped to a service account, it associates a set of inbound/outbound

rules with that service account. With the proper Kubernetes role-based access control

(RBAC) rules in place, you can prevent teams from overriding these rules, allowing IT

security professionals to safely delegate administration of namespaces. When you first

provision an EKS cluster, the Calico policy engine is not installed by default. The

manifests for installing Calico can be found in the VPC CNI repository.

Within AWS, security groups act as a virtual firewall and provide stateful inspection. You

can use security groups to restrict communications by IP address, port, and protocol. It

is important to note that, by default, security groups allow all outbound communications.

As a result, you must configure outbound connection rules to meet PCI DSS

requirements. This can be done using Security Groups or an inline security appliance

such as AWS Network Firewall.

AWS Network Firewall is a fully managed, highly-scalable inline firewall which can be

used to secure traffic moving in and out of your CDE. It supports stateless and stateful

firewall rules using a standard, open source rule format.

https://aws.amazon.com/vpc
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://aws.amazon.com/cloudformation
https://docs.aws.amazon.com/eks/latest/userguide/create-public-private-vpc.html#create-vpc
https://docs.aws.amazon.com/eks/latest/userguide/create-public-private-vpc.html#create-vpc
https://docs.projectcalico.org/introduction/
https://tigera.io/
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://istio.io/
https://github.com/aws/amazon-vpc-cni-k8s/tree/master/config
https://aws.amazon.com/network-firewall/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 12

You can also use a diverse ecosystem of partner integrations to provide threat

intelligence, centralized management, and managed rulesets. AWS Network Firewall

can be deployed in a number of different ways to protect East-West (VPC-to-VPC)

traffic, as well as North-South (VPC-to-Internet and Internet-to-VPC) traffic.

Amazon EKS uses Amazon VPC security groups to control the traffic between the

Kubernetes control plane and the cluster’s worker nodes. Security groups are also used

to control the traffic between worker nodes, external IP addresses, and other VPC

resources. It is strongly recommended that you use a dedicated security group for each

control plane (one for each cluster). The minimum and suggested rules for the control

plane and node group security groups can be found in Amazon EKS security group

considerations.

To control communication between services that run within the cluster and services that

run outside of the cluster, consider security groups for pods, which integrate Amazon

EC2 security groups with Kubernetes pods.

You can use Amazon EC2 security groups to define rules that allow inbound and

outbound network traffic to and from pods that you deploy to nodes running on many

Amazon EC2 instance types, or on AWS Fargate. For a complete list of supported

instances, refer to Amazon EC2 supported instances and branch network interfaces.

Your nodes must be one of the supported instance types. Before deploying security

groups for pods, consider the limits and conditions as discussed within the Amazon

EKS User Guide – Security groups for pods.

AWS Fargate runs each pod in its own dedicated kernel runtime environment and does

not share CPU, memory, storage, or network resources with other pods, which helps

ensure improved workload isolation and security. However, because Kubernetes is a

single-tenant orchestrator, potential pod-level intercommunication still exists. You

should group sensitive workloads that need complete security isolation using separate

Amazon EKS clusters.

Optimally, containerized workloads should be grouped based on data sensitivity levels

to more easily facilitate network segmentation. Additionally, Kubernetes namespaces

allow for resource segmentation inside the Kubernetes cluster with logical isolation from

each other. Namespaces provide scope for pods, services, and deployments in the

cluster, so that users interacting with one namespace will not see content in another

namespace. However, namespaces within the same cluster don’t restrict

communication between them. You need network policies for granular control and to

restrict such communications between namespaces.

https://aws.amazon.com/blogs/networking-and-content-delivery/deployment-models-for-aws-network-firewall/
https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html#supported-instance-types
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 13

To summarize, consider the following when working to isolate containerized application

communications:

• Isolate pods on separate nodes based on sensitivity of services and isolate CDE

workloads in a separate cluster with a dedicated Security group.

• Use AWS security groups to limit communication between nodes and control

plane and external communications.

• Implement micro-segmentation with Kubernetes network policies and consider

usage of service mesh, Networking and Cryptography library (NaCI) encryption

and Container Network Interfaces (CNIs) to limit and secure communications.

• Implement a network segmentation and tenant isolation network policy. Network

policies are similar to AWS security groups in that you can create network

ingress and egress rules. Instead of assigning instances to a security group, you

assign network policies to pods using pod selectors and labels. For more

information, refer to Installing Calico on Amazon EKS.

• Ensure that ingress and egress for your CDE is secured, and that allowed flows

are documented.

Host and image hardening

Requirement 2 of the PCI DSS emphasizes the need to disable support for vendor

supplied defaults for system passwords and other security parameters. Amazon

container services, like Amazon EKS, are run on container-optimized Amazon Machine

Images (AMI). These operating systems only contain additional libraries that are

essential for container deployments, and as a result, help to minimize attack vectors.

Customers are still responsible for maintaining compliance of all configurations and

functions at the operating system, network, and application layers. Operating systems

should be routinely patched through the use of AWS Systems Manager whereas non-

essential services and libraries should be disabled or removed. Configuration standards

should be established that are consistent with industry-accepted system hardening

guidelines, such as the Center for Internet Security (CIS) Benchmarks for EC2 instance

types. Additional AWS secure configuration standards support is available on the AWS

Security Learning website.

Consider using a special purpose operating system (OS) like Bottlerocket that includes

a reduced attack surface, a disk image that is verified on boot, and enforced permission

boundaries using SELinux.

https://nacl.cr.yp.to/index.html
https://docs.aws.amazon.com/eks/latest/userguide/calico.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-amis.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-amis.html
https://aws.amazon.com/systems-manager
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_cis.html
https://aws.amazon.com/security/security-resources/
https://aws.amazon.com/security/security-resources/
https://aws.amazon.com/bottlerocket/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 14

Container builds should be limited to only required resources and adopt a model of

microservices where a container provides one primary function. Software architects

should ensure that images do not rely on outdated software libraries and applications

that may contain known vulnerabilities. A best practice is to rebuild container images in

the container registry on a periodic basis to ensure the latest application versions are in

use. The usage of vulnerable libraries may introduce avenues of malicious activity that

are often overlooked.

When managing containers, they should be immutable and not patched in-place.

Customers should create trusted base container images that have been assessed and

confirmed to use patched libraries and applications. Use a trusted registry to secure

container images, such as Amazon Elastic Container Registry (Amazon ECR). Amazon

ECR provides image scanning based upon the Common Vulnerabilities and Exposures

(CVEs) database and can identify common software vulnerabilities.

Amazon Inspector can be used as an automated security assessment service that helps

improve the security and compliance of applications deployed on AWS. Amazon

Inspector automatically assesses applications for exposure, vulnerabilities, and

deviations from best practices.

Customers are responsible for ensuring that their Amazon EC2 instances run

appropriate anti-virus and file integrity monitoring software when choosing the EC2

launch type for Amazon EKS. Many container vendors provide solutions optimized for

container usage to address these requirements.

Alternatively, consider using the AWS Fargate launch type which provides on-demand,

right-sized compute capacity for containers. With AWS Fargate, you no longer have to

provision, configure, or scale groups of virtual machines to run containers. This option

removes the need to choose server types, decide when to scale your node groups, or

optimize cluster packing. Another advantage of using Fargate is that hardening,

patching and monitoring the host system, and the worker node is taken care by AWS.

Additional considerations for choosing Fargate can be found in the Amazon EKS User

Guide.

We recommend that you consider implementing policy governance that can enforce

security and compliance polices with tools like Gatekeeper, Open Policy Agent (OPA),

and dockerfile-lint.

 To summarize, consider the following points for host and image hardening:

• Use an OS optimized for running containers.

https://aws.amazon.com/ecr
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://aws.amazon.com/inspector/
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://github.com/open-policy-agent/gatekeeper
https://www.openpolicyagent.org/
https://github.com/projectatomic/dockerfile_lint

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 15

• Minimize access to worker nodes and deploy the worker nodes in private subnet.

• Run Amazon Inspector to assess hosts for exposure, vulnerabilities, and

deviations.

• Use minimal container images and scan images for vulnerabilities regularly.

Data protection

The PCI DSS controls within requirements 3 and 4 are focused on the need to protect

sensitive data while at rest and in transit. AWS provides a number of PCI DSS

compliant services and features to assist with these compliance efforts.

Workloads that contain sensitive data, such as cardholder data, should secure all

storage of data. Storage of data should be on secure file stores or databases and not on

the underlying container host. System architects should be mindful of volume mounts

and sharing of data between containers, such as host file systems and temporary

storage.

Make sure to secure sensitive data and environment variables, such as database

connection strings that are contained within container build files. Many AWS services

integrate with the AWS Key Management Service (AWS KMS), a PCI DSS compliant

service that provides encryption key management functionality including secure

encryption key storage, access controls, and annual rotation.

AWS Secrets Manager and AWS Systems Manager Parameter Store are two services

that can be used to secure sensitive data within container build files. AWS Systems

Manager Parameter Store provides secure, hierarchical storage of data with no servers

to manage. You can establish granular access and audit controls to help ensure

appropriate restrictions are in place to meet compliance requirements. Data stored

within AWS Systems Manager Parameter Store can be encrypted using AWS KMS.

Similar to AWS Systems Manager Parameter Store, data secured within AWS Secrets

Manager also uses the AWS KMS. AWS Secrets Manager provides additional

capabilities that include random password generation and automatic password rotation.

AWS KMS is a PCI DSS compliant service that is integrated with many AWS platform

services. Users can create and manage cryptographic key material as well as control

who can access and use the encryption keys.

For data in transit, PCI DSS requires that sensitive information be encrypted during

transmission over open, public networks. Customers are responsible for configuring

strong cryptography and security controls.

https://aws.amazon.com/kms/
https://aws.amazon.com/secrets-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 16

AWS provides multiple services, such as Amazon API Gateway and Application Load

Balancer, that support the use of Transport Layer Security (TLS). Policies can be

applied to the services to enforce support of only TLS 1.1 or greater.

Amazon API Gateway and Application Load Balancer also support use of the integrated

AWS WAF – Web Application Firewall to secure communications at the application-

layer. AWS WAF helps protect applications and APIs against common web exploits like

those identified within the OWASP Top 10.

Traffic exchanged between the Nitro instance types C5n, G4, I3en, M5dn, M5n, P3dn,

R5dn, and R5n, is automatically encrypted by default except when there is an

intermediate hop, such as an AWS Transit Gateway or a load balancer. In these

instances, the traffic is not encrypted.

Encryption in transit for inter-pod communication can also be implemented with a

service mesh like AWS App Mesh with support for mTLS.

Inbound traffic controllers are a way for you to intelligently route HTTP/S traffic that

emanates from outside the cluster to services running inside the cluster. Often, inbound

traffic is fronted by a layer 4 load balancer, such as the Classic Load Balancer or the

Network Load Balancer. An inbound traffic controller can be configured to end SSL/TLS

connections.

To summarize, consider the following points for data protection:

• Use AWS KMS for service-managed encryption keys and avail AWS managed

CMKs or rotate your Customer Master Keys (CMKs) periodically.

• Enable support for strong encryption in transit.

• Use envelope encryption of Kubernetes secrets in EKS to add a customer

managed layer of encryption for application secrets or user data that is stored

within a Kubernetes cluster.

• User access.

The controls within requirements 7 and 8 of the PCI DSS are focused on restricting

access to authorized personnel and ensuring appropriate access controls are in place.

Access to resources should embrace a least privilege model where access is on a

need-to-know basis. User access to containers and the underlying host should be

authenticated with strong authentication requirements that align with the PCI DSS.

https://aws.amazon.com/api-gateway
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/waf/
https://owasp.org/www-project-top-ten/
https://docs.aws.amazon.com/app-mesh/latest/userguide/mutual-tls.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 17

Container images should be run with non-privileged user accounts. For instance,

container build files that do not contain defined user credentials will run as root by

default. This setup means that a compromised container service may extend root

privileges to a malicious actor who may use the elevated access to further exploit the

underlying host.

Unlike AWS Fargate where no host access is available, Amazon EKS with EC2 launch

type provide the option to enable secure shell (SSH) access for underlying system

management. Consider disabling the use of secure shell (SSH) and instead use AWS

Systems Manager Run Command. With Run Command, there are no SSH keys to

manage, and all invoked operations are auditable within AWS CloudTrail.

In an effort to create and establish secure container images, restrict all access to

container images. Container deployments should use a private container registry that

restricts access and write permissions, such as Amazon ECR, which integrates with

AWS Identity and Access Management (IAM) for access controls. Amazon ECR is a

scalable container repository that provides secure storage and transmission of container

images. The simplified workflow and integration of Amazon ECR with AWS services

also reduces the need for excessively providing credentialed access to container hosts.

With Amazon EKS and its required IAM authenticator, users sign into the cluster with an

IAM identity—either an IAM user or IAM role. Kubernetes then decides what actions the

user can perform through its role-based access control (RBAC). You must configure

AWS IAM roles to set up authorization at the cluster and infrastructure level. With

RBAC, you can set up authorization to the resource level (for example, particular pod)

or service level (for example, pod). Employ least privileged access when creating Roles

or RoleBindings for namespace level resources and ClusterRole or ClusterRoleBindings

for cluster-level resources.

When you create an Amazon EKS cluster, the IAM entity user or role (such as

a federated user that creates the cluster) is automatically granted system:masters

permissions in the cluster’s RBAC configuration. This access cannot be removed and is

not managed through the aws-auth ConfigMap. Therefore, it is a best practice to create

the cluster with a dedicated IAM role and regularly audit who can assume this role. This

role should not be used to perform routine actions on the cluster, and instead additional

users should be granted access to the cluster through the aws-auth ConfigMap for this

purpose. For more information, refer to Managing users or IAM roles for your cluster.

To summarize, consider the following points for user access:

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://aws.amazon.com/cloudtrail
https://aws.amazon.com/iam
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 18

• Employ least privileged access to AWS resources when creating RoleBindings

and ClusterRoleBindings.

• Use IAM Roles when multiple users need identical access to the cluster and IAM

Roles for Service Accounts (ISRA) where possible.

• Make the Amazon EKS cluster endpoint private.

• Create the cluster with a dedicated IAM role which should be regularly audited.

• Regularly audit access to the cluster.

• Run the application as a non-root user.

Tracking and monitoring access

Event logging

The core control within requirement 10 of the PCI DSS is the need to use event logging

mechanisms to track, monitor, and alert on potentially anomalous activities. In a

dynamic, containerized environment it is essential to maintain a robust, centralized

logging infrastructure and to ensure that logs are shipped immediately from the

container to a secure store for retention and analysis.

Use AWS event log services to establish event log monitoring at the network, host, and

container level. Enable VPC Flow Logs to capture network traffic that details packet

information, such as the protocol, port, and source and destination address information.

Monitor container hosts to ensure health, efficiency, and availability by ensuring

Amazon CloudWatch or Amazon Kinesis agents are enabled and configured.

Enable event logging capabilities within the containerized applications to capture

application and container event log data. Use CloudWatch dashboard to monitor and

alert on all captured event log activity. Store the captured event data securely within

encrypted Amazon S3 buckets to help you meet your retention requirements.

Amazon EKS with Fargate supports a built-in log router, which means there are no

sidecar containers to install or maintain. The log router allows you to use the breadth of

services at AWS for log analytics and storage. You can stream logs from Fargate

directly to Amazon CloudWatch, Amazon OpenSearch Service, and Amazon Kinesis

Data Firehose destinations such as Amazon S3, Amazon Kinesis Data Streams, and

partner tools. Fargate uses a version of Fluent Bit, an upstream compliant distribution of

Fluent Bit managed by AWS. For more information, refer to AWS for Fluent Bit on

GitHub.

https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/kinesis
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 19

You should maintain a holistic view of the environment through the use of AWS tools.

Amazon GuardDuty provides threat detection through anomaly detection, machine

learning, and threat intelligence of events across AWS data sources, including AWS

CloudTrail and VPC Flow Logs. Amazon Athena and Amazon CloudWatch Logs

Insights can also be used to query and analyze audit trail logs saved to Amazon S3

from VPC Flow Logs, AWS CloudTrail, and Amazon CloudWatch.

It is strongly recommended that a dedicated Audit account is used, to which access is

strictly limited, and where all security and operational logs, including AWS CloudTrail

and application logs are stored. Within this account, consider the use of configuration

options such as S3 MFA-delete, S3 file versioning, and S3 Lifecycle Policies, to ensure

that data is retained and cannot be tampered with. Similarly we recommend using AWS

Organizations and service control policies to ensure that critical configuration, such as

security logging configuration, cannot be altered or disabled.

Finally, you should consider the use of tools to support the assessment of risk and

compliance within your AWS accounts. AWS Audit Manager has support for the latest

PCI-DSS v3.2.1 through a prebuilt framework and offers features such as automated

evidence collection and audit-ready reports.

To summarize, consider the following points for monitoring and logging:

• Enable EKS Cluster audit logs.

• Use Kubernetes audit metadata annotations for authorization history tracking.

• Create alarms for suspicious events.

• Analyze logs with Amazon CloudWatch Log Insights.

• Audit your AWS CloudTrail logs.

• Use AWS Organizations and service control policies to ensure that security

controls cannot be circumvented or disabled.

Network intrusion detection

Controls within requirement 11 of the PCI DSS specify the use of intrusion-detection

and intrusion-prevention techniques to detect and prevent intrusions into the network.

The standard requires monitoring of all traffic at the perimeter and critical points of the

CDE. With most on-premises environments, the requirements are typically met by using

Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) appliances. A

similar approach can be used within AWS.

https://aws.amazon.com/guardduty
https://aws.amazon.com/athena
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples.html
https://aws.amazon.com/audit-manager/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 20

When considering containerized environments, inspection of network traffic can be done

at the network layer outside of the container host and within the container management

software’s virtual container network.

There are several options that can be considered for inspection of network data outside

of the container host on AWS. Amazon GuardDuty is a managed service that provides

threat detection across multiple AWS data sources to identify threats. It uses machine

learning, anomaly detection, and threat intelligence to help identify illicit network activity.

When considering a traditional IDS/IPS solution, Amazon VPC Traffic Mirroring can be

configured to route a copy of all network communications to a virtual appliance running

on one or more Amazon EC2 instances.

Another common solution is to use a transit network architecture that uses IP routing to

ensure that all network traffic crosses a single network. This architecture allows you to

use a virtual IDS/IPS device from the AWS Marketplace to inspect all traffic transiting

between networks. It is possible to also use a VPC Gateway to route all traffic to on-

premises IDS/IPS infrastructure. Lastly, host-based IDS or IPS solutions can also be

used to inspect traffic as it is delivered to an Amazon EC2 instance.

Inspection of inter-container communications on the virtual container network is another

viable option. There are vendors within the AWS Marketplace that provide IDS container

solutions, which mostly use a side container to monitor and alert on unusual traffic

patterns. Agent based solutions are also available that use machine learning to detect

anomalous communication patterns among the containers.

The security measures put into place will depend heavily on the architecture of the

environment. Traffic detection at the network layer will require advanced planning of

container deployments and traffic patterns.

Vulnerability scanning and penetration testing

The PCI DSS control requirement 11.2 requires organizations to regularly test systems

and processes to identify vulnerabilities and remediate such findings in a timely manner.

Vulnerability scanning should be performed on a quarterly basis as well as after any

significant changes to the environment. Similarly, penetration testing is to be performed

on an annual basis and after any significant environment changes. Penetration testing

of AWS resources is allowed at any time for certain permitted services. The AWS

support policy for penetration testing should be consulted for further details, or consult

with your account team.

https://aws.amazon.com/guardduty
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html
https://aws.amazon.com/marketplace/
https://aws.amazon.com/security/penetration-testing/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 21

Service providers using network segmentation are required to test the effectiveness of

segmentation controls every six months - or after any changes to the segmentation

controls.

The scope of the assessment activities will include the CDE and ancillary systems used

in support of the CDE. Refer to the PCI DSS Information Supplement: Penetration

Testing Guidance for scope and methodology guidance when performing penetration

testing.

Depending upon a customer’s environment, the test requirements may apply to on-

premises, cloud resources, and containerized environments. When deploying Amazon

EKS on Amazon EC2 instances, customers must perform vulnerability scanning of the

underlying host.

According to the PCI DSS requirement, customers are responsible for establishing a

process to identify security vulnerabilities, and assigning a risk ranking to newly

discovered security vulnerabilities. Amazon Inspector is a security assessment tool that

helps identify vulnerabilities and prioritizes findings by level of severity. Integration of

Amazon Inspector within the DevOps process provides for assessment automation to

proactively identify vulnerabilities and to check for unintended network accessibility of

your nodes.

You can also use container specific scanning tools to scan container images for

vulnerabilities. Container scanning identifies non-compliant code, vulnerable libraries,

and potentially exposed secrets. Security vendors within the AWS Marketplace provide

solutions capable of scanning systems, containers, and applications.

When performing internal and external penetration testing, assessment activities should

be done at both a network and application layer and should target the underlying host

and containerized applications. Patch container hosts to address vulnerabilities and

update container images to mitigate identified container vulnerabilities. Create golden

images for containers and securely store them within private container registries, such

as Amazon ECR.

The Center for Internet Security (CIS) Kubernetes Benchmark provides guidance for

Amazon EKS node security configurations. It can be run using kube-bench, a standard

open source tool for checking configuration using the CIS benchmark on Kubernetes

clusters. To learn more, refer to Introducing the CIS Amazon EKS Benchmark.

https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://aws.amazon.com/inspector/
https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench
https://aws.amazon.com/blogs/containers/introducing-cis-amazon-eks-benchmark/

Amazon Web Services Architecting Amazon EKS for PCI DSS Compliance

 22

Conclusion

AWS provides multiple services to support customers’ containerized workloads, and

customers can configure the services to best meet their data processing needs.

Because of this flexibility, organizations must maintain an awareness of all compliance

requirements throughout the lifecycle of their container deployments as per the AWS

Shared Responsibility Model. Methods of security mitigation outlined within this

whitepaper will help customers to address PCI DSS compliance requirements for their

containerized workloads.

Contributors

The following individuals and organizations contributed to this document:

• Arindam Chatterji, Sr. Solutions Architect, AWS

• Tim Sills, Sr. Solutions Architect, AWS

• Dave Barton, Principal Solutions Architect, AWS

Document revisions

Date Description

December 4, 2021 Second publication

June 25, 2021 First publication

