
Archived
Performance Efficiency Pillar

AWS Well-Architected Framework

July 2020

This paper has been archived.

The latest version is now available at:
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

Archived

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

Contents

Introduction .. 1

Performance Efficiency ... 1

Design Principles.. 2

Definition ... 2

Selection .. 4

Performance Architecture Selection .. 4

Compute Architecture Selection .. 8

Storage Architecture Selection .. 14

Database Architecture Selection ... 17

Network Architecture Selection .. 21

Review ... 29

Evolve Your Workload to Take Advantage of New Releases 30

Monitoring .. 32

Monitor Your Resources to Ensure That They Are Performing as Expected 33

Trade-offs... 35

Using Trade-offs to Improve Performance .. 36

Conclusion ... 38

Contributors ... 38

Further Reading ... 38

Document Revisions.. 39

Archived

Abstract

This whitepaper focuses on the performance efficiency pillar of the Amazon Web

Services (AWS) Well-Architected Framework. It provides guidance to help customers

apply best practices in the design, delivery, and maintenance of AWS environments.

The performance efficiency pillar addresses best practices for managing production

environments. This paper does not cover the design and management of non-

production environments and processes, such as continuous integration or delivery.

https://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Archived

Amazon Web Services Performance Efficiency Pillar

 1

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons of

decisions you make while building workloads on AWS. Using the Framework helps you

learn architectural best practices for designing and operating reliable, secure, efficient,

and cost-effective workloads in the cloud. The Framework provides a way for you to

consistently measure your architectures against best practices and identify areas for

improvement. We believe that having well-architected workloads greatly increases the

likelihood of business success.

The framework is based on five pillars:

• Operational Excellence

• Security

• Reliability

• Performance Efficiency

• Cost Optimization

This paper focuses on applying the principles of the performance efficiency pillar to your

workloads. In traditional, on-premises environments, achieving high and lasting

performance is challenging. Using the principles in this paper will help you build

architectures on AWS that efficiently deliver sustained performance over time.

This paper is intended for those in technology roles, such as chief technology officers

(CTOs), architects, developers, and operations team members. After reading this paper,

you’ll understand AWS best practices and strategies to use when designing a

performant cloud architecture. This paper does not provide implementation details or

architectural patterns. However, it does include references to appropriate resources.

Performance Efficiency

The performance efficiency pillar focuses on the efficient use of computing resources to

meet requirements, and how to maintain efficiency as demand changes and

technologies evolve.

https://aws.amazon.com/architecture/well-architected/

Archived

Amazon Web Services Performance Efficiency Pillar

 2

Design Principles

The following design principles can help you achieve and maintain efficient workloads in

the cloud.

• Democratize advanced technologies: Make advanced technology

implementation easier for your team by delegating complex tasks to your cloud

vendor. Rather than asking your IT team to learn about hosting and running a

new technology, consider consuming the technology as a service. For example,

NoSQL databases, media transcoding, and machine learning are all technologies

that require specialized expertise. In the cloud, these technologies become

services that your team can consume, allowing your team to focus on product

development rather than resource provisioning and management.

• Go global in minutes: Deploying your workload in multiple AWS Regions

around the world allows you to provide lower latency and a better experience for

your customers at minimal cost.

• Use serverless architectures: Serverless architectures remove the need for

you to run and maintain physical servers for traditional compute activities. For

example, serverless storage services can act as static websites (removing the

need for web servers) and event services can host code. This removes the

operational burden of managing physical servers, and can lower transactional

costs because managed services operate at cloud scale.

• Experiment more often: With virtual and automatable resources, you can

quickly carry out comparative testing using different types of instances, storage,

or configurations.

• Consider mechanical sympathy: Use the technology approach that aligns best

with your goals. For example, consider data access patterns when you select

database or storage approaches.

Definition

Focus on the following areas to achieve performance efficiency in the cloud:

• Selection

• Review

• Monitoring

Archived

Amazon Web Services Performance Efficiency Pillar

 3

• Trade-offs

Take a data-driven approach to building a high-performance architecture. Gather data

on all aspects of the architecture, from the high-level design to the selection and

configuration of resource types.

Reviewing your choices on a regular basis, ensures that you are taking advantage of

the continually evolving AWS Cloud. Monitoring ensures that you are aware of any

deviance from expected performance. Make trade-offs in your architecture to improve

performance, such as using compression or caching, or relaxing consistency

requirements.

Archived

Amazon Web Services Performance Efficiency Pillar

 4

Selection

The optimal solution for a particular workload varies, and solutions often combine

multiple approaches. Well-architected workloads use multiple solutions and enable

different features to improve performance.

AWS resources are available in many types and configurations, which makes it easier

to find an approach that closely matches your needs. You can also find options that are

not easily achievable with on-premises infrastructure. For example, a managed service

such as Amazon DynamoDB provides a fully managed NoSQL database with single-

digit millisecond latency at any scale.

Performance Architecture Selection

Often, multiple approaches are required to get optimal performance across a workload.

Well-architected systems use multiple solutions and enable different features to improve

performance.

Use a data-driven approach to select the patterns and implementation for your

architecture and achieve a cost effective solution. AWS Solutions Architects, AWS

Reference Architectures, and AWS Partner Network (APN) partners can help you select

an architecture based on industry knowledge, but data obtained through benchmarking

or load testing will be required to optimize your architecture.

Your architecture will likely combine a number of different architectural approaches (for

example, event-driven, ETL, or pipeline). The implementation of your architecture will

use the AWS services that are specific to the optimization of your architecture's

performance. In the following sections we discuss the four main resource types to

consider (compute, storage, database, and network).

Understand the available services and resources: Learn about and understand the

wide range of services and resources available in the cloud. Identify the relevant

services and configuration options for your workload, and understand how to achieve

optimal performance.

If you are evaluating an existing workload, you must generate an inventory of the

various services resources it consumes. Your inventory helps you evaluate which

components can be replaced with managed services and newer technologies.

Define a process for architectural choices: Use internal experience and knowledge

of the cloud, or external resources such as published use cases, relevant

https://aws.amazon.com/architecture/
https://aws.amazon.com/architecture/
https://aws.amazon.com/partners/

Archived

Amazon Web Services Performance Efficiency Pillar

 5

documentation, or whitepapers to define a process to choose resources and services.

You should define a process that encourages experimentation and benchmarking with

the services that could be used in your workload.

When you write critical user stories for your architecture, you should include

performance requirements, such as specifying how quickly each critical story should

execute. For these critical stories, you should implement additional scripted user

journeys to ensure that you have visibility into how these stories perform against your

requirements.

Factor cost requirements into decisions: Workloads often have cost requirements for

operation. Use internal cost controls to select resource types and sizes based on

predicted resource need.

Determine which workload components could be replaced with fully managed services,

such as managed databases, in-memory caches, and other services. Reducing your

operational workload allows you to focus resources on business outcomes.

For cost requirement best practices, refer to the Cost-Effective Resources section of the

Cost Optimization Pillar whitepaper .

Use policies or reference architectures: Maximize performance and efficiency by

evaluating internal policies and existing reference architectures and using your analysis

to select services and configurations for your workload.

Use guidance from your cloud provider or an appropriate partner: Use cloud

company resources, such as solutions architects, professional services, or an

appropriate partner to guide your decisions. These resources can help review and

improve your architecture for optimal performance.

Reach out to AWS for assistance when you need additional guidance or product

information. AWS Solutions Architects and AWS Professional Services provide

guidance for solution implementation. APN Partners provide AWS expertise to help you

unlock agility and innovation for your business

Benchmark existing workloads: Benchmark the performance of an existing workload

to understand how it performs on the cloud. Use the data collected from benchmarks to

drive architectural decisions.

Use benchmarking with synthetic tests to generate data about how your workload’s

components perform. Benchmarking is generally quicker to set up than load testing and

https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar.pdf
https://aws.amazon.com/professional-services/
https://aws.amazon.com/partners/

Archived

Amazon Web Services Performance Efficiency Pillar

 6

is used to evaluate the technology for a particular component. Benchmarking is often

used at the start of a new project, when you lack a full solution to load test.

You can either build your own custom benchmark tests, or you can use an industry

standard test, such as TPC-DS to benchmark your data warehousing workloads.

Industry benchmarks are helpful when comparing environments. Custom benchmarks

are useful for targeting specific types of operations that you expect to make in your

architecture.

When benchmarking, it is important to pre-warm your test environment to ensure valid

results. Run the same benchmark multiple times to ensure that you’ve captured any

variance over time.

Because benchmarks are generally faster to run than load tests, they can be used

earlier in the deployment pipeline and provide faster feedback on performance

deviations. When you evaluate a significant change in a component or service, a

benchmark can be a quick way to see if you can justify the effort to make the change.

Using benchmarking in conjunction with load testing is important because load testing

informs you about how your workload will perform in production.

Load test your workload: Deploy your latest workload architecture on the cloud using

different resource types and sizes. Monitor the deployment to capture performance

metrics that identify bottlenecks or excess capacity. Use this performance information to

design or improve your architecture and resource selection.

Load testing uses your actual workload so you can see how your solution performs in a

production environment. Load tests must be executed using synthetic or sanitized

versions of production data (remove sensitive or identifying information). Use replayed

or pre-programmed user journeys through your workload at scale that exercise your

entire architecture. Automatically carry out load tests as part of your delivery pipeline,

and compare the results against pre-defined KPIs and thresholds. This ensures that you

continue to achieve required performance.

Amazon CloudWatch can collect metrics across the resources in your architecture. You

can also collect and publish custom metrics to surface business or derived metrics. Use

CloudWatch to set alarms that indicate when thresholds are breached and signal that a

test is outside of the expected performance.

Using AWS services, you can run production-scale environments to test your

architecture aggressively. Since you only pay for the test environment when it is

needed, you can carry out full-scale testing at a fraction of the cost of using an on-

http://www.tpc.org/tpcds/default.asp
https://aws.amazon.com/cloudwatch/

Archived

Amazon Web Services Performance Efficiency Pillar

 7

premises environment. Take advantage of the AWS Cloud to test your workload to see

where it fails to scale, or scales in a non-linear way. You can use Amazon EC2 Spot

Instances to generate loads at low costs and discover bottlenecks before they are

experienced in production.

When load tests take considerable time to execute, parallelize them using multiple

copies of your test environment. Your costs will be similar, but your testing time will be

reduced. (It costs the same to run one EC2 instance for 100 hours as it does to run 100

instances for one hour.) You can also lower the costs of load testing by using Spot

Instances and selecting Regions that have lower costs than the Regions you use for

production.

The location of your load test clients should reflect the geographic spread of your end

users.

Resources

Refer to the following resources to learn more about AWS best practices for load

testing.

Videos

• Introducing The Amazon Builders’ Library (DOP328)

Documentation

• AWS Architecture Center

• Amazon S3 Performance Optimization

• Amazon EBS Volume Performance

• AWS CodeDeploy

• AWS CloudFormation

• Load Testing CloudFront

• AWS CloudWatch Dashboards

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://www.youtube.com/watch?v=sKRdemSirDM
https://aws.amazon.com/architecture/
http://docs.aws.amazon.com/AmazonS3/latest/dev/PerformanceOptimization.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/load-testing.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

Archived

Amazon Web Services Performance Efficiency Pillar

 8

Compute Architecture Selection

The optimal compute choice for a particular workload can vary based on application

design, usage patterns, and configuration settings. Architectures may use different

compute choices for various components and enable different features to improve

performance. Selecting the wrong compute choice for an architecture can lead to lower

performance efficiency.

Evaluate the available compute options: Understand the performance characteristics

of the compute-related options available to you. Know how instances, containers, and

functions work, and what advantages, or disadvantages, they bring to your workload.

In AWS, compute is available in three forms: instances, containers, and functions:

Instances

Instances are virtualized servers, allowing you to change their capabilities with a button

or an API call. Because resource decisions in the cloud aren’t fixed, you can experiment

with different server types. At AWS, these virtual server instances come in different

families and sizes, and they offer a wide variety of capabilities, including solid-state

drives (SSDs) and graphics processing units (GPUs).

Amazon Elastic Compute Cloud (Amazon EC2) virtual server instances come in

different families and sizes. They offer a wide variety of capabilities, including solid-state

drives (SSDs) and graphics processing units (GPUs). When you launch an EC2

instance, the instance type that you specify determines the hardware of the host

computer used for your instance. Each instance type offers different compute, memory,

and storage capabilities. Instance types are grouped in instance families based on

these capabilities.

Use data to select the optimal EC2 instance type for your workload, ensure that you

have the correct networking and storage options, and consider operating system

settings that can improve the performance for your workload.

Containers

Containers are a method of operating system virtualization that allow you to run an

application and its dependencies in resource-isolated processes.

When running containers on AWS, you have two choices to make. First, choose

whether or not you want to manage servers. AWS Fargate is serverless compute for

containers, or Amazon EC2 can be used if you need control over the installation,

https://aws.amazon.com/ec2/
https://aws.amazon.com/fargate/

Archived

Amazon Web Services Performance Efficiency Pillar

 9

configuration, and management of your compute environment. Second, choose which

container orchestrator to use: Amazon Elastic Container Service (ECS) or Amazon

Elastic Kubernetes Service (EKS)

Amazon Elastic Container Service (Amazon ECS) is a fully managed container

orchestration service that allows you to automatically execute and manage containers

on a cluster of EC2 instances or serverless instances using AWS Fargate. You can

natively integrate Amazon ECS with other services such as Amazon Route 53, Secrets

Manager, AWS Identity and Access Management (IAM), and Amazon CloudWatch.

Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed Kubernetes

service. You can choose to run your EKS clusters using AWS Fargate, removing the

need to provision and manage servers. EKS is deeply integrated with services such as

Amazon CloudWatch, Auto Scaling Groups, AWS Identity and Access Management

(IAM), and Amazon Virtual Private Cloud (VPC).

When using containers, you must use data to select the optimal type for your workload

— just as you use data to select your EC2 or AWS Fargate instance types. Consider

container configuration options such as memory, CPU, and tenancy configuration. To

enable network access between container services, consider using a service mesh such

as AWS App Mesh, which standardizes how your services communicate. Service mesh

gives you end-to-end visibility and ensures high-availability for your applications.

Functions

Functions abstract the execution environment from the code you want to execute. For

example, AWS Lambda allows you to execute code without running an instance.

You can use AWS Lambda to run code for any type of application or backend service

with zero administration. Simply upload your code, and AWS Lambda will manage

everything required to run and scale that code. You can set up your code to

automatically trigger from other AWS services, call it directly, or use it with Amazon API

Gateway.

Amazon API Gateway is a fully managed service that makes it easy for developers to

create, publish, maintain, monitor, and secure APIs at any scale. You can create an API

that acts as a “front door” to your Lambda function. API Gateway handles all the tasks

involved in accepting and processing up to hundreds of thousands of concurrent API

calls, including traffic management, authorization and access control, monitoring, and

API version management.

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

Archived

Amazon Web Services Performance Efficiency Pillar

 10

To deliver optimal performance with AWS Lambda, choose the amount of memory you

want for your function. You are allocated proportional CPU power and other resources.

For example, choosing 256 MB of memory allocates approximately twice as much CPU

power to your Lambda function as requesting 128 MB of memory. You can control the

amount of time each function is allowed to run (up to a maximum of 300 seconds).

Understand the available compute configuration options: Understand how various

options complement your workload, and which configuration options are best for your

system. Examples of these options include instance family, sizes, features (GPU, I/O),

function sizes, container instances, and single versus multi-tenancy.

When selecting instance families and types, you must also consider the configuration

options available to meet your workload’s needs:

• Graphics Processing Units (GPU) — Using general purpose computing on

GPUs (GPGPU), you can build applications that benefit from the high degree of

parallelism that GPUs provide by leveraging platforms (such as CUDA) in the

development process. If your workload requires 3D rendering or video

compression, GPUs enable hardware-accelerated computation and encoding,

making your workload more efficient.

• Field Programmable Gate Arrays (FPGA) — Using FPGAs, you can optimize

your workloads by having custom hardware-accelerated execution for your most

demanding workloads. You can define your algorithms by leveraging supported

general programming languages such as C or Go, or hardware-oriented

languages such as Verilog or VHDL.

• AWS Inferentia (Inf1) — Inf1 instances are built to support machine learning

inference applications. Using Inf1 instances, customers can run large scale

machine learning inference applications like image recognition, speech

recognition, natural language processing, personalization, and fraud detection.

You can build a model in one of the popular machine learning frameworks such

as TensorFlow, PyTorch, or MXNet and use GPU instances such as P3 or P3dn

to train your model. After your machine learning model is trained to meet your

requirements, you can deploy your model on Inf1 instances by using AWS

Neuron, a specialized software development kit (SDK) consisting of a compiler,

run-time, and profiling tools that optimize the machine learning inference

performance of Inferentia chips.

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/machine-learning/neuron/
https://aws.amazon.com/machine-learning/neuron/

Archived

Amazon Web Services Performance Efficiency Pillar

 11

• Burstable instance families — Burstable instances are designed to provide

moderate baseline performance and the capability to burst to significantly higher

performance when required by your workload. These instances are intended for

workloads that do not use the full CPU often or consistently, but occasionally

need to burst. They are well suited for general-purpose workloads, such as web

servers, developer environments, and small databases. These instances provide

CPU credits that can be consumed when the instance must provide performance.

Credits accumulate when the instance doesn’t need them.

• Advanced computing features — Amazon EC2 gives you access to advanced

computing features, such as managing C-state and P-state registers and

controlling turbo-boost of processors. Access to co- processors allows

cryptography operations offloading through AES-NI, or advanced computation

through AVX extensions.

The AWS Nitro System is a combination of dedicated hardware and lightweight

hypervisor enabling faster innovation and enhanced security. Utilize AWS Nitro Systems

when available to enable full consumption of the compute and memory resources of the

host hardware. Additionally, dedicated Nitro Cards enable high speed networking, high

speed EBS, and I/O acceleration.

Collect compute-related metrics: One of the best ways to understand how your

compute systems are performing is to record and track the true utilization of various

resources. This data can be used to make more accurate determinations about

resource requirements.

Workloads (such as those running on microservices architectures) can generate large

volumes of data in the form of metrics, logs, and events. Determine if your existing

monitoring and observability service can manage the data generated. Amazon

CloudWatch can be used to collect, access, and correlate this data on a single platform

from across all your AWS resources, applications, and services running on AWS and

on-premises servers, so you can easily gain system-wide visibility and quickly resolve

issues.

Determine the required configuration by right-sizing: Analyze the various

performance characteristics of your workload and how these characteristics relate to

memory, network, and CPU usage. Use this data to choose resources that best match

your workload's profile. For example, a memory-intensive workload, such as a

database, could be served best by the r-family of instances. However, a bursting

workload can benefit more from an elastic container system.

https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/ec2/nitro/

Archived

Amazon Web Services Performance Efficiency Pillar

 12

Use the available elasticity of resources: The cloud provides the flexibility to expand

or reduce your resources dynamically through a variety of mechanisms to meet

changes in demand. Combined with compute-related metrics, a workload can

automatically respond to changes and utilize the optimal set of resources to achieve its

goal.

Optimally matching supply to demand delivers the lowest cost for a workload, but you

also must plan for sufficient supply to allow for provisioning time and individual resource

failures. Demand can be fixed or variable, requiring metrics and automation to ensure

that management does not become a burdensome and disproportionately large cost.

With AWS, you can use a number of different approaches to match supply with

demand. The Cost Optimization Pillar whitepaper describes how to use the following

approaches to cost:

• Demand-based approach

• Buffer-based approach

• Time-based approach

You must ensure that workload deployments can handle both scale-up and scale-down

events. Create test scenarios for scale-down events to ensure that the workload

behaves as expected.

Re-evaluate compute needs based on metrics: Use system-level metrics to identify

the behavior and requirements of your workload over time. Evaluate your workload's

needs by comparing the available resources with these requirements and make

changes to your compute environment to best match your workload's profile. For

example, over time a system might be observed to be more memory-intensive than

initially thought, so moving to a different instance family or size could improve both

performance and efficiency.

Resources

Refer to the following resources to learn more about AWS best practices for compute.

Videos

• Amazon EC2 foundations (CMP211-R2)

• Powering next-gen Amazon EC2: Deep dive into the Nitro system

• Deliver high performance ML inference with AWS Inferentia (CMP324-R1)

https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar.pdf
https://www.youtube.com/watch?v=kMMybKqC2Y0
https://www.youtube.com/watch?v=rUY-00yFlE4
https://www.youtube.com/watch?v=17r1EapAxpk

Archived

Amazon Web Services Performance Efficiency Pillar

 13

• Optimize performance and cost for your AWS compute (CMP323-R1)

• Better, faster, cheaper compute: Cost-optimizing Amazon EC2 (CMP202-R1)

Documentation

• Instances:

o Instance Types

o Processor State Control for Your EC2 Instance

• EKS Containers: EKS Worker Nodes

• ECS Containers: Amazon ECS Container Instances

• Functions: Lambda Function Configuration

https://www.youtube.com/watch?v=zt6jYJLK8sg
https://www.youtube.com/watch?v=_dvh4P2FVbw
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#function-configuration

Archived

Amazon Web Services Performance Efficiency Pillar

 14

Storage Architecture Selection

The optimal storage solution for a particular system varies based on the kind of access

method (block, file, or object), patterns of access (random or sequential), throughput

required, frequency of access (online, offline, archival), frequency of update (WORM,

dynamic), and availability and durability constraints. Well-architected systems use

multiple storage solutions and enable different features to improve performance.

In AWS, storage is virtualized and is available in a number of different types. This

makes it easier to match your storage methods with your needs, and offers storage

options that are not easily achievable with on-premises infrastructure. For example,

Amazon S3 is designed for 11 nines of durability. You can also change from using

magnetic hard disk drives (HDDs) to SSDs, and easily move virtual drives from one

instance to another in seconds.

Performance can be measured by looking at throughput, input/output operations per

second (IOPS), and latency. Understanding the relationship between those

measurements will help you select the most appropriate storage solution.

Storage Services Latency Throughput Shareable

Block Amazon EBS,

EC2 instance

store

Lowest,

consistent
Single

Mounted on EC2 instance,

copies via snapshots

File system Amazon EFS,

Amazon FSx

Low,

consistent
Multiple Many clients

Object Amazon S3 Low-latency Web scale Many clients

Archival Amazon S3

Glacier

Minutes to

hours
High No

From a latency perspective, if your data is only accessed by one instance, then you

should use block storage, such as Amazon EBS. Distributed file systems such as

Amazon EFS generally have a small latency overhead for each file operation, so they

should be used where multiple instances need access.

https://aws.amazon.com/ebs
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/
https://aws.amazon.com/s3/
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/

Archived

Amazon Web Services Performance Efficiency Pillar

 15

Amazon S3 has features than can reduce latency and increase throughput. You can

use cross-region replication (CRR) to provide lower-latency data access to different

geographic regions.

From a throughput perspective, Amazon EFS supports highly parallelized workloads (for

example, using concurrent operations from multiple threads and multiple EC2

instances), which enables high levels of aggregate throughput and operations per

second. For Amazon EFS, use a benchmark or load test to select the appropriate

performance mode.

Understand storage characteristics and requirements: Understand the different

characteristics (for example, shareable, file size, cache size, access patterns, latency,

throughput, and persistence of data) that are required to select the services that best fit

your workload, such as object storage, block storage, file storage, or instance storage.

Determine the expected growth rate for your workload and choose a storage solution

that will meet those rates. Object and file storage solutions, such as Amazon S3 and

Amazon Elastic File System, enable unlimited storage; Amazon EBS have pre-

determined storage sizes. Elastic volumes allow you to dynamically increase capacity,

tune performance, and change the type of any new or existing current generation

volume with no downtime or performance impact, but it requires OS filesystem changes.

Evaluate available configuration options: Evaluate the various characteristics and

configuration options and how they relate to storage. Understand where and how to use

provisioned IOPS, SSDs, magnetic storage, object storage, archival storage, or

ephemeral storage to optimize storage space and performance for your workload.

Amazon EBS provides a range of options that allow you to optimize storage

performance and cost for your workload. These options are divided into two major

categories: SSD-backed storage for transactional workloads, such as databases and

boot volumes (performance depends primarily on IOPS), and HDD-backed storage for

throughput-intensive workloads, such as MapReduce and log processing (performance

depends primarily on MB/s).

SSD-backed volumes include the highest performance provisioned IOPS SSD for

latency-sensitive transactional workloads and general purpose SSD that balance price

and performance for a wide variety of transactional data.

Amazon S3 transfer acceleration enables fast transfer of files over long distances

between your client and your S3 bucket. Transfer acceleration leverages Amazon

CloudFront globally distributed edge locations to route data over an optimized network

https://aws.amazon.com/ebs
https://aws.amazon.com/s3/transfer-acceleration/

Archived

Amazon Web Services Performance Efficiency Pillar

 16

path. For a workload in an S3 bucket that has intensive GET requests, use Amazon S3

with CloudFront. When uploading large files, use multi-part uploads with multiple parts

uploading at the same time to help maximize network throughput.

Amazon Elastic File System (Amazon EFS) provides a simple, scalable, fully managed

elastic NFS file system for use with AWS Cloud services and on-premises resources.

To support a wide variety of cloud storage workloads, Amazon EFS offers two

performance modes: general purpose performance mode, and max I/O performance

mode. There are also two throughput modes to choose from for your file system,

Bursting Throughput, and Provisioned Throughput. To determine which settings to use

for your workload, see the Amazon EFS User Guide.

Amazon FSx provides two file systems to choose from: Amazon FSx for Windows File

Server for enterprise workloads and Amazon FSx for Lustre for high-performance

workloads. FSx is SSD-backed and is designed to deliver fast, predictable, scalable,

and consistent performance. Amazon FSx file systems deliver sustained high read and

write speeds and consistent low latency data access. You can choose the throughput

level you need to match your workload’s needs.

Make decisions based on access patterns and metrics: Choose storage systems

based on your workload's access patterns and configure them by determining how the

workload accesses data. Increase storage efficiency by choosing object storage over

block storage. Configure the storage options you choose to match your data access

patterns.

How you access data impacts how the storage solution performs. Select the storage

solution that aligns best to your access patterns, or consider changing your access

patterns to align with the storage solution to maximize performance.

Creating a RAID 0 (zero) array allows you to achieve a higher level of performance for a

file system than what you can provision on a single volume. Consider using RAID 0

when I/O performance is more important than fault tolerance. For example, you could

use it with a heavily used database where data replication is already set up separately.

Select appropriate storage metrics for your workload across all of the storage options

consumed for the workload. When utilizing filesystems that use burst credits, create

alarms to let you know when you are approaching those credit limits. You must create

storage dashboards to show the overall workload storage health.

For storage systems that are a fixed sized, such as Amazon EBS or Amazon FSx,

ensure that you are monitoring the amount of storage used versus the overall storage

https://aws.amazon.com/efs/
https://docs.aws.amazon.com/efs/latest/ug/performance.html
https://aws.amazon.com/fsx/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/fsx/lustre/

Archived

Amazon Web Services Performance Efficiency Pillar

 17

size and create automation if possible to increase the storage size when reaching a

threshold

Resources

Refer to the following resources to learn more about AWS best practices for storage.

Videos

• Deep dive on Amazon EBS (STG303-R1)

• Optimize your storage performance with Amazon S3 (STG343)

Documentation

• Amazon EBS:

o Amazon EC2 Storage

o Amazon EBS Volume Types

o I/O Characteristics

• Amazon S3: Request Rate and Performance Considerations

• Amazon Glacier: Amazon Glacier Documentation

• Amazon EFS: Amazon EFS Performance

• Amazon FSx:

o Amazon FSx for Lustre Performance

o Amazon FSx for Windows File Server Performance

Database Architecture Selection

The optimal database solution for a system varies based on requirements for

availability, consistency, partition tolerance, latency, durability, scalability, and query

capability. Many systems use different database solutions for various sub-systems and

enable different features to improve performance. Selecting the wrong database

solution and features for a system can lead to lower performance efficiency.

Understand data characteristics: Understand the different characteristics of data in

your workload. Determine if the workload requires transactions, how it interacts with

data, and what its performance demands are. Use this data to select the best

https://www.youtube.com/watch?v=wsMWANWNoqQ
https://www.youtube.com/watch?v=54AhwfME6wI
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ebs-io-characteristics.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
http://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html
http://docs.aws.amazon.com/efs/latest/ug/performance.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/performance.html

Archived

Amazon Web Services Performance Efficiency Pillar

 18

performing database approach for your workload (for example, relational databases,

NoSQL Key-value, document, wide column, graph, time series, or in-memory storage).

You can choose from many purpose-built database engines including relational, key-

value, document, in-memory, graph, time series, and ledger databases. By picking the

best database to solve a specific problem (or a group of problems), you can break away

from restrictive one-size-fits-all monolithic databases and focus on building applications

to meet the needs of your customers.

Relational databases store data with predefined schemas and relationships between

them. These databases are designed to support ACID (atomicity, consistency, isolation,

durability) transactions, and maintain referential integrity and strong data consistency.

Many traditional applications, enterprise resource planning (ERP), customer relationship

management (CRM), and e-commerce use relational databases to store their data. You

can run many of these database engines on Amazon EC2, or choose from one of the

AWS managed database services: Amazon Aurora, Amazon RDS, and Amazon

Redshift.

Key-value databases are optimized for common access patterns, typically to store and

retrieve large volumes of data. These databases deliver quick response times, even in

extreme volumes of concurrent requests.

High-traffic web apps, e-commerce systems, and gaming applications are typical use-

cases for key-value databases. In AWS, you can utilize Amazon DynamoDB, a fully

managed, multi-Region, multi-master, durable database with built-in security, backup

and restore, and in-memory caching for internet-scale applications

In-memory databases are used for applications that require real-time access to data. By

storing data directly in memory, these databases deliver microsecond latency to

applications for whom millisecond latency is not enough. You may use in-memory

databases for application caching, session management, gaming leaderboards, and

geospatial applications. Amazon ElastiCache is a fully managed in-memory data store,

compatible with Redis or Memcached.

A document database is designed to store semi structured data as JSON-like

documents. These databases help developers build and update applications such as

content management, catalogs, and user profiles quickly. Amazon DocumentDB is a

fast, scalable, highly available, and fully managed document database service that

supports MongoDB workloads.

https://aws.amazon.com/products/databases/
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds
https://aws.amazon.com/redshift
https://aws.amazon.com/redshift
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/memcached
https://aws.amazon.com/documentdb/

Archived

Amazon Web Services Performance Efficiency Pillar

 19

A wide column store is a type of NoSQL database. It uses tables, rows, and columns,

but unlike a relational database, the names and format of the columns can vary from

row to row in the same table. You typically see a wide column store in high scale

industrial apps for equipment maintenance, fleet management, and route optimization.

Amazon Managed Apache Cassandra Service is a wide column scalable, highly

available, and managed Apache Cassandra–compatible database service.

Graph databases are for applications that must navigate and query millions of

relationships between highly connected graph datasets with millisecond latency at large

scale. Many companies use graph databases for fraud detection, social networking, and

recommendation engines. Amazon Neptune is a fast, reliable, fully managed graph

database service that makes it easy to build and run applications that work with highly

connected datasets.

Time-series databases efficiently collect, synthesize, and derive insights from data that

changes over time. IoT applications, DevOps, and industrial telemetry can utilize time-

series databases. Amazon Timestream is a fast, scalable, fully managed time series

database service for IoT and operational applications that makes it easy to store and

analyze trillions of events per day.

Ledger databases provide a centralized and trusted authority to maintain a scalable,

immutable, and cryptographically verifiable record of transactions for every application.

We see ledger databases used for systems of record, supply chain, registrations, and

even banking transactions. Amazon Quantum Ledger Database (QLDB) is a fully

managed ledger database that provides a transparent, immutable, and cryptographically

verifiable transaction log owned by a central trusted authority. Amazon QLDB tracks

every application data change and maintains a complete and verifiable history of

changes over time.

Evaluate the available options: Evaluate the services and storage options that are

available as part of the selection process for your workload's storage mechanisms.

Understand how, and when, to use a given service or system for data storage. Learn

about available configuration options that can optimize database performance or

efficiency, such as provisioned IOPs, memory and compute resources, and caching.

Database solutions generally have configuration options that allow you to optimize for

the type of workload. Using benchmarking or load testing, identify database metrics that

matter for your workload. Consider the configuration options for your selected database

approach such as storage optimization, database level settings, memory, and cache.

https://aws.amazon.com/mcs/
https://aws.amazon.com/neptune/
https://aws.amazon.com/timestream/
https://aws.amazon.com/qldb/

Archived

Amazon Web Services Performance Efficiency Pillar

 20

Evaluate database caching options for your workload. The three most common types of

database caches are the following:

• Database integrated caches: Some databases (such as Amazon Aurora) offer

an integrated cache that is managed within the database engine and has built-in

write-through capabilities.

• Local caches: A local cache stores your frequently used data within your

application. This speeds up your data retrieval and removes network traffic

associated with retrieving data, making data retrieval faster than other caching

architectures.

• Remote caches: Remote caches are stored on dedicated servers and typically

built upon key/value NoSQL stores such as Redis and Memcached. They provide

up to a million requests per second per cache node.

For Amazon DynamodDB workloads, DynamoDB Accelerator (DAX) provides a fully

managed in-memory cache. DAX is an in-memory cache that delivers fast read

performance for your tables at scale by enabling you to use a fully managed in-memory

cache. Using DAX, you can improve the read performance of your DynamoDB tables by

up to 10 times — taking the time required for reads from milliseconds to microseconds,

even at millions of requests per second.

Collect and record database performance metrics: Use tools, libraries, and systems

that record performance measurements related to database performance. For example,

measure transactions per second, slow queries, or system latency introduced when

accessing the database. Use this data to understand the performance of your database

systems.

Instrument as many database activity metrics as you can gather from your workload.

These metrics may need to be published directly from the workload or gathered from an

application performance management service. You can use AWS X-Ray to analyze and

debug production, distributed applications, such as those built using a microservices

architecture. An X-Ray trace can include segments which encapsulate all the data

points for single component. For example, when your application makes a call to a

database in response to a request, it creates a segment for that request with a sub-

segment representing the database call and its result. The sub-segment can contain

data such as the query, table used, timestamp, and error status. Once instrumented,

you should enable alarms for your database metrics that indicate when thresholds are

breached.

https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/xray/

Archived

Amazon Web Services Performance Efficiency Pillar

 21

Choose data storage based on access patterns: Use the access patterns of the

workload to decide which services and technologies to use. For example, utilize a

relational database for workloads that require transactions, or a key-value store that

provides higher throughput but is eventually consistent where applicable.

Optimize data storage based on access patterns and metrics: Use performance

characteristics and access patterns that optimize how data is stored or queried to

achieve the best possible performance. Measure how optimizations such as indexing,

key distribution, data warehouse design, or caching strategies impact system

performance or overall efficiency.

Resources

Refer to the following resources to learn more about AWS best practices for databases.

Videos

• AWS purpose-built databases (DAT209-L)

• Amazon Aurora storage demystified: How it all works (DAT309-R)

• Amazon DynamoDB deep dive: Advanced design patterns (DAT403-R1)

Documentation

• AWS Database Caching

• Cloud Databases with AWS

• Amazon Aurora best practices

• Amazon Redshift performance

• Amazon Athena top 10 performance tips

• Amazon Redshift Spectrum best practices

• Amazon DynamoDB best practices

• Amazon DynamoDB Accelerator

Network Architecture Selection

The optimal network solution for a workload varies based on latency, throughput

requirements, jitter, and bandwidth. Physical constraints, such as user or on-premises

https://www.youtube.com/watch?v=q81TVuV5u28
https://www.youtube.com/watch?v=uaQEGLKtw54
https://www.youtube.com/watch?v=6yqfmXiZTlM
https://aws.amazon.com/caching/database-caching/
https://aws.amazon.com/products/databases/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.BestPractices.html
http://docs.aws.amazon.com/redshift/latest/dg/c_challenges_achieving_high_performance_queries.html
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
https://aws.amazon.com/dynamodb/dax/

Archived

Amazon Web Services Performance Efficiency Pillar

 22

resources, determine location options. These constraints can be offset with edge

locations or resource placement.

On AWS, networking is virtualized and is available in a number of different types and

configurations. This makes it easier to match your networking methods with your needs.

AWS offers product features (for example, Enhanced Networking, Amazon EC2

networking optimized instances, Amazon S3 transfer acceleration, and dynamic

Amazon CloudFront) to optimize network traffic. AWS also offers networking features

(for example, Amazon Route 53 latency routing, Amazon VPC endpoints, AWS Direct

Connect, and AWS Global Accelerator) to reduce network distance or jitter.

Understand how networking impacts performance: Analyze and understand how

network-related features impact workload performance. For example, network latency

often impacts the user experience, and not providing enough network capacity can

bottleneck workload performance.

Since the network is between all application components, it can have large positive and

negative impacts on application performance and behavior. There are also applications

that are heavily dependent on network performance such as High Performance

Computing (HPC) where deep network understanding is important to increase cluster

performance. You must determine the workload requirements for bandwidth, latency,

jitter, and throughput.

Evaluate available networking features: Evaluate networking features in the cloud

that may increase performance. Measure the impact of these features through testing,

metrics, and analysis. For example, take advantage of network-level features that are

available to reduce latency, network distance, or jitter.

Many services commonly offer features to optimize network performance. Consider

product features such as EC2 instance network capability, enhanced networking

instance types, Amazon EBS-optimized instances, Amazon S3 transfer acceleration,

and dynamic CloudFront to optimize network traffic.

AWS Global Accelerator is a service that improves global application availability and

performance using the AWS global network. It optimizes the network path, taking

advantage of the vast, congestion-free AWS global network. It provides static IP

addresses that make it easy to move endpoints between Availability Zones or AWS

Regions without needing to update your DNS configuration or change client-facing

applications

https://aws.amazon.com/global-accelerator/

Archived

Amazon Web Services Performance Efficiency Pillar

 23

Amazon S3 content acceleration is a feature that lets external users benefit from the

networking optimizations of CloudFront to upload data to Amazon S3. This makes it

easy to transfer large amounts of data from remote locations that don’t have dedicated

connectivity to the AWS Cloud.

Newer EC2 instances can leverage enhanced networking. N-series EC2 instances,

such as M5n and M5dn, leverage the fourth generation of custom Nitro card and Elastic

Network Adapter (ENA) device to deliver up to 100 Gbps of network throughput to a

single instance. These instances offer 4x the network bandwidth and packet process

compared to the base M5 instances and are ideal for network intensive applications.

Customers can also enable Elastic Fabric Adapter (EFA) on certain instance sizes of

M5n and M5dn instances for low and consistent network latency.

Amazon Elastic Network Adapters (ENA) provide further optimization by delivering 20

Gbps of network capacity for your instances within a single placement group. Elastic

Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables you

to run workloads requiring high levels of inter-node communications at scale on AWS.

With EFA, High Performance Computing (HPC) applications using the Message

Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA

Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs.

Amazon EBS optimized instances use an optimized configuration stack and provide

additional, dedicated capacity for Amazon EBS I/O. This optimization provides the best

performance for your EBS volumes by minimizing contention between Amazon EBS I/O

and other traffic from your instance.

Latency-based routing (LBR) for Amazon Route 53 helps you improve your workload’s

performance for a global audience. LBR works by routing your customers to the AWS

endpoint (for EC2 instances, Elastic IP addresses, or ELB load balancers) that provides

the fastest experience based on actual performance measurements of the different

AWS Regions where your workload is running.

Amazon VPC endpoints provide reliable connectivity to AWS services (for example,

Amazon S3) without requiring an internet gateway or a Network Address Translation

(NAT) instance.

Choose appropriately sized dedicated connectivity or VPN for hybrid workloads:

When there is a requirement for on-premise communication, ensure that you have

adequate bandwidth for workload performance. Based on bandwidth requirements, a

single dedicated connection or a single VPN might not be enough, and you must enable

traffic load balancing across multiple connections.

Archived

Amazon Web Services Performance Efficiency Pillar

 24

You must estimate the bandwidth and latency requirements for your hybrid workload.

These numbers will drive the sizing requirements for AWS Direct Connect or your VPN

endpoints.

AWS Direct Connect provides dedicated connectivity to the AWS environment, from 50

Mbps up to 10 Gbps. This gives you managed and controlled latency and provisioned

bandwidth so your workload can connect easily and in a performant way to other

environments. Using one of the AWS Direct Connect partners, you can have end-to-end

connectivity from multiple environments, thus providing an extended network with

consistent performance.

The AWS Site-to-Site VPN is a managed VPN service for VPCs. When a VPN

connection is created, AWS provides tunnels to two different VPN endpoints. With AWS

Transit Gateway, you can simplify the connectivity between multiple VPCs and also

connect to any VPC attached to AWS Transit Gateway with a single VPN connection.

AWS Transit Gateway also enables you to scale beyond the 1.25Gbps IPsec VPN

throughput limit by enabling equal cost multi-path (ECMP) routing support over multiple

VPN tunnels.

Leverage load-balancing and encryption offloading: Distribute traffic across multiple

resources or services to allow your workload to take advantage of the elasticity that the

cloud provides. You can also use load balancing for offloading encryption termination to

improve performance and to manage and route traffic effectively.

When implementing a scale-out architecture where you want to use multiple instances

for service content, you can leverage load balancers inside your Amazon VPC. AWS

provides multiple models for your applications in the ELB service. Application Load

Balancer is best suited for load balancing of HTTP and HTTPS traffic and provides

advanced request routing targeted at the delivery of modern application architectures,

including microservices and containers.

Network Load Balancer is best suited for load balancing of TCP traffic where extreme

performance is required. It is capable of handling millions of requests per second while

maintaining ultra-low latencies, and it is optimized to handle sudden and volatile traffic

patterns.

Elastic Load Balancing provides integrated certificate management and SSL/TLS

decryption, allowing you the flexibility to centrally manage the SSL settings of the load

balancer and offload CPU intensive work from your workload.

https://aws.amazon.com/directconnect/
https://aws.amazon.com/vpn/
https://aws.amazon.com/transit-gateway/
https://aws.amazon.com/transit-gateway/
https://aws.amazon.com/elasticloadbalancing/

Archived

Amazon Web Services Performance Efficiency Pillar

 25

Choose network protocols to optimize network traffic: Make decisions about

protocols for communication between systems and networks based on the impact to the

workload’s performance.

There is a relationship between latency and bandwidth to achieve throughput. If your file

transfer is using TCP, higher latencies will reduce overall throughput. There are

approaches to fix this with TCP tuning and optimized transfer protocols, some

approaches use UDP.

Choose location based on network requirements: Use the cloud location options

available to reduce network latency or improve throughput. Utilize AWS Regions,

Availability Zones, placement groups, and edge locations such as Outposts, Local

Zones, and Wavelength, to reduce network latency or improve throughput.

The AWS Cloud infrastructure is built around Regions and Availability Zones. A Region

is a physical location in the world having multiple Availability Zones.

Availability Zones consist of one or more discrete data centers, each with redundant

power, networking, and connectivity, housed in separate facilities. These Availability

Zones offer you the ability to operate production applications and databases that are

more highly available, fault tolerant, and scalable than would be possible from a single

data center

Choose the appropriate Region or Regions for your deployment based on the following

key elements:

• Where your users are located: Choosing a Region close to your workload’s

users ensures lower latency when they use the workload.

• Where your data is located: For data-heavy applications, the major bottleneck

in latency is data transfer. Application code should execute as close to the data

as possible.

• Other constraints: Consider constraints such as security and compliance.

Amazon EC2 provides placement groups for networking. A placement group is a logical

grouping of instances within a single Availability Zone. Using placement groups with

supported instance types and an Elastic Network Adapter (ENA) enables workloads to

participate in a low-latency, 25 Gbps network. Placement groups are recommended for

workloads that benefit from low network latency, high network throughput, or both.

Using placement groups has the benefit of lowering jitter in network communications.

Archived

Amazon Web Services Performance Efficiency Pillar

 26

Latency-sensitive services are delivered at the edge using a global network of edge

locations. These edge locations commonly provide services such as content delivery

network (CDN) and domain name system (DNS). By having these services at the edge,

workloads can respond with low latency to requests for content or DNS resolution.

These services also provide geographic services such as geo targeting of content

(providing different content based on the end users’ location), or latency-based routing

to direct end users to the nearest Region (minimum latency).

Amazon CloudFront is a global CDN that can be used to accelerate both static content

such as images, scripts, and videos, as well as dynamic content such as APIs or web

applications. It relies on a global network of edge locations that will cache the content

and provide high-performance network connectivity to your users. CloudFront also

accelerates many other features such as content uploading and dynamic applications,

making it a performance addition to all applications serving traffic over the internet.

Lambda@Edge is a feature of Amazon CloudFront that will let you run code closer to

users of your workload, which improves performance and reduces latency.

Amazon Route 53 is a highly available and scalable cloud DNS web service. It’s

designed to give developers and businesses an extremely reliable and cost-effective

way to route end users to internet applications by translating names, like

www.example.com, into numeric IP addresses, like 192.168.2.1, that computers use to

connect to each other. Route 53 is fully compliant with IPv6.

AWS Outposts is designed for workloads that need to remain on-premises due to

latency requirements, where you want that workload to run seamlessly with the rest of

your other workloads in AWS. AWS Outposts are fully managed and configurable

compute and storage racks built with AWS-designed hardware that allow you to run

compute and storage on-premises, while seamlessly connecting to AWS’s broad array

of services in the cloud.

AWS Local Zones are a new type of AWS infrastructure designed to run workloads that

require single-digit millisecond latency, like video rendering and graphics intensive,

virtual desktop applications. Local Zones allow you to gain all the benefits of having

compute and storage resources closer to end-users.

AWS Wavelength is designed to deliver ultra-low latency applications to 5G devices by

extending AWS infrastructure, services, APIs, and tools to 5G networks. Wavelength

embeds storage and compute inside telco providers 5G networks to help your 5G

workload if it requires single-digit millisecond latency, such as IoT devices, game

streaming, autonomous vehicles, and live media production.

https://aws.amazon.com/cloudfront/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/outposts/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/wavelength/

Archived

Amazon Web Services Performance Efficiency Pillar

 27

Use edge services to reduce latency and to enable content caching. Ensure that you

have configured cache control correctly for both DNS and HTTP/HTTPS to gain the

most benefit from these approaches.

Optimize network configuration based on metrics: Use collected and analyzed data

to make informed decisions about optimizing your network configuration. Measure the

impact of those changes and use the impact measurements to make future decisions.

Enable VPC Flow logs for all VPC networks that are used by your workload. VPC Flow

Logs are a feature that allows you to capture information about the IP traffic going to

and from network interfaces in your VPC. VPC Flow Logs help you with a number of

tasks, such as troubleshooting why specific traffic is not reaching an instance, which in

turn helps you diagnose overly restrictive security group rules. You can use flow logs as

a security tool to monitor the traffic that is reaching your instance, to profile your network

traffic, and to look for abnormal traffic behaviors.

Use networking metrics to make changes to networking configuration as the workload

evolves. Cloud based networks can be quickly re-built, so evolving your network

architecture over time is necessary to maintain performance efficiency.

Resources

Refer to the following resources to learn more about AWS best practices for networking.

Videos

• Connectivity to AWS and hybrid AWS network architectures (NET317-R1)

• Optimizing Network Performance for Amazon EC2 Instances (CMP308-R1)

Documentation

• Transitioning to Latency-Based Routing in Amazon Route 53

• Networking Products with AWS

• EC2

o Amazon EBS – Optimized Instances

o EC2 Enhanced Networking on Linux

o EC2 Enhanced Networking on Windows

o EC2 Placement Groups

https://www.youtube.com/watch?v=eqW6CPb58gs
https://www.youtube.com/watch?v=DWiwuYtIgu0
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/TutorialTransitionToLBR.html
https://aws.amazon.com/products/networking/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html

Archived

Amazon Web Services Performance Efficiency Pillar

 28

o Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on

Linux Instances

• VPC

o Transit Gateway

o VPC Endpoints

o VPC Flow Logs

• Elastic Load Balancers

o Application Load Balancer

o Network Load Balancer

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/vpc/latest/tgw
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

Archived

Amazon Web Services Performance Efficiency Pillar

 29

Review

When architecting workloads, there are finite options that you can choose from.

However, over time, new technologies and approaches become available that could

improve the performance of your workload. In the cloud, it’s much easier to experiment

with new features and services because your infrastructure is code.

To adopt a data-driven approach to architecture you should implement a performance

review process that considerers the following:

• Infrastructure as code: Define your infrastructure as code using approaches

such as AWS CloudFormation templates. The use of templates allows you to

place your infrastructure into source control alongside your application code and

configurations. This allows you to apply the same practices you use to develop

software in your infrastructure so you can iterate rapidly.

• Deployment pipeline: Use a continuous integration/continuous deployment

(CI/CD) pipeline (for example, source code repository, build systems,

deployment, and testing automation) to deploy your infrastructure. This enables

you to deploy in a repeatable, consistent, and low-cost fashion as you iterate.

• Well-defined metrics: Set up your metrics and monitor to capture key

performance indicators (KPIs). We recommend that you use both technical and

business metrics. For websites or mobile apps, key metrics are capturing time to

first byte or rendering. Other generally applicable metrics include thread count,

garbage collection rate, and wait states. Business metrics, such as the aggregate

cumulative cost per request, can alert you to ways to drive down costs. Carefully

consider how you plan to interpret metrics. For example, you could choose the

maximum or 99th percentile instead of the average.

• Performance test automatically: As part of your deployment process,

automatically trigger performance tests after the quicker running tests have

passed successfully. The automation should create a new environment, set up

initial conditions such as test data, and then execute a series of benchmarks and

load tests. Results from these tests should be tied back to the build so you can

track performance changes over time. For long running tests, you can make this

part of the pipeline asynchronous from the rest of the build. Alternatively, you

could execute performance tests overnight using Amazon EC2 Spot Instances.

Archived

Amazon Web Services Performance Efficiency Pillar

 30

• Load generation: You should create a series of test scripts that replicate

synthetic or prerecorded user journeys. These scripts should be idempotent and

not coupled, and you might need to include “pre- warming” scripts to yield valid

results. As much as possible, your test scripts should replicate the behavior of

usage in production. You can use software or software-as-a-service (SaaS)

solutions to generate the load. Consider using AWS Marketplace solutions and

Spot Instances — they can be cost-effective ways to generate the load.

• Performance visibility: Key metrics should be visible to your team, especially

metrics against each build version. This allows you to see any significant positive

or negative trend over time. You should also display metrics on the number of

errors or exceptions to make sure you are testing a working system.

• Visualization: Use visualization techniques that make it clear where

performance issues, hot spots, wait states, or low utilization is occurring. Overlay

performance metrics over architecture diagrams — call graphs or code can help

identify issues quickly.

This performance review process can be implemented as a simple extension of your

existing deployment pipeline and then evolved over time as your testing requirements

become more sophisticated. For future architectures, you can generalize your approach

and reuse the same process and artifacts.

Architectures performing poorly is usually the result of a non-existent or broken

performance review process. If your architecture is performing poorly, implementing a

performance review process will allow you to apply Deming’s plan-do-check-act (PDCA)

cycle to drive iterative improvement.

Evolve Your Workload to Take Advantage of New

Releases

Take advantage of the continual innovation at AWS driven by customer need. We

release new Regions, edge locations, services, and features regularly. Any of these

releases could positively improve the performance efficiency of your architecture.

Stay up-to-date on new resources and services: Evaluate ways to improve

performance as new services, design patterns, and product offerings become available.

Determine which of these could improve performance or increase the efficiency of the

workload through ad-hoc evaluation, internal discussion, or external analysis.

https://en.wikipedia.org/wiki/PDCA

Archived

Amazon Web Services Performance Efficiency Pillar

 31

Define a process to evaluate updates, new features, and services from AWS. For

example, building proof-of-concepts that use new technologies or consulting with an

internal group. When trying new ideas or services, run performance tests to measure

the impact that they have on the efficiency or performance of the workload. Take

advantage of the flexibility that you have in AWS to test new ideas or technologies

frequently with minimal cost or risk.

Define a process to improve workload performance: Define a process to evaluate

new services, design patterns, resource types, and configurations as they become

available. For example, run existing performance tests on new instance offerings to

determine their potential to improve your workload.

Your workload's performance has a few key constraints. Document these so that you

know what kinds of innovation might improve the performance of your workload. Use

this information when learning about new services or technology as it becomes

available to identify ways to alleviate constraints or bottlenecks.

Evolve workload performance over time: As an organization, use the information

gathered through the evaluation process to actively drive adoption of new services or

resources when they become available.

Use the information you gather when evaluating new services or technologies to drive

change. As your business or workload changes, performance needs also change. Use

data gathered from your workload metrics to evaluate areas where you can get the

biggest gains in efficiency or performance, and proactively adopt new services and

technologies to keep up with demand.

Resources

Refer to the following resources to learn more about AWS best practices for

benchmarking.

Videos

• Amazon Web Services YouTube Channel

• AWS Online Tech Talks YouTube Channel

• AWS Events YouTube Channel

https://www.youtube.com/channel/UCd6MoB9NC6uYN2grvUNT-Zg
https://www.youtube.com/user/AWSwebinars
https://www.youtube.com/channel/UCdoadna9HFHsxXWhafhNvKw

Archived

Amazon Web Services Performance Efficiency Pillar

 32

Monitoring

After you implement your architecture you must monitor its performance so that you can

remediate any issues before they impact your customers. Monitoring metrics should be

used to raise alarms when thresholds are breached.

Monitoring at AWS consists of five distinct phases, which are explained in more detail in

the Reliability Pillar whitepaper:

1. Generation – scope of monitoring, metrics, and thresholds

2. Aggregation – creating a complete view from multiple sources

3. Real-time processing and alarming – recognizing and responding

4. Storage – data management and retention policies

5. Analytics – dashboards, reporting, and insights

CloudWatch is a monitoring service for AWS Cloud resources and the workloads that

run on AWS. You can use CloudWatch to collect and track metrics, collect and monitor

log files, and set alarms. CloudWatch can monitor AWS resources such as EC2

instances and RDS DB instances, as well as custom metrics generated by your

workloads and services, and any log files your applications generate. You can use

CloudWatch to gain system-wide visibility into resource utilization, application

performance, and operational health. You can use these insights to react quickly and

keep your workload running smoothly.

CloudWatch dashboards enable you to create reusable graphs of AWS resources and

custom metrics so you can monitor operational status and identify issues at a glance.

Ensuring that you do not see false positives is key to an effective monitoring solution.

Automated triggers avoid human error and can reduce the time it takes to fix problems.

Plan for game days, where simulations are conducted in the production environment, to

test your alarm solution and ensure that it correctly recognizes issues.

Monitoring solutions fall into two types: active monitoring (AM) and passive monitoring

(PM). AM and PM complement each other to give you a full view of how your workload

is performing.

Active monitoring simulates user activity in scripted user journeys across critical paths

in your product. AM should be continuously performed in order to test the performance

and availability of a workload. AM complements PM by being continuous, lightweight,

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

Archived

Amazon Web Services Performance Efficiency Pillar

 33

and predictable. It can be run across all environments (especially pre-production

environments) to identify problems or performance issues before they impact end users.

Passive monitoring is commonly used with web-based workloads. PM collects

performance metrics from the browser (non-web-based workloads can use a similar

approach). You can collect metrics across all users (or a subset of users), geographies,

browsers, and device types. Use PM to understand the following issues:

• User experience performance: PM provides you with metrics on what your

users are experiencing, which gives you a continuous view into how production is

working, as well as a view into the impact of changes over time.

• Geographic performance variability: If a workload has a global footprint and

users access the workload from all around the world, using PM can enable you to

spot a performance problem impacting users in a specific geography.

• The impact of API use: Modern workloads use internal APIs and third-party

APIs. PM provides the visibility into the use of APIs so you can identify

performance bottlenecks that originate not only from internal APIs, but also from

third-party API providers.

CloudWatch provides the ability to monitor and send notification alarms. You can use

automation to work around performance issues by triggering actions through Amazon

Kinesis, Amazon Simple Queue Service (Amazon SQS), and AWS Lambda.

Monitor Your Resources to Ensure That They Are

Performing as Expected

System performance can degrade over time. Monitor system performance to identify

degradation and remediate internal or external factors, such as the operating system or

application load .

Record performance-related metrics: Use a monitoring and observability service to

record performance-related metrics. For example, record database transactions, slow

queries, I/O latency, HTTP request throughput, service latency, or other key data.

Identify the performance metrics that matter for your workload and record them. This

data is an important part of being able to identify which components are impacting

overall performance or efficiency of the workload.

Archived

Amazon Web Services Performance Efficiency Pillar

 34

Working back from the customer experience, identify metrics that matter. For each

metric, identify the target, measurement approach, and priority. Use these to build

alarms and notifications to proactively address performance-related issues.

Analyze metrics when events or incidents occur: In response to (or during) an event

or incident, use monitoring dashboards or reports to understand and diagnose the

impact. These views provide insight into which portions of the workload are not

performing as expected.

When you write critical user stories for your architecture, include performance

requirements, such as specifying how quickly each critical story should execute. For

these critical stories, implement additional scripted user journeys to ensure that you

know how these stories perform against your requirement

Establish Key Performance Indicators (KPIs) to measure workload performance:

Identify the KPIs that indicate whether the workload is performing as intended. For

example, an API-based workload might use overall response latency as an indication of

overall performance, and an e-commerce site might choose to use the number of

purchases as its KPI.

Document the performance experience required by customers, including how customers

will judge the performance of the workload. Use these requirements to establish your

key performance indicators (KPIs), which will indicate how the system is performing

overall.

Use monitoring to generate alarm-based notifications: Using the performance-

related key performance indicators (KPIs) that you defined, use a monitoring system

that generates alarms automatically when these measurements are outside expected

boundaries .

Amazon CloudWatch can collect metrics across the resources in your architecture. You

can also collect and publish custom metrics to surface business or derived metrics. Use

CloudWatch or a 3rd party monitoring service to set alarms that indicate when

thresholds are breached; the alarms signal that a metric is outside of the expected

boundaries.

Review metrics at regular intervals: As routine maintenance, or in response to events

or incidents, review which metrics are collected. Use these reviews to identify which

metrics were key in addressing issues and which additional metrics, if they were being

tracked, would help to identify, address, or prevent issues.

Archived

Amazon Web Services Performance Efficiency Pillar

 35

As part of responding to incidents or events, evaluate which metrics were helpful in

addressing the issue and which metrics could have helped that are not currently being

tracked. Use this to improve the quality of metrics you collect so that you can prevent or

more quickly resolve future incidents.

Monitor and alarm proactively: Use key performance indicators (KPIs), combined with

monitoring and alerting systems, to proactively address performance-related issues.

Use alarms to trigger automated actions to remediate issues where possible. Escalate

the alarm to those able to respond if automated response is not possible. For example,

you may have a system that can predict expected key performance indicators (KPI)

values and alarm when they breach certain thresholds, or a tool that can automatically

halt or roll back deployments if KPIs are outside of expected values.

Implement processes that provide visibility into performance as your workload is

running. Build monitoring dashboards and establish baseline norms for performance

expectations to determine if the workload is performing optimally.

Resources

Refer to the following resources to learn more about AWS best practices for monitoring

to promote performance efficiency.

Videos

• Cut through the chaos: Gain operational visibility and insight (MGT301-R1)

Documentation

• X-Ray Documentation

• CloudWatch Documentation

Trade-offs

When you architect solutions, think about trade-offs to ensure an optimal approach.

Depending on your situation, you could trade consistency, durability, and space for time

or latency, to deliver higher performance.

Using AWS, you can go global in minutes and deploy resources in multiple locations

across the globe to be closer to your end users. You can also dynamically add read-

only replicas to information stores (such as database systems) to reduce the load on the

primary database.

https://www.youtube.com/watch?v=nLYGbotqHd0
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Archived

Amazon Web Services Performance Efficiency Pillar

 36

AWS offers caching solutions such as Amazon ElastiCache, which provides an in-

memory data store or cache, and Amazon CloudFront, which caches copies of your

static content closer to end users. Amazon DynamoDB Accelerator (DAX) provides a

read-through/write-through distributed caching tier in front of Amazon DynamoDB,

supporting the same API, but providing sub-millisecond latency for entities that are in

the cache.

Using Trade-offs to Improve Performance

When architecting solutions, actively considering trade-offs enables you to select an

optimal approach. Often you can improve performance by trading consistency,

durability, and space for time and latency. Trade-offs can increase the complexity of

your architecture and require load testing to ensure that a measurable benefit is

obtained.

Understand the areas where performance is most critical: Understand and identify

areas where increasing the performance of your workload will have a positive impact on

efficiency or customer experience. For example, a website that has a large amount of

customer interaction can benefit from using edge services to move content delivery

closer to customers.

Learn about design patterns and services: Research and understand the various

design patterns and services that help improve workload performance. As part of the

analysis, identify what you could trade to achieve higher performance. For example,

using a cache service can help to reduce the load placed on database systems;

however, it requires some engineering to implement safe caching or possible

introduction of eventual consistency in some areas.

Learn which performance configuration options are available to you and how they could

impact the workload. Optimizing the performance of your workload depends on

understanding how these options interact with your architecture and the impact they will

have on both measured performance and the performance perceived by users.

The Amazon Builders’ Library provides readers with a detailed description of how

Amazon builds and operates technology. These free articles are written by Amazon’s

senior engineers and cover topics across architecture, software delivery, and

operations. For example, you can see how Amazon automates software delivery to

achieve over 150 million deployments a year, or how Amazon’s engineers implement

principles such as shuffle sharding to build resilient systems that are highly available

and fault tolerant.

https://aws.amazon.com/builders-library/

Archived

Amazon Web Services Performance Efficiency Pillar

 37

Identify how trade-offs impact customers and efficiency: When evaluating

performance-related improvements, determine which choices will impact your

customers and workload efficiency. For example, if using a key-value data store

increases system performance, it is important to evaluate how the eventually consistent

nature of it will impact customers.

Identify areas of poor performance in your system through metrics and monitoring.

Determine how you can make improvements, what trade-offs those improvements

bring, and how they impact the system and the user experience. For example,

implementing caching data can help dramatically improve performance but requires a

clear strategy for how and when to update or invalidate cached data to prevent incorrect

system behavior.

Measure the impact of performance improvements: As changes are made to

improve performance, evaluate the collected metrics and data. Use this information to

determine impact that the performance improvement had on the workload, the

workload’s components, and your customers. This measurement helps you understand

the improvements that result from the tradeoff, and helps you determine if any negative

side-effects were introduced.

A well-architected system uses a combination of performance related strategies.

Determine which strategy will have the largest positive impact on a given hotspot or

bottleneck. For example, sharding data across multiple relational database systems

could improve overall throughput while retaining support for transactions and, within

each shard, caching can help to reduce the load.

Use various performance-related strategies: Where applicable, utilize multiple

strategies to improve performance. For example, using strategies like caching data to

prevent excessive network or database calls, using read-replicas for database engines

to improve read rates, sharding or compressing data where possible to reduce data

volumes, and buffering and streaming of results as they are available to avoid blocking.

As you make changes to the workload, collect and evaluate metrics to determine the

impact of those changes. Measure the impacts to the system and to the end-user to

understand how your trade-offs impact your workload. Use a systematic approach, such

as load testing, to explore whether the tradeoff improves performance.

Resources

Refer to the following resources to learn more about AWS best practices for caching.

Archived

Amazon Web Services Performance Efficiency Pillar

 38

Video

• Introducing The Amazon Builders’ Library (DOP328)

Documentation

• Amazon Builders’ Library

• Best Practices for Implementing Amazon ElastiCache

Conclusion

Achieving and maintaining performance efficiency requires a data-driven approach. You

should actively consider access patterns and trade-offs that will allow you to optimize for

higher performance. Using a review process based on benchmarks and load tests

allows you to select the appropriate resource types and configurations. Treating your

infrastructure as code enables you to rapidly and safely evolve your architecture, while

you use data to make fact-based decisions about your architecture. Putting in place a

combination of active and passive monitoring ensures that the performance of your

architecture does not degrade over time.

AWS strives to help you build architectures that perform efficiently while delivering

business value. Use the tools and techniques discussed in this paper to ensure

success.

Contributors

The following individuals and organizations contributed to this document:

• Eric Pullen, Performance Efficiency Lead Well-Architected, Amazon Web

Services

• Philip Fitzsimons, Sr Manager Well-Architected, Amazon Web Services

• Julien Lépine, Specialist SA Manager, Amazon Web Services

• Ronnen Slasky, Solutions Architect, Amazon Web Services

Further Reading

For additional help, consult the following sources:

https://www.youtube.com/watch?v=sKRdemSirDM
https://aws.amazon.com/builders-library
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/BestPractices.html

Archived

Amazon Web Services Performance Efficiency Pillar

39

• AWS Well-Architected Framework

Document Revisions

Date Description

July 2020 Major review and update of content

July 2018 Minor update for grammatical issues

November 2017 Refreshed the whitepaper to reflect changes in AWS

November 2016 First publication

https://aws.amazon.com/architecture/well-architected/

	Introduction
	Performance Efficiency
	Design Principles
	Definition

	Selection
	Performance Architecture Selection
	Resources
	Videos
	Documentation

	Compute Architecture Selection
	Instances
	Containers
	Functions
	Resources
	Videos
	Documentation

	Storage Architecture Selection
	Resources
	Videos
	Documentation

	Database Architecture Selection
	Resources
	Videos
	Documentation

	Network Architecture Selection
	Resources
	Videos
	Documentation

	Review
	Evolve Your Workload to Take Advantage of New Releases
	Resources
	Videos

	Monitoring
	Monitor Your Resources to Ensure That They Are Performing as Expected
	Resources
	Videos
	Documentation

	Trade-offs
	Using Trade-offs to Improve Performance
	Resources
	Video
	Documentation

	Conclusion
	Contributors
	Further Reading
	Document Revisions

