
Archived
Serverless Application Lens

AWS Well-Architected Framework

December 2019

This paper has been archived.

The latest version is now available at:
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html

Archived

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

Contents

Introduction .. 1

Definitions .. 1

Compute Layer ... 2

Data Layer .. 2

Messaging and Streaming Layer ... 3

User Management and Identity Layer ... 3

Edge Layer ... 4

Systems Monitoring and Deployment .. 4

Deployment Approaches .. 4

General Design Principles ... 7

Scenarios ... 8

RESTful Microservices ... 8

Alexa Skills ... 10

Mobile Backend .. 14

Stream Processing ... 18

Web Application ... 20

The Pillars of the Well-Architected Framework .. 22

Operational Excellence Pillar ... 23

Security Pillar.. 33

Reliability Pillar ... 43

Performance Efficiency Pillar ... 51

Cost Optimization Pillar .. 62

Conclusion ... 72

Contributors ... 72

Further Reading ... 73

Document Revisions.. 73

Archived

Archived

Abstract

This document describes the Serverless Applications Lens for the AWS Well-

Architected Framework. The document covers common serverless applications

scenarios and identifies key elements to ensure that your workloads are architected

according to best practices.

https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected

Archived

Amazon Web Services Serverless Application Lens

 1

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons of

decisions you make while building systems on AWS.1 By using the Framework, you will

learn architectural best practices for designing and operating reliable, secure, efficient,

and cost-effective systems in the cloud. It provides a way for you to consistently

measure your architectures against best practices and identify areas for improvement.

We believe that having well-architected systems greatly increases the likelihood of

business success.

In this “Lens” we focus on how to design, deploy, and architect your serverless

application workloads in the AWS Cloud. For brevity, we have only covered details

from the Well-Architected Framework that are specific to serverless workloads. You

should still consider best practices and questions that have not been included in this

document when designing your architecture. We recommend that you read the AWS

Well-Architected Framework whitepaper.2

This document is intended for those in technology roles, such as chief technology

officers (CTOs), architects, developers, and operations team members. After reading

this document, you will understand AWS best practices and strategies to use when

designing architectures for serverless applications.

Definitions

The AWS Well-Architected Framework is based on five pillars: operational excellence,

security, reliability, performance efficiency, and cost optimization. For serverless

workloads, AWS provides multiple core components (serverless and non-serverless)

that allow you to design robust architectures for your serverless applications. In this

section, we will present an overview of the services that will be used throughout this

document. There are seven areas you should consider when building a serverless

workload:

• Compute layer

• Data layer

• Messaging and streaming layer

• User management and identity layer

• Edge layer

https://aws.amazon.com/well-architected
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Archived

Amazon Web Services Serverless Application Lens

 2

• Systems monitoring and deployment

• Deployment approaches

Compute Layer

The compute layer of your workload manages requests from external systems,

controlling access and ensuring requests are appropriately authorized. It contains the

runtime environment that your business logic will be deployed and executed by.

AWS Lambda lets you run stateless serverless applications on a managed platform

that supports microservices architectures, deployment, and management of execution

at the function layer.

With Amazon API Gateway, you can run a fully managed REST API that integrates

with Lambda to execute your business logic and includes traffic management,

authorization and access control, monitoring, and API versioning.

AWS Step Functions orchestrates serverless workflows including coordination, state,

and function chaining as well as combining long-running executions not supported

within Lambda execution limits by breaking into multiple steps or by calling workers

running on Amazon Elastic Compute Cloud (Amazon EC2) instances or on-premises.

Data Layer

The data layer of your workload manages persistent storage from within a system. It

provides a secure mechanism to store the states that your business logic will need. It

provides a mechanism to trigger events in response to data changes.

Amazon DynamoDB helps you build serverless applications by providing a managed

NoSQL database for persistent storage. Combined with DynamoDB Streams, you can

respond in near real time to changes in your DynamoDB table by invoking Lambda

functions. DynamoDB Accelerator (DAX) adds a highly available in-memory cache for

DynamoDB that delivers up to 10x performance improvement from milliseconds to

microseconds.

With Amazon Simple Storage Service (Amazon S3), you can build serverless web

applications and websites by providing a highly available key-value store, from which

static assets can be served via a Content Delivery Network (CDN), such as Amazon

CloudFront.

Archived

Amazon Web Services Serverless Application Lens

 3

Amazon Elasticsearch Service (Amazon ES) makes it easy to deploy, secure,

operate, and scale Elasticsearch for log analytics, full-text search, application

monitoring, and more. Amazon ES is a fully managed service that provides both a

search engine and analytics tools.

AWS AppSync is a managed GraphQL service with real-time and offline capabilities,

as well as enterprise grade security controls that make developing applications simple.

AWS AppSync provides a data-driven API and consistent programming language for

applications and devices to connect to services such as DynamoDB, Amazon ES, and

Amazon S3.

Messaging and Streaming Layer

The messaging layer of your workload manages communications between components.

The streaming layer manages real-time analysis and processing of streaming data.

Amazon Simple Notification Service (Amazon SNS) provides a fully managed

messaging service for pub/sub patterns using asynchronous event notifications and

mobile push notifications for microservices, distributed systems, and serverless

applications.

Amazon Kinesis makes it easy to collect, process, and analyze real-time streaming

data. With Amazon Kinesis Data Analytics, you can run standard SQL or build entire

streaming applications using SQL.

Amazon Kinesis Data Firehose captures, transforms, and loads streaming data into

Kinesis Data Analytics, Amazon S3, Amazon Redshift, and Amazon ES, enabling near

real-time analytics with existing business intelligence tools.

User Management and Identity Layer

The user management and identity layer of your workload provides identity,

authentication, and authorization for both external and internal customers of your

workload’s interfaces.

With Amazon Cognito, you can easily add user sign-up, sign-in, and data

synchronization to serverless applications. Amazon Cognito user pools provide built-in

sign-in screens and federation with Facebook, Google, Amazon, and Security Assertion

Markup Language (SAML). Amazon Cognito Federated Identities lets you securely

provide scoped access to AWS resources that are part of your serverless architecture.

Archived

Amazon Web Services Serverless Application Lens

 4

Edge Layer

The edge layer of your workload manages the presentation layer and connectivity to

external customers. It provides an efficient delivery method to external customers

residing in distinct geographical locations.

Amazon CloudFront provides a CDN that securely delivers web application content

and data with low latency and high transfer speeds.

Systems Monitoring and Deployment

The system monitoring layer of your workload manages system visibility through metrics

and creates contextual awareness of how it operates and behaves over time. The

deployment layer defines how your workload changes are promoted through a release

management process.

With Amazon CloudWatch, you can access system metrics on all the AWS services

you use, consolidate system and application level logs, and create business key

performance indicators (KPIs) as custom metrics for your specific needs. It provides

dashboards and alerts that can trigger automated actions on the platform.

AWS X-Ray lets you analyze and debug serverless applications by providing distributed

tracing and service maps to easily identify performance bottlenecks by visualizing a

request end-to-end.

AWS Serverless Application Model (AWS SAM) is an extension of AWS

CloudFormation that is used to package, test, and deploy serverless applications. The

AWS SAM CLI can also enable faster debugging cycles when developing Lambda

functions locally.

Deployment Approaches

A best practice for deployments in a microservice architecture is to ensure that a

change does not break the service contract of the consumer. If the API owner makes a

change that breaks the service contract and the consumer is not prepared for it, failures

can occur.

Being aware of which consumers are using your APIs is the first step to ensure that

deployments are safe. Collecting metadata on consumers and their usage allows you to

make data driven decisions about the impact of changes. API Keys are an effective way

Archived

Amazon Web Services Serverless Application Lens

 5

to capture metadata about the API consumer/clients and often used as a form of contact

if a breaking change is made to an API.

Some customers who want to take a risk-adverse approach to breaking changes may

choose to clone the API and route customers to a different subdomain (for example,

v2.my-service.com) to ensure that existing consumers aren’t impacted. While this

approach enables new deployments with a new service contract, the tradeoff is that the

overhead of maintaining dual APIs (and subsequent backend infrastructure) requires

additional overhead.

The table shows the different approaches to deployment:

Deployment Consumer

Impact

Rollback Event Model Factors Deployment

Speed

All-at-once All at once Redeploy

older

version

Any event model at

low concurrency rate

Immediate

Blue/Green All at once with

some level of

production

environment

testing beforehand

Revert

traffic to

previous

environment

Better for async and

sync event models at

medium concurrency

workloads

Minutes to hours

of validation and

then immediate

to customers

Canary/Linear 1–10% typical

initial traffic shift,

then phased

increases or all at

once

Revert

100% of

traffic to

previous

deployment

Better for high

concurrency workloads

Minutes to hours

All-at-once Deployments

All-at-once deployments involve making changes on top of the existing configuration. An

advantage to this style of deployment is that backend changes to data stores, such as a

relational database, require a much smaller level of effort to reconcile transactions

during the change cycle. While this type of deployment style is low-effort and can be

made with little impact in low-concurrency models, it adds risk when it comes to rollback

Archived

Amazon Web Services Serverless Application Lens

 6

and usually causes downtime. An example scenario to use this deployment model is for

development environments where the user impact is minimal.

Blue/Green Deployments

Another traffic shifting pattern is enabling blue/green deployments. This near zero-

downtime release enables traffic to shift to the new live environment (green) while still

keeping the old production environment (blue) warm in case a rollback is necessary.

Since API Gateway allows you to define what percentage of traffic is shifted to a

particular environment; this style of deployment can be an effective technique. Since

blue/green deployments are designed to reduce downtime, many customers adopt this

pattern for production changes.

Serverless architectures that follow the best practice of statelessness and idempotency

are amenable to this deployment style because there is no affinity to the underlying

infrastructure. You should bias these deployments toward smaller incremental changes

so that you can easily roll back to a working environment if necessary.

You need the right indicators in place to know if a rollback is required. As a best

practice, we recommend customers using CloudWatch high-resolution metrics, which

can monitor in 1-second intervals, and quickly capture downward trends. Used with

CloudWatch alarms, you can enable an expedited rollback to occur. CloudWatch

metrics can be captured on API Gateway, Step Functions, Lambda (including custom

metrics), and DynamoDB.

Canary Deployments

Canary deployments are an ever-increasing way for you to leverage the new release of

a software in a controlled environment and enabling rapid deployment cycles. Canary

deployments involve deploying a small number of requests to the new change to

analyze impact to a small number of your users. Since you no longer need to worry

about provisioning and scaling the underlying infrastructure of the new deployment, the

AWS Cloud has helped facilitate this adoption.

With Canary deployments in API Gateway, you can deploy a change to your backend

endpoint (for example, Lambda) while still maintaining the same API Gateway HTTP

endpoint for consumers. In addition, you can also control what percentage of traffic is

routed to new deployment and for a controlled traffic cutover. A practical scenario for a

canary deployment might be a new website. You can monitor the click-through rates on

a small number of end users before shifting all traffic to the new deployment.

Archived

Amazon Web Services Serverless Application Lens

 7

Lambda Version Control

Like all software, maintaining versioning enables the quick visibility of previously

functioning code as well as the ability to revert back to a previous version if a new

deployment is unsuccessful. Lambda allows you to publish one or more immutable

versions for individual Lambda functions; such that previous versions cannot be

changed. Each Lambda function version has a unique Amazon Resource Name (ARN)

and new version changes are auditable as they are recorded in CloudTrail. As a best

practice in production, customers should enable versioning to best leverage a reliable

architecture.

To simplify deployment operations and reduce the risk of error, Lambda Aliases enable

different variations of your Lambda function in your development workflow, such as

development, beta, and production. An example of this is when an API Gateway

integration with Lambda points to the ARN of a production alias. The production alias

will point to a Lambda version. The value of this technique is that it enables a safe

deployment when promoting a new version to the live environment because the Lambda

Alias within the caller configuration remains static thus less changes to make.

General Design Principles

The Well-Architected Framework identifies a set of general design principles to facilitate

good design in the cloud for serverless applications:

• Speedy, simple, singular: Functions are concise, short, single purpose and

their environment may live up to their request lifecycle. Transactions are

efficiently cost aware and thus faster executions are preferred.

• Think concurrent requests, not total requests: Serverless applications take

advantage of the concurrency model, and tradeoffs at the design level are

evaluated based on concurrency.

• Share nothing: Function runtime environment and underlying infrastructure are

short-lived, therefore local resources such as temporary storage is not

guaranteed. State can be manipulated within a state machine execution lifecycle,

and persistent storage is preferred for highly durable requirements.

• Assume no hardware affinity: Underlying infrastructure may change. Leverage

code or dependencies that are hardware-agnostic as CPU flags, for example,

may not be available consistently.

Archived

Amazon Web Services Serverless Application Lens

 8

• Orchestrate your application with state machines, not functions: Chaining

Lambda executions within the code to orchestrate the workflow of your

application results in a monolithic and tightly coupled application. Instead, use a

state machine to orchestrate transactions and communication flows.

• Use events to trigger transactions: Events such as writing a new Amazon S3

object or an update to a database allow for transaction execution in response to

business functionalities. This asynchronous event behavior is often consumer

agnostic and drives just-in-time processing to ensure lean service design.

• Design for failures and duplicates: Operations triggered from requests/events

must be idempotent as failures can occur and a given request/event can be

delivered more than once. Include appropriate retries for downstream calls.

Scenarios

In this section, we cover the five key scenarios that are common in many serverless

applications and how they influence the design and architecture of your serverless

application workloads on AWS. We will present the assumptions we made for each of

these scenarios, the common drivers for the design, and a reference architecture of how

these scenarios should be implemented.

RESTful Microservices

When building a microservice, you’re thinking about how a business context can be

delivered as a re-usable service for your consumers. The specific implementation will be

tailored to individual use cases, but there are several common themes across

microservices to ensure that your implementation is secure, resilient, and constructed to

give the best experience for your customers.

Building serverless microservices on AWS enables you to not only take advantage of

the serverless capabilities themselves, but also to use other AWS services and

features, as well as the ecosystem of AWS and AWS Partner Network (APN) tools.

Serverless technologies are built on top of fault-tolerant infrastructure, enabling you to

build reliable services for your mission-critical workloads. The ecosystem of tooling

enables you to streamline the build, automate tasks, orchestrate dependencies, and

monitor and govern your microservices. Lastly, AWS serverless tools are pay-as-you-

go, enabling you to grow the service with your business and keep your costs down

during entry phases and non-peak times.

Archived

Amazon Web Services Serverless Application Lens

 9

Characteristics:

• You want a secure, easy-to-operate framework that is simple to replicate and has

high levels of resiliency and availability.

• You want to log utilization and access patterns to continually improve your

backend to support customer usage.

• You are seeking to leverage managed services as much as possible for your

platforms, which reduces the heavy lifting associated with managing common

platforms including security and scalability.

Reference Architecture

Figure 1: Reference architecture for RESTful microservices

1. Customers leverage your microservices by making HTTP API calls. Ideally, your

consumers should have a tightly bound service contract to your API to achieve

consistent expectations of service levels and change control.

2. Amazon API Gateway hosts RESTful HTTP requests and responses to

customers. In this scenario, API Gateway provides built-in authorization,

throttling, security, fault tolerance, request/response mapping, and performance

optimizations.

3. AWS Lambda contains the business logic to process incoming API calls and

leverage DynamoDB as a persistent storage.

4. Amazon DynamoDB persistently stores microservices data and scales based on

demand. Since microservices are often designed to do one thing well, a

schemaless NoSQL data store is regularly incorporated.

Configuration notes:

AWS Lambda

Client

Amazon API

Gateway
Amazon

DynamoDB

1 2 3 4

Consumer

Archived

Amazon Web Services Serverless Application Lens

 10

• Leverage API Gateway logging to understand visibility of microservices

consumer access behaviors. This information is visible in Amazon CloudWatch

Logs and can be quickly viewed through Log Pivots, analyzed in CloudWatch

Logs Insights or fed into other searchable engines such as Amazon ES or

Amazon S3 (with Amazon Athena). The information delivered gives key visibility,

such as:

o Understanding common customer locations, which may change

geographically based on the proximity of your backend

o Understanding how customer input requests may have an impact on how

you partition your database

o Understanding the semantics of abnormal behavior, which can be a security

flag

o Understanding errors, latency, and cache hits/misses to optimize

configuration

This model provides a framework that is easy to deploy and maintain and a secure

environment that will scale as your needs grow.

Alexa Skills

The Alexa Skills Kit gives developers the ability to extend Alexa's capabilities by building

natural and engaging voice and visual experiences. Successful skills are habit-forming,

where users routinely come back because it offers something unique, it provides value

in new, novel, and frictionless ways.

The biggest cause of frustration from users is when the skill doesn’t act how they expect

it to and it might take multiple interactions before accomplishing what they need. It’s

essential to start by designing a voice interaction model and working backwards from

that, since some users may say too little, too much, or possibly something you aren’t

expecting. The voice design process involves creating, scripting, and planning for

expected as well as unexpected utterances.

Archived

Amazon Web Services Serverless Application Lens

 11

Figure 2: Alexa Skill example design script

With a basic script in mind, you can use the following techniques before start building a

skill:

• Outline the shortest route to completion

o The shortest route to completion is generally when the user gives all

information and slots at once, an account is already linked if relevant, and

other prerequisites are satisfied in a single invocation of the skill.

• Outline alternate paths and decision trees

o Often, what the user says doesn’t include all information necessary to

complete the request. In the flow, identify alternate pathways and user

decisions.

• Outline behind-the-scenes decisions the system logic will have to make

o Identify behind-the-scenes system decisions, for example with new or

returning users. A background system check might change the flow a user

follows.

• Outline how the skill will help the user

o Include clear directions in the help for what users can do with the skill.

Based on the complexity of the skill, the help might provide one simple

response or many responses.

• Outline the account linking process, if present

Archived

Amazon Web Services Serverless Application Lens

 12

o Determine the information that is required for account linking. You also need

to identify how the skill will respond when account linking hasn’t been

completed.

Characteristics:

• You want to create a complete serverless architecture without managing any

instances or servers.

• You want your content to be decoupled from your skill as much as possible.

• You are looking to provide engaging voice experiences exposed as an API to

optimize development across wide-ranging Alexa devices, Regions, and

languages.

• You want elasticity that scales up and down to meet the demands of users and

handles unexpected usage patterns.

Reference Architecture

Figure 3: Reference architecture for an Alexa Skill

1. Alexa users interact with Alexa skills by speaking to Alexa-enabled devices

using voice as the primary method of interaction.

Archived

Amazon Web Services Serverless Application Lens

 13

2. Alexa-enabled devices listen for a wake word and activate as soon as one is

recognized. Supported wake words are Alexa, Computer, and Echo.

3. The Alexa Service performs common Speech Language Understanding (SLU)

processing on behalf of your Alexa Skill, including Automated Speech

Recognition (ASR), Natural Language Understanding (NLU), and Text to

Speech (TTS) conversion.

4. Alexa Skills Kit (ASK) is a collection of self-service APIs, tools, documentation,

and code examples that make it fast and easy for you to add skills to Alexa. ASK

is a trusted AWS Lambda trigger, allowing for seamless integration.

5. Alexa Custom Skill gives you control over the user experience, allowing you to

build a custom interaction model. It is the most flexible type of skill, but also the

most complex.

6. A Lambda function using the Alexa Skills Kit, allowing you to seamlessly build

skills avoiding unneeded complexity. Using it you can process different types of

requests sent from the Alexa Service and build speech responses.

7. A DynamoDB Database can provide a NoSQL data store that can elastically

scale with the usage of your sill. It is commonly used by skills to for persisting

user state and sessions.

8. Alexa Smart Home Skill allows you to control devices such as lights,

thermostats, smart TVs, etc. using the Smart Home API. Smart Home skills are

simpler to build that custom skills as the don’t give you control over the

interaction model.

9. A Lambda function is used to respond to device discovery and control requests

from the Alexa Service. Developers use it to control a wide-ranging number of

devices including entertainment devices, cameras, lighting, thermostats, locks,

and many more.

10. AWS Internet of Things (IoT) allows developers to securely connect their

devices to AWS and control interaction between their Alexa skill and their

devices.

11. An Alexa-enabled Smart Home can have an unlimited number of IoT connected

devices receiving and responding and to directives from an Alexa Skill.

12. Amazon S3 stores your skills static assets including images, content, and

media. Its contents are securely served using CloudFront.

Archived

Amazon Web Services Serverless Application Lens

 14

13. Amazon CloudFront Content Delivery Network (CDN) provides a CDN that

serves content faster to geographically distributed mobile users and includes

security mechanisms to static assets in Amazon S3.

14. Account Linking is needed when your skill must authenticate with another

system. This action associates the Alexa user with a specific user in the other

system.

Configuration notes:

• Validate Smart Home request and response payloads by validating against the

JSON schema for all possible Alexa Smart Home messages sent by a skill to

Alexa.

• Ensure that your Lambda function timeout is less than eight seconds and can

handle requests within that timeframe. (The Alexa Service timeout is 8 seconds.)

• Follow best practices7 when creating your DynamoDB tables. Use on-demand

tables when you are not certain how much read/write capacity you need.

Otherwise, choose provisioned capacity with automatic scaling enabled. For

Skills that are heavy on ready, DynamoDB Accelerator (DAX) can greatly

improve response times.

• Account linking can provide user information that may be stored in an external

system. Use that information to provide contextual and personalized experience

for your user. Alexa has guidelines on Account Linking to provide frictionless

experiences.

• Use the skill beta testing tool to collect early feedback on skill development and

for skills versioning to reduce impact on skills that are already live.

• Use ASK CLI to automate skill development and deployment.

Mobile Backend

Users increasingly expect their mobile applications to have a fast, consistent, and

feature-rich user experience. At the same time, mobile user patterns are dynamic with

unpredictable peak usage and often have a global footprint.

The growing demand from mobile users means that applications need a rich set of

mobile services that work together seamlessly without sacrificing control and flexibility of

the backend infrastructure. Certain capabilities across mobile applications, are expected

by default:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
https://developer.amazon.com/blogs/alexa/post/0fbd9756-6ea0-43d5-b213-873ede1b0595/tips-for-successfully-adding-account-linking-to-your-alexa-skill

Archived

Amazon Web Services Serverless Application Lens

 15

• Ability to query, mutate, and subscribe to database changes

• Offline persistence of data and bandwidth optimizations when connected

• Search, filtering, and discovery of data in applications

• Analytics of user behavior

• Targeted messaging through multiple channels (Push Notifications, SMS, Email)

• Rich content such as images and videos

• Data synchronization across multiple devices and multiple users

• Fine-Grained authorization controls for viewing and manipulating data

Building a serverless mobile backend on AWS enables you to provide these capabilities

while automatically managing scalability, elasticity, and availability in an efficient and

cost effective way.

Characteristics:

• You want to control application data behavior from the client and explicitly select

what data you want from the API

• You want your business logic to be decoupled from your mobile application as

much as possible.

• You are looking to provide business functionalities as an API to optimize

development across multiple platforms.

• You are seeking to leverage managed services to reduce undifferentiated heavy

lifting of maintaining mobile backend infrastructure while providing high levels of

scalability and availability.

• You want to optimize your mobile backend costs based upon actual user demand

versus paying for idle resources

Reference Architecture

Archived

Amazon Web Services Serverless Application Lens

 16

Figure 2: Reference architecture for a mobile backend

1. Amazon Cognito is used for user management and as an identity provider for

your mobile application. Additionally, it allows mobile users to leverage existing

social identities such as Facebook, Twitter, Google+, and Amazon to sign in.

2. Mobile users interact with the mobile application backend by performing

GraphQL operations against AWS AppSync and AWS service APIs (for example,

Amazon S3 and Amazon Cognito).

3. Amazon S3 stores mobile application static assets including certain mobile user

data such as profile images. Its contents are securely served via CloudFront.

4. AWS AppSync hosts GraphQL HTTP requests and responses to mobile users.

In this scenario, data from AWS AppSync is real-time when devices are

connected, and data is available offline as well. Data sources for this scenario

are Amazon DynamoDB, Amazon Elasticsearch Service, or AWS Lambda

functions

5. Amazon Elasticsearch Service acts as a main search engine for your mobile

application as well as analytics.

6. DynamoDB provides persistent storage for your mobile application, including

mechanisms to expire unwanted data from inactive mobile users through a Time

to Live (TTL) feature.

Archived

Amazon Web Services Serverless Application Lens

 17

7. A Lambda function handles interaction with other third-party services, or calling

other AWS services for custom flows, which can be part of the GraphQL

response to clients.

8. DynamoDB Streams captures item-level changes and enables a Lambda

function to update additional data sources.

9. A Lambda function manages streaming data between DynamoDB and Amazon

ES, allowing customers to combine data sources logical GraphQL types and

operations.

10. Amazon Pinpoint captures analytics from clients, including user sessions and

custom metrics for application insights.

11. Amazon Pinpoint delivers messages to all users/devices or a targeted subset

based on analytics that have been gathered. Messages can be customized and

sent using push notifications, email, or SMS channels.

Configuration notes:

• Performance test3 your Lambda functions with different memory and timeout

settings to ensure that you’re using the most appropriate resources for the job.

• Follow best practices4 when creating your DynamoDB tables and consider

having AWS AppSync automatically provision them from a GraphQL schema,

which will use a well-distributed hash key and create indexes for your operations.

Make certain to calculate your read/write capacity and table partitioning to ensure

reasonable response times.

• Use the AWS AppSync server-side data caching to optimize your application

experience, as all subsequent query requests to your API will be returned from

the cache, which means data sources won’t be contacted directly unless the TTL

expires.

• Follow best practices5 when managing Amazon ES Domains. Additionally,

Amazon ES provides an extensive guide6 on designing concerning sharding and

access patterns that also apply here.

• Use the fine-grained access controls of AWS AppSync, configured in resolvers,

to filter GraphQL requests down to the per-user or group level if necessary. This

can be applied to AWS Identity and Access Management (IAM) or Amazon

Cognito User Pools authorization with AWS AppSync.

https://github.com/alexcasalboni/aws-lambda-power-tuning
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

Archived

Amazon Web Services Serverless Application Lens

 18

• Use AWS Amplify and Amplify CLI to compose and integrate your application

with multiple AWS services. Amplify Console also takes care of deploying and

managing stacks.

For low-latency requirements where near-to-none business logic is required, Amazon

Cognito Federated Identity can provide scoped credentials so that your mobile

application can talk directly to an AWS service, for example, when uploading a user’s

profile picture, retrieve metadata files from Amazon S3 scoped to a user, etc.

Stream Processing

Ingesting and processing real-time streaming data requires scalability and low latency to

support a variety of applications such as activity tracking, transaction order processing,

click-stream analysis, data cleansing, metrics generation, log filtering, indexing, social

media analysis, and IoT device data telemetry and metering. These applications are

often spiky and process thousands of events per second.

Using AWS Lambda and Amazon Kinesis, you can build a serverless stream process

that automatically scales without provisioning or managing servers. Data processed by

AWS Lambda can be stored in DynamoDB and analyzed later.

Characteristics:

• You want to create a complete serverless architecture without managing any

instance or server for processing streaming data.

• You want to use the Amazon Kinesis Producer Library (KPL) to take care of data

ingestion from a data producer-perspective.

Reference Architecture

Here we are presenting a scenario for common stream processing, which is a reference

architecture for analyzing social media data.

Archived

Amazon Web Services Serverless Application Lens

 19

Figure 3: Reference architecture for stream processing

1. Data producers use the Amazon Kinesis Producer Library (KPL) to send social

media streaming data to a Kinesis stream. Amazon Kinesis Agent and custom

data producers that leverage the Kinesis API can also be used.

2. An Amazon Kinesis stream collects, processes, and analyzes real-time

streaming data produced by data producers. Data ingested into the stream can

be processed by a consumer, which, in this case, is Lambda

3. AWS Lambda acts as a consumer of the stream that receives an array of the

ingested data as a single event/invocation. Further processing is carried out by

the Lambda function. The transformed data is then stored in a persistent storage,

which, in this case, is DynamoDB.

4. Amazon DynamoDB provides a fast and flexible NoSQL database service

including triggers that can integrate with AWS Lambda to make such data

available elsewhere.

5. Business users leverage a reporting interface on top of DynamoDB to gather

insights out of social media trend data

Configuration notes:

• Follow best practices7 when re-sharding Kinesis streams to accommodate a

higher ingestion rate. Concurrency for stream processing is dictated by the

number of shards and by the parallelization factor. Therefore, adjust it according

to your throughput requirements.

• Consider reviewing the Streaming Data Solutions whitepaper8 for batch

processing, analytics on streams, and other useful patterns.

http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html
https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/
https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf

Archived

Amazon Web Services Serverless Application Lens

 20

• When not using KPL, make certain to take into account partial failures for non-

atomic operations, such as PutRecords, since the Kinesis API returns both

successfully and unsuccessfully processed records9 upon ingestion time.

• Duplicated records10 may occur, and you must leverage both retries and

idempotency within your application for both consumers and producers.

• Consider using Kinesis Data Firehose over Lambda when ingested data needs to

be continuously loaded into Amazon S3, Amazon Redshift, or Amazon ES.

• Consider using Kinesis Data Analytics over Lambda when standard SQL could

be used to query streaming data, and load only its results into Amazon S3,

Amazon Redshift, Amazon ES, or Kinesis Streams.

• Follow best practices for AWS Lambda stream-based invocation11 since that

covers the effects on batch size, concurrency per shard, and monitoring stream

processing in more detail.

• Use Lambda maximum retry attempts, maximum record age, bisect batch on

function error, and on-failure destination error controls to build more resilient

stream processing applications.

Web Application

Web applications typically have demanding requirements to ensure a consistent,

secure, and reliable user experience. To ensure high availability, global availability, and

the ability to scale to thousands or potentially millions of users, you often had to reserve

substantial excess capacity to handle web requests at their highest anticipated demand.

This often required managing fleets of servers and additional infrastructure components

which, in turn, led to significant capital expenditures and long lead times for capacity

provisioning.

Using serverless computing on AWS, you can deploy your entire web application stack

without performing the undifferentiated heavy lifting of managing servers, guessing at

provisioning capacity, or paying for idle resources. Additionally, you do not have to

compromise on security, reliability, or performance.

Characteristics:

• You want a scalable web application that can go global in minutes with a high

level of resiliency and availability.

• You want a consistent user experience with adequate response times.

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events
https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/
https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/

Archived

Amazon Web Services Serverless Application Lens

 21

• You are seeking to leverage managed services as much as possible for your

platforms to limit the heavy lifting associated with managing common platforms.

• You want to optimize your costs based on actual user demand versus paying for

idle resources.

• You want to create a framework that is easy to set up and operate, and that you

can extend with limited impact later.

Reference Architecture

Figure 4: Reference architecture for a web application

1. Consumers of this web application might be geographically concentrated or

distributed worldwide. Leveraging Amazon CloudFront not only provides a better

performance experience for these consumers through caching and optimal origin

routing, but also limits redundant calls to your backend.

2. Amazon S3 hosts web application static assets and is securely served through

CloudFront.

3. An Amazon Cognito user pool provides user management and identity provider

features for your web application.

Archived

Amazon Web Services Serverless Application Lens

 22

4. In many scenarios, as static content from Amazon S3 is downloaded by the

consumer, dynamic content needs to be sent to or received by your application.

For example, when a user submits data through a form, Amazon API Gateway

serves as the secure endpoint to make these calls and return responses

displayed through your web application.

5. An AWS Lambda function provides create, read, update, and delete (CRUD)

operations on top of DynamoDB for your web application.

6. Amazon DynamoDB can provide the backend NoSQL data store to elastically

scale with the traffic of your web application.

Configuration Notes:

• Follow best practices for deploying your serverless web application frontend on

AWS. More information can be found in the operational excellence pillar.

• For single-page web applications, use AWS Amplify Console to manage atomic

deployments, cache expiration, custom domain, and user interface (UI) testing.

• Refer to the security pillar for recommendations on authentication and

authorization.

• Refer to the RESTful Microservices scenario for recommendations on web

application backend.

• For web applications that offer personalized services, you can leverage API

Gateway usage plans12 as well as Amazon Cognito user pools to scope what

different sets of users have access to. For example, a premium user can have

higher throughput for API calls, access to additional APIs, additional storage, etc.

• Refer to the Mobile Backend scenario if your application uses search capabilities

that are not covered in this scenario.

The Pillars of the Well-Architected Framework

This section describes each of the pillars, and includes definitions, best practices,

questions, considerations, and key AWS services that are relevant when architecting

solutions for serverless applications.

For brevity, we have only selected the questions from the Well-Architected Framework

that are specific to serverless workloads. Questions that have not been included in this

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html

Archived

Amazon Web Services Serverless Application Lens

 23

document should still be considered when designing your architecture. We recommend

that you read the AWS Well-Architected Framework whitepaper.

Operational Excellence Pillar

The operational excellence pillar includes the ability to run and monitor systems to

deliver business value and to continually improve supporting processes and

procedures.

Definition

There are three best practice areas for operational excellence in the cloud:

• Prepare

• Operate

• Evolve

In addition to what is covered by the Well-Architected Framework concerning

processes, runbooks, and game days, there are specific areas you should look into to

drive operational excellence within serverless applications.

Best Practices

Prepare

There are no operational practices unique to serverless applications that belong to this

subsection.

Operate

OPS 1: How do you understand the health of your Serverless application?

Metrics and Alerts

It’s important to understand Amazon CloudWatch Metrics and Dimensions for every

AWS service you intend to use so that you can put a plan in a place to assess its

behavior and add custom metrics where you see fit.

Amazon CloudWatch provides automated cross service and per service dashboards to

help you understand key metrics for the AWS services that you use. For custom

metrics, use Amazon CloudWatch Embedded Metric Format to log a batch of metrics

http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Automatic_Dashboards_Cross_Service.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Generation.html

Archived

Amazon Web Services Serverless Application Lens

 24

that will be processed asynchronously by CloudWatch without impacting the

performance of your Serverless application.

The following guidelines can be used whether you are creating a dashboard or looking

to formulate a plan for new and existing applications when it comes to metrics:

• Business Metrics

o Business KPIs that will measure your application performance against

business goals and are important to know when something is critically

affecting your overall business, revenue wise or not.

o Examples: Orders placed, debit/credit card operations, flights purchased,

etc.

• Customer Experience Metrics

o Customer experience data dictates not only the overall effectiveness of its

UI/UX but also whether changes or anomalies are affecting customer

experience in a particular section of your application. Often times, these are

measured in percentiles to prevent outliers when trying to understand the

impact over time and how it’s spread across your customer base.

o Examples: Perceived latency, time it takes to add an item to a basket or to

check out, page load times, etc.

• System Metrics

o Vendor and application metrics are important to underpin root causes from

the previous sections. They also tell you if your systems are healthy, at risk,

or already your customers.

o Examples: Percentage of HTTP errors/success, memory utilization, function

duration/error/throttling, queue length, stream records length, integration

latency, etc.

• Operational Metrics

o Operational metrics are equally important to understand sustainability and

maintenance of a given system and crucial to pinpoint how stability

progressed/degraded over time.

Archived

Amazon Web Services Serverless Application Lens

 25

o Examples: Number of tickets (successful and unsuccessful resolutions,

etc.), number of times people on-call were paged, availability, CI/CD pipeline

stats (successful/failed deployments, feedback time, cycle and lead time,

etc.)

CloudWatch Alarms should be configured at both individual and aggregated levels. An

individual-level example is alarming on the Duration metric from Lambda or

IntegrationLatency from API Gateway when invoked through API, since different parts of

the application likely have different profiles. In this instance, you can quickly identify a

bad deployment that makes a function execute for much longer than usual.

Aggregate-level examples include alarming but is not limited to the following metrics:

• AWS Lambda: Duration, Errors, Throttling, and ConcurrentExecutions. For

stream-based invocations, alert on IteratorAge. For Asynchronous invocations,

alert on DeadLetterErrors.

• Amazon API Gateway: IntegrationLatency, Latency, 5XXError

• Application Load Balancer: HTTPCode_ELB_5XX_Count,

RejectedConnectionCount, HTTPCode_Target_5XX_Count,

UnHealthyHostCount, LambdaInternalError, LambdaUserError

• AWS AppSync: 5XX and Latency

• Amazon SQS: ApproximateAgeOfOldestMessage

• Amazon Kinesis Data Streams: ReadProvisionedThroughputExceeded,

WriteProvisionedThroughputExceeded, GetRecords.IteratorAgeMilliseconds,

PutRecord.Success, PutRecords.Success (if using Kinesis Producer Library) and

GetRecords.Success

• Amazon SNS: NumberOfNotificationsFailed, NumberOfNotificationsFilteredOut-

InvalidAttributes

• Amazon SES: Rejects, Bounces, Complaints, Rendering Failures

• AWS Step Functions: ExecutionThrottled, ExecutionsFailed,

ExecutionsTimedOut

• Amazon EventBridge: FailedInvocations, ThrottledRules

• Amazon S3: 5xxErrors, TotalRequestLatency

• Amazon DynamoDB: ReadThrottleEvents, WriteThrottleEvents, SystemErrors,

ThrottledRequests, UserErrors

Archived

Amazon Web Services Serverless Application Lens

 26

Centralized and structured logging

Standardize your application logging to emit operational information about transactions,

correlation identifiers, request identifiers across components, and business outcomes.

Use this information to answer arbitrary questions about the state of your workload.

Below is an example of a structured logging using JSON as the output:

{

 "timestamp":"2019-11-26 18:17:33,774",

 "level":"INFO",

 "location":"cancel.cancel_booking:45",

 "service":"booking",

 "lambda_function_name":"test",

 "lambda_function_memory_size":"128",

 "lambda_function_arn":"arn:aws:lambda:eu-west-1:

12345678910:function:test",

 "lambda_request_id":"52fdfc07-2182-154f-163f-5f0f9a621d72",

 "cold_start": "true",

 "message":{

 "operation":"update_item",

 "details:":{

 "Attributes":{

 "status":"CANCELLED"

 },

 "ResponseMetadata":{

"RequestId":"G7S3SCFDEMEINPG6AOC6CL5IDNVV4KQNSO5AEMVJF66Q9ASUAAJG",

 "HTTPStatusCode":200,

 "HTTPHeaders":{

 "server":"Server",

 "date":"Thu, 26 Nov 2019 18:17:33 GMT",

 "content-type":"application/x-amz-json-1.0",

 "content-length":"43",

 "connection":"keep-alive",

 "x-amzn-

requestid":"G7S3SCFDEMEINPG6AOC6CL5IDNVV4KQNSO5AEMVJF66Q9ASUAAJG",

 "x-amz-crc32":"1848747586"

 },

 "RetryAttempts":0

 }

 }

Archived

Amazon Web Services Serverless Application Lens

 27

 }

}

Centralized logging helps you search and analyze your serverless application logs.

Structured logging makes it easier to derive queries to answer arbitrary questions about

the health of your application. As your system grows and more logging is ingested,

consider using appropriate logging levels and a sampling mechanism to log a small

percentage of logs in DEBUG mode.

Distributed Tracing

Similar to non-serverless applications, anomalies can occur at larger scale in distributed

systems. Due to the nature of serverless architectures, it’s fundamental to have

distributed tracing.

Making changes to your serverless application entails many of the same principles of

deployment, change, and release management used in traditional workloads. However,

there are subtle changes in how you use existing tools to accomplish these principles.

Active tracing with AWS X-Ray should be enabled to provide distributed tracing

capabilities as well as to enable visual service maps for faster troubleshooting. X-Ray

helps you identify performance degradation and quickly understand anomalies,

including latency distributions.

Figure 7: AWS X-Ray Service Map visualizing 2 services

Service Maps are helpful to understand integration points that need attention and

resiliency practices. For integration calls, retries, backoffs, and possibly circuit breakers

are necessary to prevent faults from propagating to downstream services.

Archived

Amazon Web Services Serverless Application Lens

 28

Another example is networking anomalies. You should not rely on default timeouts and

retry settings. Instead, tune them to fail fast if a socket read/write timeout happens

where the default can be seconds if not minutes in certain clients.

X-Ray also provides two powerful features that can improve the efficiency on identifying

anomalies within applications: Annotations and Subsegments.

Subsegments are helpful to understand how application logic is constructed and what

external dependencies it has to talk to. Annotations are key-value pairs with string,

number, or Boolean values that are automatically indexed by AWS X-Ray.

Combined, they can help you quickly identify performance statistics on specific

operations and business transactions, for example, how long it takes to query a

database, or how long it takes to process pictures with large crowds.

Figure 8: AWS X-Ray Trace with subsegments beginning with ##

Archived

Amazon Web Services Serverless Application Lens

 29

Figure 9: AWS X-Ray Traces grouped by custom annotations

OPS 2: How do you approach application lifecycle management?

Prototyping

Use infrastructure as code to create temporary environments for new features that you

want to prototype, and tear them down as you complete them. You can use dedicated

accounts per team or per developer depending, on the size of the team and the level of

automation within the organization.

Temporary environments allow for higher fidelity when working with managed services,

and increase levels of control to help you gain confidence that your workload integrates

and operates as intended.

For configuration management, use environment variables for infrequent changes, such

as logging level and database connection strings. Use AWS System Manager

Parameter Store for dynamic configuration, such as feature toggles, and store sensitive

data using AWS Secrets Manager.

Testing

Testing is commonly done through unit, integration, and acceptance tests. Developing

robust testing strategies allows you to emulate your serverless application under

different loads and conditions.

Unit tests shouldn’t be different from non-serverless applications and, therefore, can run

locally without any changes.

Archived

Amazon Web Services Serverless Application Lens

 30

Integration tests shouldn’t mock services you can’t control, since they might change and

provide unexpected results. These tests are better performed when using real services

because they can provide the same environment a serverless application would use

when processing requests in production.

Acceptance or end-to-end tests should be performed without any changes because the

primary goal is to simulate the end users’ actions through the available external

interface. Therefore, there is no unique recommendation to be aware of here.

In general, Lambda and third-party tools that are available in the AWS Marketplace can

be used as a test harness in the context of performance testing. Here are some

considerations during performance testing to be aware of:

• Metrics such as invoked max memory used and init duration are available in

CloudWatch Logs. For more information, read the performance pillar section.

• If your Lambda function runs inside Amazon Virtual Private Cloud (VPC), pay

attention to available IP address space inside your subnet.

• Creating modularized code as separate functions outside of the handler enables

more unit-testable functions.

• Establishing externalized connection code (such as a connection pool to a

relational database) referenced in the Lambda function’s static

constructor/initialization code (that is, global scope, outside the handler) will

ensure that external connection thresholds aren’t reached if the Lambda

execution environment is reused.

• Use DynamoDB on-demand table unless your performance tests exceed current

limits in your account.

• Take into account any other service limits that might be used within your

serverless application under performance testing.

Deploying

Use infrastructure as code and version control to enable tracking of changes and

releases. Isolate development and production stages in separate environments. This

reduces errors caused by manual processes and helps increase levels of control to help

you gain confidence that your workload operates as intended.

Use a serverless framework to model, prototype, build, package, and deploy serverless

applications, such as AWS SAM or Serverless Framework. With infrastructure as code

Archived

Amazon Web Services Serverless Application Lens

 31

and a framework, you can parametrize your serverless application and its dependencies

to ease deployment across isolated stages and across AWS accounts.

For example, a CI/CD pipeline Beta stage can create the following resources in a beta

AWS account and equally for the respective stages you may want to have in different

accounts too (Gamma, Dev, Prod): OrderAPIBeta, OrderServiceBeta,

OrderStateMachineBeta, OrderBucketBeta, OrderTableBeta.

Figure 10: CI/CD Pipeline for multiple accounts

When deploying to production, favor safe deployments over all-at-once systems as new

changes will gradually shift over time towards the end user in a canary or linear

deployment. Use CodeDeploy hooks (BeforeAllowTraffic, AfterAllowTraffic) and alarms

to gain more control over deployment validation, rollback, and any customization you

may need for your application.

Archived

Amazon Web Services Serverless Application Lens

 32

You can also combine the use of synthetic traffic, custom metrics, and alerts as part of a

rollout deployment. These help you proactively detect errors with new changes that

otherwise would have impacted your customer experience.

Evolve

There are no operational practices unique to serverless applications that belong to this

subsection.

Key AWS Services

Key AWS services for operational excellence include AWS Systems Manager

Parameter Store, AWS SAM, CloudWatch, AWS CodePipeline, AWS X-Ray, Lambda,

and API Gateway.

Resources

Refer to the following resources to learn more about our best practices for operational

excellence.

Documentation & Blogs

• API Gateway stage variables13

• Lambda environment variables14

• AWS SAM CLI15

Figure 5: AWS CodeDeploy Lambda deployment and Hooks

http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://github.com/awslabs/serverless-application-model

Archived

Amazon Web Services Serverless Application Lens

 33

• X-Ray latency distribution16

• Troubleshooting Lambda-based applications with X-Ray17

• System Manager (SSM) Parameter Store18

• Continuous Deployment for Serverless applications blog post19

• SamFarm: CI/CD example20

• Serverless Application example using CI/CD

• Serverless Application example automating Alerts and Dashboard

• CloudWatch Embedded Metric Format library for Python

• CloudWatch Embedded Metric Format library for Node.js

• Example library to implement tracing, structured logging and custom metrics

• General AWS Limits

• Stackery: Multi-Account Best Practices

Whitepaper

• Practicing Continuous Integration/Continuous Delivery on AWS21

Third-Party Tools

• Serverless Developer Tools page including third-party frameworks/tools22

• Stelligent: CodePipeline Dashboard for operational metrics

Security Pillar

The security pillar includes the ability to protect information, systems, and assets while

delivering business value through risk assessments and mitigation strategies.

Definition

There are five best practice areas for security in the cloud:

• Identity and access management

• Detective controls

• Infrastructure protection

https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://github.com/awslabs/aws-serverless-samfarm
https://github.com/awslabs/realworld-serverless-application/wiki/CI-CD
https://github.com/awslabs/realworld-serverless-application/wiki/Serverless-Operations
https://github.com/awslabs/aws-embedded-metrics-python
https://github.com/awslabs/aws-embedded-metrics-node/
https://github.com/awslabs/aws-lambda-powertools
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://www.stackery.io/blog/multi-account-best-practices/
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://aws.amazon.com/serverless/developer-tools/
https://stelligent.com/2017/11/16/codepipeline-dashboard/

Archived

Amazon Web Services Serverless Application Lens

 34

• Data protection

• Incident response

Serverless addresses some of today’s biggest security concerns as it removes

infrastructure management tasks, such as operating system patching, updating binaries,

etc. Although the attack surface is reduced compared to non-serverless architectures,

the Open Web Application Security Project (OWASP) and application security best

practices still apply.

The questions in this section are designed to help you address specific ways an

attacker could try to gain access to or exploit misconfigured permissions, which could

lead to abuse. The practices described in this section strongly influence the security of

your entire cloud platform and so they should be validated carefully and also reviewed

frequently.

The incident response category will not be described in this document because the

practices from the AWS Well-Architected Framework still apply.

Best Practices

Identity and Access Management

SEC 1: How do you control access to your Serverless API?

APIs are often targeted by attackers because of the operations that they can perform

and the valuable data they can obtain. There are various security best practices to

defend against these attacks.

From an authentication/authorization perspective, there are currently four mechanisms

to authorize an API call within API Gateway:

• AWS_IAM authorization

• Amazon Cognito user pools

• API Gateway Lambda authorizer

• Resource policies

Primarily, you want to understand if, and how, any of these mechanisms are

implemented. For consumers who currently are located within your AWS environment or

have the means to retrieve AWS Identity and Access Management (IAM) temporary

Archived

Amazon Web Services Serverless Application Lens

 35

credentials to access your environment, you can use AWS_IAM authorization and add

least-privileged permissions to the respective IAM role to securely invoke your API.

The following diagram illustrates using AWS_IAM authorization in this context:

Figure 10: AWS_IAM authorization

If you have an existing Identity Provider (IdP), you can use an API Gateway Lambda

authorizer to invoke a Lambda function to authenticate/validate a given user against

your IdP. You can use a Lambda authorizer for custom validation logic based on identity

metadata.

A Lambda authorizer can send additional information derived from a bearer token or

request context values to your backend service. For example, the authorizer can return

a map containing user IDs, user names, and scope. By using Lambda authorizers, your

backend does not need to map authorization tokens to user-centric data, allowing you to

limit the exposure of such information to just the authorization function.

Archived

Amazon Web Services Serverless Application Lens

 36

Figure 6: API Gateway Lambda authorizer

If you don’t have an IdP, you can leverage Amazon Cognito user pools to either provide

built-in user management or integrate with external identity providers, such as

Facebook, Twitter, Google+, and Amazon.

This is commonly seen in the mobile backend scenario, where users authenticate by

using existing accounts in social media platforms while being able to register/sign in

with their email address/username. This approach also provides granular authorization

through OAuth Scopes.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html

Archived

Amazon Web Services Serverless Application Lens

 37

Figure 7: Amazon Cognito user pools

API Gateway API Keys is not a security mechanism and should not be used for

authorization unless it’s a public API. It should be used primarily to track a consumer’s

usage across your API and could be used in addition to the authorizers previously

mentioned in this section.

When using Lambda authorizers, we strictly advise against passing credentials or any

sort of sensitive data via query string parameters or headers, otherwise you may open

your system up to abuse.

Amazon API Gateway resource policies are JSON policy documents that can be

attached to an API to control whether a specified AWS Principal can invoke the API.

This mechanism allows you to restrict API invocations by:

• Users from a specified AWS account, or any AWS IAM identity

• Specified source IP address ranges or CIDR blocks

• Specified virtual private clouds (VPCs) or VPC endpoints (in any account)

With resource policies, you can restrict common scenarios, such as only allowing

requests coming from known clients with a specific IP range or from another AWS

account. If you plan to restrict requests coming from private IP addresses, it’s

recommended to use API Gateway private endpoints instead.

Archived

Amazon Web Services Serverless Application Lens

 38

Figure 14: Amazon API Gateway Resource Policy based on IP CIDR

With private endpoints, API Gateway will restrict access to services and resources

inside your VPC, or those connected via Direct Connect to your own data centers.

Combining both private endpoints and resource policies, an API can be limited to

specific resource invocations within a specific private IP range. This combination is

mostly used on internal microservices where they may be in the same or another

account.

When it comes to large deployments and multiple AWS accounts, organizations can

leverage cross-account Lambda authorizers in API Gateway to reduce maintenance

and centralize security practices. For example, API Gateway has the ability to use

Amazon Cognito User Pools in a separate account. Lambda authorizers can also be

created and managed in a separate account and then re-used across multiple APIs

managed by API Gateway. Both scenarios are common for deployments with multiple

microservices that need to standardize authorization practices across APIs.

Archived

Amazon Web Services Serverless Application Lens

 39

Figure 15: API Gateway Cross-Account Authorizers

SEC 2: How are you managing the security boundaries of your Serverless
Application?

With Lambda functions, it’s recommended that you follow least-privileged access and

only allow the access needed to perform a given operation. Attaching a role with more

permissions than necessary can open up your systems for abuse.

With the security context, having smaller functions that perform scoped activities

contribute to a more well-architected serverless application. Regarding IAM roles,

sharing an IAM role within more than one Lambda function will likely violate least-

privileged access.

Detective Controls

Log management is an important part of a well-architected design for reasons ranging

from security/forensics to regulatory or legal requirements.

It is equally important that you track vulnerabilities in application dependencies because

attackers can exploit known vulnerabilities found in dependencies regardless of which

programming language is used.

For application dependency vulnerability scans, there are several commercial and open-

source solutions, such as OWASP Dependency Check, that can integrate within your

CI/CD pipeline. It’s important to include all your dependencies, including AWS SDKs, as

part of your version control software repository.

Archived

Amazon Web Services Serverless Application Lens

 40

Infrastructure Protection

For scenarios where your serverless application needs to interact with other

components deployed in a virtual private cloud (VPC) or applications residing on-

premises, it’s important to ensure that networking boundaries are considered.

Lambda functions can be configured to access resources within a VPC. Control traffic at

all layers as described in the AWS Well-Architected Framework. For workloads that

require outbound traffic filtering due to compliance reasons, proxies can be used in the

same manner that they are applied in non-serverless architectures.

Enforcing networking boundaries solely at the application code level and giving

instructions as to what resources one could access is not recommended due to

separation of concerns.

For service-to-service communication, favor dynamic authentication, such as temporary

credentials with AWS IAM over static keys. API Gateway and AWS AppSync both

support IAM Authorization that makes it ideal to protect communication to and from

AWS services.

Data Protection

Consider enabling API Gateway Access Logs and selectively choose only what you

need, since the logs might contain sensitive data, depending on your serverless

application design. For this reason, we recommend that you encrypt any sensitive data

traversing your serverless application.

API Gateway and AWS AppSync employ TLS across all communications, clients, and

integrations. Although HTTP payloads are encrypted in-transit, request path and query

strings that are part of a URL might not be. Therefore, sensitive data can be accidentally

exposed via CloudWatch Logs if sent to standard output.

Additionally, malformed or intercepted input can be used as an attack vector—either to

gain access to a system or cause a malfunction. Sensitive data should be protected at

all times in all layers possible as discussed in detail in the AWS Well-Architected

Framework. The recommendations in that whitepaper still apply here.

With regard to API Gateway, sensitive data should be either encrypted at the client-side

before making its way as part of an HTTP request, or sent as a payload as part of an

HTTP POST request. That also includes encrypting any headers that might contain

sensitive data prior to making a given request.

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-logging.html

Archived

Amazon Web Services Serverless Application Lens

 41

Concerning Lambda functions or any integrations that API Gateway may be configured

with, sensitive data should be encrypted before any processing or data manipulation.

This will prevent data leakage if such data gets exposed in persistent storage or by

standard output that is streamed and persisted by CloudWatch Logs.

In the scenarios described earlier in this document, Lambda functions would persist

encrypted data in either DynamoDB, Amazon ES, or Amazon S3 along with encryption

at rest. We strictly advise against sending, logging, and storing unencrypted sensitive

data, either as part of HTTP request path/query strings or in standard output of a

Lambda function.

Enabling logging in API Gateway where sensitive data is unencrypted is also

discouraged. As mentioned in the Detective Controls subsection, you should consult

your compliance team before enabling API Gateway logging in such cases.

SEC 3: How do you implement Application Security in your workload?

Review security awareness documents authored by AWS Security bulletins and industry

threat intelligence as covered in the AWS Well-Architected Framework. OWASP

guidelines for application security still apply.

Validate and sanitize inbound events, and perform a security code review as you

normally would for non-serverless applications. For API Gateway, set up basic request

validation as a first step to ensure that the request adheres to the configured JSON-

Schema request model as well as any required parameters in the URI, query string, or

headers. Application-specific deep validation should be implemented, whether that is as

a separate Lambda function, library, framework, or service.

Store your secrets, such as database passwords or API keys, in a secrets manager that

allows for rotation, secure and audited access. Secrets Manager allows fine-grained

policies for secrets including auditing.

Key AWS Services

Key AWS services for security are Amazon Cognito, IAM, Lambda, CloudWatch Logs,

AWS CloudTrail, AWS CodePipeline, Amazon S3, Amazon ES, DynamoDB, and

Amazon Virtual Private Cloud (Amazon VPC).

Archived

Amazon Web Services Serverless Application Lens

 42

Resources

Refer to the following resources to learn more about our best practices for security.

Documentation & Blogs

• IAM role for Lambda function with Amazon S3 example23

• API Gateway Request Validation24

• API Gateway Lambda Authorizers25

• Securing API Access with Amazon Cognito Federated Identities, Amazon

Cognito User Pools, and Amazon API Gateway26

• Configuring VPC Access for AWS Lambda27

• Filtering VPC outbound traffic with Squid Proxies28

• Using AWS Secrets Manager with Lambda

• Auditing Secrets with AWS Secrets Manager

• OWASP Input validation cheat sheet

• AWS Serverless Security Workshop

Whitepapers

• OWASP Secure Coding Best Practices29

• AWS Security Best Practices30

Partner Solutions

• PureSec Serverless Security

• Twistlock Serverless Security31

• Protego Serverless Security

• Snyk – Commercial Vulnerability DB and Dependency Check32

• Using Hashicorp Vault with Lambda & API Gateway

Third-Party Tools

• OWASP Vulnerability Dependency Check33

http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://aws.amazon.com/blogs/security/how-to-securely-provide-database-credentials-to-lambda-functions-by-using-aws-secrets-manager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/monitoring.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://github.com/aws-samples/aws-serverless-security-workshop
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://puresec.io/
https://www.twistlock.com/products/serverless-security/
https://www.protego.io/
https://snyk.io/
https://learn.hashicorp.com/terraform/aws/lambda-api-gateway
https://www.owasp.org/index.php/OWASP_Dependency_Check

Archived

Amazon Web Services Serverless Application Lens

 43

Reliability Pillar

The reliability pillar includes the ability of a system to recover from infrastructure or

service disruptions, dynamically acquire computing resources to meet demand, and

mitigate disruptions such as misconfigurations or transient network issues.

Definition

There are three best practice areas for reliability in the cloud:

• Foundations

• Change management

• Failure management

To achieve reliability, a system must have a well-planned foundation and monitoring in

place, with mechanisms for handling changes in demand, requirements, or potentially

defending an unauthorized denial of service attack. The system should be designed to

detect failure and, ideally, automatically heal itself.

Best Practices

Foundations

 REL 1: How are you regulating inbound request rates?

Throttling

In a microservices architecture, API consumers may be in separate teams or even

outside the organization. This creates a vulnerability due to unknown access patterns as

well as the risk of consumer credentials being compromised. The service API can

potentially be affected if the number of requests exceeds what the processing

logic/backend can handle.

Additionally, events that trigger new transactions, such as an update in a database row

or new objects being added to an S3 bucket as part of the API, will trigger additional

executions throughout a serverless application.

Throttling should be enabled at the API level to enforce access patterns established by

a service contract. Defining a request access pattern strategy is fundamental to

Archived

Amazon Web Services Serverless Application Lens

 44

establishing how a consumer should use a service, whether that is at the resource or

global level.

Returning the appropriate HTTP status codes within your API (such as a 429 for

throttling) helps consumers plan for throttled access by implementing back-off and

retries accordingly.

For more granular throttling and metering usage, issuing API keys to consumers with

usage plans in addition to global throttling enables API Gateway to enforce quota and

access patterns in unexpected behavior. API keys also simplify the process for

administrators to cut off access if an individual consumer is making suspicious requests.

A common way to capture API keys is through a developer portal. This provides you, as

the service provider, with additional metadata associated with the consumers and

requests. You may capture the application, contact information, and business

area/purpose and store this data in a durable data store, such as DynamoDB. This

gives you additional validation of your consumers and provides traceability of logging

with identities, so that you can contact consumers for breaking change upgrades/issues.

As discussed in the security pillar, API keys are not a security mechanism to authorize

requests, and, therefore, should only be used with one of the available authorization

options available within API Gateway.

Concurrency controls are sometimes necessary to protect specific workloads against

service failure as they may not scale as rapidly as Lambda. Concurrency controls

enable you to control the allocation of how many concurrent invocations of a particular

Lambda function are set at the individual Lambda function level.

Lambda invocations that exceed the concurrency set of an individual function will be

throttled by the AWS Lambda Service and the result will vary depending on their event

source – Synchronous invocations return HTTP 429 error, Asynchronous invocations

will be queued and retried while Stream-based event sources will retry up to their record

expiration time.

https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

Archived

Amazon Web Services Serverless Application Lens

 45

Figure 16: AWS Lambda concurrency controls

Controlling concurrency is particularly useful for the following scenarios:

• Sensitive backend or integrated systems that may have scaling limitations

• Database Connection Pool restrictions such as a relational database, which may

impose concurrent limits

• Critical Path Services: Higher priority Lambda functions, such as authorization vs

lower priority functions (for example, back-office) against limits in the same

account

• Ability to disable Lambda function (concurrency = 0) in the event of anomalies.

• Limiting desired execution concurrency to protect against Distributed Denial of

Service (DDoS) attacks

Concurrency controls for Lambda functions also limit its ability to scale beyond the

concurrency set and draws from your account reserved concurrency pool. For

asynchronous processing, use Kinesis Data Streams to effectively control concurrency

with a single shard as opposed to Lambda function concurrency control. This gives you

the flexibility to increase the number of shards or the parallelization factor to increase

concurrency of your Lambda function.

Archived

Amazon Web Services Serverless Application Lens

 46

Figure 8: Concurrency controls for synchronous and asynchronous requests

REL 2: How are you building resiliency into your serverless application?

Asynchronous Calls and Events

Asynchronous calls reduce the latency on HTTP responses. Multiple synchronous calls,

as well as long-running wait cycles, may result in timeouts and “locked” code that

prevents retry logic.

Event-driven architectures enable streamlining asynchronous executions of code, thus

limiting consumer wait cycles. These architectures are commonly implemented

asynchronously using queues, streams, pub/sub, Webhooks, state machines, and event

rule managers across multiple components that perform a business functionality.

User experience is decoupled with asynchronous calls. Instead of blocking the entire

experience until the overall execution is completed, frontend systems receive a

reference/job ID as part of their initial request and they subscribe for real-time changes,

or in legacy systems use an additional API to poll its status. This decoupling allows the

frontend to be more efficient by using event loops, parallel, or concurrency techniques

while making such requests and lazily loading parts of the application when a response

is partially or completely available.

The frontend becomes a key element in asynchronous calls as it becomes more robust

with custom retries and caching. It can halt an in-flight request if no response has been

received within an acceptable SLA, be it caused by an anomaly, transient condition,

networking, or degraded environments.

Archived

Amazon Web Services Serverless Application Lens

 47

Alternatively, when synchronous calls are necessary, it’s recommended at a minimum

to ensure that the total execution time doesn’t exceed the API Gateway or AWS

AppSync maximum timeout. Use an external service (for example, AWS Step

Functions) to coordinate business transactions across multiple services, to control state

and handle error handling that occurs along the request lifecycle.

Change Management

This is covered in the AWS Well-Architected Framework, and specific information on

serverless can be found in the operational excellence pillar.

Failure Management

Certain parts of a serverless application are dictated by asynchronous calls to various

components in an event-driven fashion, such as by pub/sub and other patterns. When

asynchronous calls fail, they should be captured and retried whenever possible.

Otherwise, data loss can occur, resulting in a degraded customer experience.

For Lambda functions, build retry logic into your Lambda queries to ensure that spiky

workloads don’t overwhelm your backend. Use structured logging as covered in the

operational excellence pillar to log retries, including contextual information about errors

as they can be captured as a custom metric. Use Lambda Destinations to send

contextual information about errors, stack traces, and retries into dedicated Dead Letter

Queues (DLQ), such as SNS topics and SQS queues. You also want to develop a plan

to poll by a separate mechanism to re-drive these failed events back to their intended

service.

AWS SDKs provide back-off and retry mechanisms by default when talking to other

AWS services that are sufficient in most cases. However, review and tune them to suit

your needs, especially HTTP keepalive, connection, and socket timeouts.

Whenever possible, use Step Functions to minimize the amount of custom try/catch,

back-off, and retry logic within your serverless applications. For more information, see

the cost optimization pillar section. Use Step Functions integration to save failed state

executions and their state into a DLQ.

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-retry-timeout-sdk/

Archived

Amazon Web Services Serverless Application Lens

 48

Figure 9: Step Functions state machine with DLQ step

Partial failures can occur in non-atomic operations, such as PutRecords (Kinesis) and

BatchWriteItem (DynamoDB), since they return successful if at least one record has

been ingested successfully. Always inspect the response when using such operations

and programmatically deal with partial failures.

When consuming from Kinesis or DynamoDB streams, use Lambda error handling

controls, such as maximum record age, maximum retry attempts, DLQ on failure, and

Bisect batch on function error, to build additional resiliency into your application.

For synchronous parts that are transaction-based and depend on certain guarantees

and requirements, rolling back failed transactions as described by the Saga pattern34

also can be achieved by using Step Functions state machines, which will decouple and

simplify the logic of your application.

http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

Archived

Amazon Web Services Serverless Application Lens

 49

Figure 10: Saga pattern in Step Functions by Yan Cui

Limits

In addition to what is covered in the Well-Architected Framework, consider reviewing

limits for burst and spiky use cases. For example, API Gateway and Lambda have

different limits for steady and burst request rates. Use scaling layers and asynchronous

patterns when possible, and perform load test to ensure that your current account limits

can sustain your actual customer demand.

Key AWS Services

Key AWS services for reliability are AWS Marketplace, Trusted Advisor, CloudWatch

Logs, CloudWatch, API Gateway, Lambda, X-Ray, Step Functions, Amazon SQS, and

Amazon SNS.

Resources

Refer to the following resources to learn more about our best practices for reliability.

Documentation & Blogs

• Limits in Lambda35

• Limits in API Gateway36

• Limits in Kinesis Streams37

http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html

Archived

Amazon Web Services Serverless Application Lens

 50

• Limits in DynamoDB38

• Limits in Step Functions39

• Error handling patterns40

• Serverless testing with Lambda41

• Monitoring Lambda Functions Logs42

• Versioning Lambda43

• Stages in API Gateway44

• API Retries in AWS45

• Step Functions error handling46

• X-Ray47

• Lambda DLQ48

• Error handling patterns with API Gateway and Lambda49

• Step Functions Wait state50

• Saga pattern51

• Applying Saga pattern via Step Functions52

• Serverless Application Repository App – DLQ Redriver

• Troubleshooting retry and timeout issues with AWS SDK

• Lambda resiliency controls for stream processing

• Lambda Destinations

• Serverless Application Repository App – Event Replay

• Serverless Application Repository App – Event Storage and Backup

Whitepapers

• Microservices on AWS53

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html
http://docs.aws.amazon.com/general/latest/gr/api-retries.html
http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
http://docs.aws.amazon.com/lambda/latest/dg/dlq.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://microservices.io/patterns/data/saga.html
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:303769779339:applications~aws-sqs-dlq-redriver
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-retry-timeout-sdk/
https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-event-replay-pipeline
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-event-storage-backup-pipeline
https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf

Archived

Amazon Web Services Serverless Application Lens

 51

Performance Efficiency Pillar

The performance efficiency pillar focuses on the efficient use of computing resources

to meet requirements and the maintenance of that efficiency as demand changes and

technologies evolve.

Definition

Performance efficiency in the cloud is composed of four areas:

• Selection

• Review

• Monitoring

• Tradeoffs

Take a data-driven approach to selecting a high-performance architecture. Gather data

on all aspects of the architecture, from the high-level design to the selection and

configuration of resource types. By reviewing your choices on a cyclical basis, you will

ensure that you are taking advantage of the continually evolving AWS Cloud.

Monitoring will ensure that you are aware of any deviance from expected performance

and can take action on it. Finally, you can make tradeoffs in your architecture to improve

performance, such as using compression or caching, or by relaxing consistency

requirements.

PER 1: How have you optimized the performance of your serverless application?

Selection

Run performance tests on your serverless application using steady and burst rates.

Using the result, try tuning capacity units and load test after changes to help you select

the best configuration:

• Lambda: Test different memory settings as CPU, network, and storage IOPS are

allocated proportionally.

• API Gateway: Use Edge endpoints for geographically dispersed customers. Use

Regional for regional customers and when using other AWS services within the

same Region.

Archived

Amazon Web Services Serverless Application Lens

 52

• DynamoDB: Use on-demand for unpredictable application traffic, otherwise

provisioned mode for consistent traffic.

• Kinesis: Use enhanced-fan-out for dedicated input/output channel per consumer

in multiple consumer scenarios. Use an extended batch window for low volume

transactions with Lambda.

Configure VPC access to your Lambda functions only when necessary. Set up a NAT

gateway if your VPC-enabled Lambda function needs access to the internet. As covered

in the Well-Architected Framework, configure your NAT gateway across multiple

Availability Zones for high availability and performance.

API Gateway Edge-optimized APIs provide a fully managed CloudFront distribution to

optimize access for geographically dispersed consumers. API requests are routed to the

nearest CloudFront Point of Presence (POP), which typically improves connection time.

Figure 11: Edge-optimized API Gateway deployment

API Gateway Regional endpoint doesn’t provide a CloudFront distribution and enables

HTTP2 by default, which helps reduce overall latency when requests originate from the

same Region. Regional endpoints also allow you to associate your own Amazon

CloudFront distribution or an existing CDN.

Archived

Amazon Web Services Serverless Application Lens

 53

Figure 21: Regional Endpoint API Gateway deployment

This table can help you decide whether to deploy and Edge-optimized API or Regional

API Endpoint:

Edge-

optimized API

Regional API

Endpoint

API is accessed across Regions. Includes API Gateway-

managed CloudFront distribution.

X

API is accessed within same Region. Least request

latency when API is accessed from same Region as API

is deployed.

X

Ability to associate own CloudFront distribution.

X

This decision tree can help you decide when to deploy your Lambda function in a VPC.

Archived

Amazon Web Services Serverless Application Lens

 54

Figure 12: Decision tree for deploying a Lambda function in a VPC

Optimize

As a serverless architecture grows organically, there are certain mechanisms that are

commonly used across a variety of workload profiles. Despite performance testing,

design tradeoffs should be considered to increase your application’s performance,

always keeping your SLA and requirements in mind.

API Gateway and AWS AppSync caching can be enabled to improve performance for

applicable operations. DAX can improve read responses significantly as well as Global

and Local Secondary Indexes to prevent DynamoDB full table scan operations. These

details and resources were described in the Mobile Backend scenario.

Archived

Amazon Web Services Serverless Application Lens

 55

API Gateway content encoding allows API clients to request the payload to be

compressed before being sent back in the response to an API request. This reduces the

number of bytes that are sent from API Gateway to API clients and decreases the time it

takes to transfer the data. You can enable content encoding in the API definition and

you can also set the minimum response size that triggers compression. By default, APIs

do not have content encoding support enabled.

Set your function timeout a few seconds higher than the average execution to account

for any transient issues in downstream services used in the communication path. This

also applies when working with Step Functions activities, tasks, and SQS message

visibility.

Choosing a default memory setting and timeout in AWS Lambda may have an

undesired effect in performance, cost, and operational procedures.

Setting the timeout much higher than the average execution may cause functions to

execute for longer upon code malfunction, resulting in higher costs and possibly

reaching concurrency limits depending on how such functions are invoked.

Setting a timeout that equals one successful function execution may trigger a serverless

application to abruptly halt an execution should a transient networking issue or

abnormality in downstream services occur.

Setting a timeout without performing load testing and, more importantly, without

considering upstream services may result in errors whenever any part reaches its

timeout first.

Follow best practices for working with Lambda functions54 such as container reuse,

minimizing deployment package size to its runtime necessities, and minimizing the

complexity of your dependencies including frameworks that may not be optimized for

fast startup. The latency 99th percentile (P99) should always be taken into account, as

one may not impact application SLA agreed with other teams.

For Lambda functions in VPC, avoid DNS resolution of public host names of underlying

resources in your VPC. For example, if your Lambda function accesses an Amazon

RDS DB instance in your VPC, launch the instance with the no-publicly-accessible

option.

After a Lambda function has executed, AWS Lambda maintains the execution context

for some arbitrary time in anticipation of another Lambda function invocation. That

allows you to use the global scope for one-off expensive operations, for example

http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Archived

Amazon Web Services Serverless Application Lens

 56

establishing a database connection or any initialization logic. In subsequent invocations,

you can verify whether it’s still valid and reuse the existing connection.

Asynchronous Transactions

Because your customers expect more modern and interactive user interfaces, you can

no longer sustain complex workflows using synchronous transactions. The more service

interaction you need the more you end up chaining calls that may end up increasing the

risk on service stability as well as response time.

Modern UI frameworks, such as Angular.js, VueJS, and React, asynchronous

transactions, and cloud native workflows provide a sustainable approach to meet

customers demand as well as helping you decouple components and focus on process

and business domains instead.

These asynchronous transactions (or often times described as an event-driven

architecture) kick off downstream subsequent choreographed events in the cloud

instead of constraining clients to lock-and-wait (I/O blocking) for a response.

Asynchronous workflows handle a variety of use cases including, but not limited to: data

Ingestion, ETL operations, and order/request fulfillment.

In these use-cases, data is processed as it arrives and is retrieved as it changes. We

outline best practices for two common asynchronous workflows where you can learn a

few optimization patterns for integration and async processing.

Serverless Data Processing

In a serverless data processing workflow, data is ingested from clients into Kinesis

(using the Kinesis agent, SDK, or API), and arrives in Amazon S3.

New objects kick off a Lambda function that is automatically executed. This function is

commonly used to transform or partition data for further processing and possibly stored

in other destinations such as DynamoDB, or another S3 bucket where data is in its final

format.

As you may have different transformations for different data types, we recommend

granularly splitting the transformations into different Lambda functions for optimal

performance. With this approach, you have the flexibility to run data transformation in

parallel and gain speed as well as cost.

Archived

Amazon Web Services Serverless Application Lens

 57

Figure 23: Asynchronous data ingestion

Kinesis Data Firehose offers native data transformations that can be used as an

alternative to Lambda, where no additional logic is necessary for transforming records in

Apache Log/System logs to CSV, JSON; JSON to Parquet or ORC.

Serverless Event Submission with Status Updates

Suppose you have an ecommerce site and a customer submits an order that kicks off

an inventory deduction and shipment process; or an enterprise application that submits

a large query that may take minutes to respond.

The processes required to complete this common transaction may require multiple

service calls that may take a couple of minutes to complete. Within those calls, you

want to safeguard against potential failures by adding retries and exponential backoffs,

However, that can cause a suboptimal user experience for whoever is waiting for the

transaction to complete.

For long and complex workflows similar to this, you can integrate API Gateway or AWS

AppSync with Step Functions that upon new authorized requests will start this business

workflow. Step Functions responds immediately with an execution ID to the caller

(Mobile App, SDK, web service, etc.).

For legacy systems, you can use the execution ID to poll Step Functions for the

business workflow status via another REST API. With WebSockets whether you’re

using REST or GraphQL, you can receive business workflow status in real-time by

providing updates in every step of the workflow.

Amazon Kinesis
Firehose

Amazon S3 AWS Lambda

Amazon S3

Amazon
DynamoDB

Other Data
Sources

https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html

Archived

Amazon Web Services Serverless Application Lens

 58

Figure 24: Asynchronous workflow with Step Functions state machines

Another common scenario is integrating API Gateway directly with SQS or Kinesis as a

scaling layer. A Lambda function would only be necessary if additional business

information or a custom request ID format is expected from the caller.

Figure 25: Asynchronous workflow using a queue as a scaling layer

In this second example, SQS serves multiple purposes:

1. Storing the request record durably is important because the client can confidently

proceed throughout the workflow knowing that the request will eventually be

processed

2. Upon a burst of events that may temporarily overwhelm the backend, the

request can be polled for processing when resources become available.

Compared to the first example without a queue, Step Functions is storing the data

durably without the need for a queue or state-tracking data sources. In both examples,

the best practice is to pursue an asynchronous workflow after the client submits the

request and avoiding the resulting response as blocking code if completion can take

several minutes.

Amazon API
Gateway

AWS Step
Functions

Amazon API
Gateway

Amazon SQS AWS Lambda

2

3

1

4

51 2

34

5
Event

Processing

Amazon API
Gateway

Amazon SQS AWS Lambda

2

3

1

4

5

Archived

Amazon Web Services Serverless Application Lens

 59

With WebSockets, AWS AppSync provides this capability out of the box via GraphQL

subscriptions. With subscriptions, an authorized client could listen for data mutations

they’re interested in. This is ideal for data that is streaming or may yield more than a

single response.

With AWS AppSync, as status updates change in DynamoDB, clients can automatically

subscribe and receive updates as they occur and it’s the perfect pattern for when data

drives the user interface.

Figure 26: Asynchronous updates via WebSockets with AWS AppSync and GraphQL

Web Hooks can be implemented with SNS Topic HTTP subscriptions. Consumers can

host an HTTP endpoint that SNS will call back via a POST method upon an event (for

example, a data file arriving in Amazon S3). This pattern is ideal when the clients are

configurable such as another microservice, which could host an endpoint. Alternatively,

Step Functions supports callbacks where a state machine will block until it receives a

response for a given task.

Figure 27: Asynchronous notification via Webhook with SNS

Lastly, polling could be costly from both a cost- and resource-perspective due to

multiple clients constantly polling an API for status. If polling is the only option due to

environment constraints, it’s a best practice to establish SLAs with the clients to limit the

number of “empty polls”.

AWS AppSync Amazon S3

12 1

Amazon
DynamoDB

AWS SNS

H
TT

P

Amazon S3

12

https://docs.aws.amazon.com/step-functions/latest/dg/callback-task-sample-sqs.html

Archived

Amazon Web Services Serverless Application Lens

 60

Figure 28: Client polling for updates on transaction recently made

For example, if a large data warehouse query takes an average of two minutes for a

response, the client should poll the API after two minutes with exponential backoff if the

data is not available. There are two common patterns to ensure that clients aren’t

polling more frequently than expected: Throttling and Timestamp for when is safe to poll

again.

For timestamps, the system being polled can return an extra field with a timestamp or

time period as to when it is safe for the consumer to poll once again. This approach

follows an optimistic scenario where the consumer will respect and use this wisely and

in the event of abuse you can also employ throttling for a more complete

implementation.

Review

See the AWS Well-Architected Framework whitepaper for best practices in the review

area for performance efficiency that apply to serverless applications.

Monitoring

See the AWS Well-Architected Framework whitepaper for best practices in the

monitoring area for performance efficiency that apply to serverless applications.

Tradeoffs

See the AWS Well-Architected Framework whitepaper for best practices in the

tradeoffs area for performance efficiency that apply to serverless applications.

Key AWS Services

Key AWS Services for performance efficiency are DynamoDB Accelerator, API

Gateway, Step Functions, NAT gateway, Amazon VPC, and Lambda.

Amazon API
Gateway

1

4

Amazon S3

2

3

Archived

Amazon Web Services Serverless Application Lens

 61

Resources

Refer to the following resources to learn more about our best practices for performance

efficiency.

Documentation & Blogs

• AWS Lambda FAQs55

• Best Practices for Working with AWS Lambda Functions56

• AWS Lambda: How It Works57

• Understanding Container Reuse in AWS Lambda58

• Configuring a Lambda Function to Access Resources in an Amazon VPC59

• Enable API Caching to Enhance Responsiveness60

• DynamoDB: Global Secondary Indexes61

• Amazon DynamoDB Accelerator (DAX)62

• Developer Guide: Kinesis Streams63

• Java SDK: Performance improvement configuration

• Node.js SDK: Enabling HTTP Keep Alive

• Node.js SDK: Improving Imports

• Using Amazon SQS queues and AWS Lambda for high throughput

• Increasing stream processing performance with enhanced fan-out

• Lambda Power Tuning

• When to use Amazon DynamoDB on-demand and provisioned mode

• Analyzing Log Data with Amazon CloudWatch Logs Insights

• Integrating multiple data sources with AWS AppSync

• Step Functions Service Integrations

• Caching patterns

• Caching Serverless Applications

• Best Practices for Amazon Athena and AWS Glue

https://aws.amazon.com/lambda/faqs/
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/dynamodb/dax/
http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/client-configuration-starttime.html
https://theburningmonk.com/2019/02/lambda-optimization-tip-enable-http-keep-alive/
https://theburningmonk.com/2019/03/just-how-expensive-is-the-full-aws-sdk/
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://aws.amazon.com/blogs/compute/increasing-real-time-stream-processing-performance-with-amazon-kinesis-data-streams-enhanced-fan-out-and-aws-lambda/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://aws.amazon.com/caching/implementation-considerations/
https://theburningmonk.com/2019/10/all-you-need-to-know-about-caching-for-serverless-applications/
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html

Archived

Amazon Web Services Serverless Application Lens

 62

Cost Optimization Pillar

The cost optimization pillar includes the continual process of refinement and

improvement of a system over its entire lifecycle. From the initial design of your first

proof of concept to the ongoing operation of production workloads, adopting the

practices in this document will enable you to build and operate cost-aware systems that

achieve business outcomes and minimize costs, thus allowing your business to

maximize its return on investment.

Definition

There are four best practice areas for cost optimization in the cloud:

• Cost-effective resources

• Matching supply and demand

• Expenditure awareness

• Optimizing over time

As with the other pillars, there are tradeoffs to consider. For example, do you want to

optimize for speed to market or for cost? In some cases, it’s best to optimize for speed

— going to market quickly, shipping new features, or simply meeting a deadline rather

than investing in upfront cost optimization.

Design decisions are sometimes guided by haste as opposed to empirical data, as the

temptation always exists to overcompensate “just in case” rather than spend time

benchmarking for the most cost-optimal deployment.

This often leads to drastically over-provisioned and under-optimized deployments. The

following sections provide techniques and strategic guidance for the initial and ongoing

cost optimization of your deployment.

Generally, serverless architectures tend to reduce costs because some of the services,

such as AWS Lambda, don’t cost anything while they’re idle. However, following certain

best practices and making tradeoffs will help you reduce the cost of these solutions

even more.

Archived

Amazon Web Services Serverless Application Lens

 63

Best Practices

COST 1: How do you optimize your costs?

Cost-Effective Resources

Serverless architectures are easier to manage in terms of correct resource allocation.

Due to its pay-per-value pricing model and scale based on demand, serverless

effectively reduces the capacity planning effort.

As covered in the operational excellence and performance pillars, optimizing your

serverless application has a direct impact on the value it produces and its cost.

As Lambda proportionally allocates CPU, network, and storage IOPS based on

memory, the faster the execution the cheaper and more value your function produces

due to 100-ms billing incremental dimension.

Matching Supply and Demand

The AWS serverless architecture is designed to scale based on demand and as such

there are no applicable practices to be followed.

Expenditure Awareness

As covered in the AWS Well-Architected Framework, the increased flexibility and agility

that the cloud enables encourages innovation and fast-paced development and

deployment. It eliminates the manual processes and time associated with provisioning

on-premises infrastructure, including identifying hardware specifications, negotiating

price quotations, managing purchase orders, scheduling shipments, and then deploying

the resources.

As your serverless architecture grows, the number of Lambda functions, APIs, stages,

and other assets will multiply. Most of these architectures need to be budgeted and

forecasted in terms of costs and resource management–tagging can help you here. You

can allocate costs from your AWS bill to individual functions and APIs and obtain a

granulated view of your costs per project in AWS Cost Explorer.

A good implementation is to share the same key-value tag for assets that belong to the

project programmatically and create custom reports based on the tags that you have

created. This feature will help you not only allocate your costs, but also identify which

resources belong to which projects.

Archived

Amazon Web Services Serverless Application Lens

 64

Optimizing Over Time

See the AWS Well-Architected Framework whitepaper for best practices in the

Optimizing Over Time area for cost optimization that apply to serverless applications.

Logging Ingestion and Storage

AWS Lambda uses CloudWatch Logs to store the output of the executions to identify

and troubleshoot problems on executions as well as monitoring the serverless

application. These will impact the cost in the CloudWatch Logs service in two

dimensions: ingestion and storage.

Set appropriate logging levels and remove unnecessary logging information to optimize

log ingestion. Use environment variables to control application logging level and sample

logging in DEBUG mode to ensure you have additional insight when necessary.

Set log retention periods for new and existing CloudWatch Logs groups. For log

archival, export and set cost-effective storage classes that best suit your needs.

Direct Integrations

If your Lambda function is not performing custom logic while integrating with other AWS

services, chances are that it may be unnecessary.

API Gateway, AWS AppSync, Step Functions, EventBridge, and Lambda Destinations

can directly integrate with a number of services and provide you more value and less

operational overhead.

Most public serverless applications provide an API with an agnostic implementation of

the contract provided, as described in the Microservices scenario.

An example scenario where a direct integration is a better fit is ingesting click stream

data through a REST API.

Figure 13: Sending data to Amazon S3 using Kinesis Data Firehose

Archived

Amazon Web Services Serverless Application Lens

 65

In this scenario, API Gateway will execute a Lambda function that will simply ingest the

incoming record into Kinesis Data Firehose that subsequently batches records before

storing into a S3 bucket. As no additional logic is necessary for this example, we can

use an API Gateway service proxy to directly integrate with Kinesis Data Firehose.

Figure 14: Reducing cost of sending data to Amazon S3 by implementing AWS service proxy

With this approach, we remove the cost of using Lambda and unnecessary invocations

by implementing the AWS Service Proxy within API Gateway. As a tradeoff, this might

introduce some extra complexity if multiple shards are necessary to meet the ingestion

rate.

If latency sensitive, you can stream data directly to your Kinesis Data Firehose by

having the correct credentials at the expense of abstraction, contract, and API features.

Figure 15: Reducing cost of sending data to Amazon S3 by streaming directly using the Kinesis

Data Firehose SDK

For scenarios where you need to connect with internal resources within your VPC or on-

premises and no custom logic is required, use API Gateway private integration.

Archived

Amazon Web Services Serverless Application Lens

 66

Figure 32: Amazon API Gateway private integration over Lambda in VPC to access private

resources

With this approach, API Gateway sends each incoming request to an Internal Network

Load Balancer that you own in your VPC which can forward the traffic to any backend,

either in the same VPC or on-premises via IP address.

This approach has both cost and performance benefits as you don’t need an additional

hop to send requests to a private backend with the added benefits of authorization,

throttling, and caching mechanisms.

Another scenario is a fan-out pattern where Amazon SNS broadcasts messages to all of

its subscribers. This approach requires additional application logic to filter and avoid an

unnecessary Lambda invocation.

Archived

Amazon Web Services Serverless Application Lens

 67

Figure 33: Amazon SNS without message attribute filtering

SNS can filter events based on message attributes and more efficiently deliver the

message to the correct subscriber.

Figure 34: Amazon SNS with message attribute filtering

Another example is long running processing tasks where you may need to wait for task

completion before proceeding to the next step. This wait state may be implemented

within the Lambda code, however, it’s far more efficient to either transform to

asynchronous processing using events, or implement the waiting state using Step

Functions.

For example, in the following image, we poll an AWS Batch job and review its state

every 30 seconds to see if it has finished. Instead of coding this wait within the Lambda

function, we implement a poll (GetJobStatus) + wait (Wait30Seconds) + decider

(CheckJobStatus).

Archived

Amazon Web Services Serverless Application Lens

 68

Figure 16: Implementing a wait state with AWS Step Functions

Implementing a wait state with Step Functions won’t incur any further cost as the pricing

model for Step Functions is based on transitions between states and not on the time

spent within a state.

Archived

Amazon Web Services Serverless Application Lens

 69

Figure 17: Step Functions service integration synchronous wait

Depending on the integration you have to wait, Step Functions can wait synchronously

before moving to the next task saving you an additional transition.

Code optimization

As covered in the performance pillar, optimizing your serverless application can

effectively improve the value it produces per execution.

The use of global variables to maintain connections to your data stores or other services

and resources will increase performance and reduce execution time, which also

reduces the cost. For more information, see the performance pillar section.

An example where the use of managed service features can improve the value per

execution is retrieving and filtering objects from Amazon S3, since fetching large objects

from Amazon S3 requires higher memory for Lambda functions.

Archived

Amazon Web Services Serverless Application Lens

 70

Figure 37: Lambda function retrieving full S3 object

In the previous diagram, we can see that, when retrieving large objects from Amazon

S3, we might increase the memory consumption of the Lambda, increase the execution

time (so the function can transform, iterate, or collect required data) and, in some cases,

only part of this information is needed.

This is represented with three columns in red (data not required) and one column in

green (data required). Using Athena SQL queries to gather granular information needed

for your execution reduces the retrieval time and object size on which perform

transformations.

Figure 38: Lambda with Athena object retrieval

In the next diagram, we can see that, by querying Athena to get the specific data, we

reduce the size of the object retrieved and, as an extra benefit, we can reuse that

content since Athena saves its query results in a S3 bucket and invoke the Lambda

invocation as the results land in Amazon S3 asynchronously.

A similar approach could be using with S3 Select. S3 Select enables applications to

retrieve only a subset of data from an object by using simple SQL expressions. As in the

Archived

Amazon Web Services Serverless Application Lens

 71

previous example with Athena, retrieving a smaller object from Amazon S3 reduces

execution time and the memory used by the Lambda function.

200 seconds

95 seconds

Download and process all keys
for key in src_keys:
 response =
s3_client.get_object(Bucket=src_bucket,
Key=key)
 contents = response['Body'].read()
 for line in contents.split('\n')[:-1]:
 line_count +=1
 try:
 data = line.split(',')
 srcIp = data[0][:8]

….

Select IP Address and Keys

for key in src_keys:

 response =
s3_client.select_object_content

 (Bucket=src_bucket, Key=key,
expression =

 SELECT SUBSTR(obj._1, 1, 8),
obj._2 FROM s3object as obj)

 contents = response['Body'].read()

 for line in contents:

 line_count +=1

 try:

….

Figure 18: Lambda performance statistics using Amazon S3 vs S3 Select

Resources

Refer to the following resources to learn more about our best practices for cost

optimization.

Documentation & Blogs

• CloudWatch Logs Retention64

• Exporting CloudWatch Logs to Amazon S365

• Streaming CloudWatch Logs to Amazon ES66

• Defining wait states in Step Functions state machines67

• Coca-Cola Vending Pass State Machine Powered by Step Functions68

• Building high throughput genomics batch workflows on AWS69

• Simplify your Pub/Sub Messaging with Amazon SNS Message Filtering

• S3 Select and Glacier Select

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://aws.amazon.com/blogs/compute/simplify-pubsub-messaging-with-amazon-sns-message-filtering/
https://aws.amazon.com/blogs/aws/s3-glacier-select/

Archived

Amazon Web Services Serverless Application Lens

 72

• Lambda Reference Architecture for MapReduce

• Serverless Application Repository App – Auto-set CloudWatch Logs group

retention

• Ten resources every Serverless Architect should know

Whitepaper

• Optimizing Enterprise Economics with Serverless Architectures70

Conclusion

While serverless applications take the undifferentiated heavy-lifting off developers, there

are still important principles to apply.

For reliability, by regularly testing failure pathways you will be more likely to catch errors

before they reach production. For performance, starting backward from customer

expectation will allow you to design for optimal experience. There are a number of AWS

tools to help optimize performance as well.

For cost optimization, you can reduce unnecessary waste within your serverless

application by sizing resources in accordance with traffic demand, and improve value by

optimizing your application. For operations, your architecture should strive toward

automation in responding to events.

Finally, a secure application will protect your organization’s sensitive information assets

and meet any compliance requirements at every layer.

The landscape of serverless applications is continuing to evolve with the ecosystem of

tooling and processes growing and maturing. As this occurs, we will continue to update

this paper to help you ensure that your serverless applications are well-architected.

Contributors

The following individuals and organizations contributed to this document:

• Adam Westrich: Sr Solutions Architect, Amazon Web Services

• Mark Bunch: Enterprise Solutions Architect, Amazon Web Services

• Ignacio Garcia Alonso: Solutions Architect, Amazon Web Services

https://github.com/awslabs/lambda-refarch-mapreduce
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:374852340823:applications~auto-set-log-group-retention
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:374852340823:applications~auto-set-log-group-retention
https://aws.amazon.com/blogs/architecture/ten-things-serverless-architects-should-know/
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf

Archived

Amazon Web Services Serverless Application Lens

 73

• Heitor Lessa: Principal Serverless Lead Well-Architected, Amazon Web Services

• Philip Fitzsimons: Sr. Manager Well-Architected, Amazon Web Services

• Dave Walker: Principal Specialist Solutions Architect, Amazon Web Services

• Richard Threlkeld: Sr. Product Manager Mobile, Amazon Web Services

• Julian Hambleton-Jones: Sr. Solutions Architect, Amazon Web Services

Further Reading

For additional information, see the following:

• AWS Well-Architected Framework71

Document Revisions

Date Description

December 2019 Updates throughout for new features and evolution of best

practice.

November 2018 New scenarios for Alexa and Mobile, and updates throughout to

reflect new features and evolution of best practice.

November 2017 Initial publication.

1 https://aws.amazon.com/well-architected

2 http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-

Architected_Framework.pdf

3 https://github.com/alexcasalboni/aws-lambda-power-tuning

4

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.h

tml

Notes

https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://github.com/alexcasalboni/aws-lambda-power-tuning
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html

Archived

Amazon Web Services Serverless Application Lens

 74

5 http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-

managedomains.html

6 https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

7 http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html

8 https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-

with-amazon-kinesis.pdf

9 http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html

10 http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-

duplicates.html

11 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events

12 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-

usage-plans.html

13 http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html

14 http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html

15 https://github.com/awslabs/serverless-application-model

16 https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/

17 http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

18 http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-

paramstore.html

19 https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-

applications/

20 https://github.com/awslabs/aws-serverless-samfarm

21 https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-

continuous-delivery-on-AWS.pdf

22 https://aws.amazon.com/serverless/developer-tools/

23 http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html

24 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-

request-validation.html

http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html
https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
https://d0.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://github.com/awslabs/serverless-application-model
https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://github.com/awslabs/aws-serverless-samfarm
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://aws.amazon.com/serverless/developer-tools/
http://docs.aws.amazon.com/lambda/latest/dg/with-s3-example-create-iam-role.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html

Archived

Amazon Web Services Serverless Application Lens

 75

25 http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-

authorizer.html

26 https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-

federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/

27 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

28 https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-

access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-

cloudwatch/

29 https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

30 https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf

31 https://www.twistlock.com/products/serverless-security/

32 https://snyk.io/

33 https://www.owasp.org/index.php/OWASP_Dependency_Check

34 http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-

step-functions/

35 http://docs.aws.amazon.com/lambda/latest/dg/limits.html

36 http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-

gateway-limits

37 http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html

38 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

39 http://docs.aws.amazon.com/step-functions/latest/dg/limits.html

40 https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-

gateway-and-aws-lambda/

41 https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/

42 http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html

43 http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

44 http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html

45 http://docs.aws.amazon.com/general/latest/gr/api-retries.html

http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/secure-api-access-with-amazon-cognito-federated-identities-amazon-cognito-user-pools-and-amazon-api-gateway/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://aws.amazon.com/pt/articles/using-squid-proxy-instances-for-web-service-access-in-amazon-vpc-another-example-with-aws-codedeploy-and-amazon-cloudwatch/
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://www.twistlock.com/products/serverless-security/
https://snyk.io/
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
http://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
http://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html
http://docs.aws.amazon.com/general/latest/gr/api-retries.html

Archived

Amazon Web Services Serverless Application Lens

 76

46 http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-

conditions.html#using-state-machine-error-conditions-step-4

47 http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html

48 http://docs.aws.amazon.com/lambda/latest/dg/dlq.html

49 https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-

gateway-and-aws-lambda/

50 http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-

state.html

51 http://microservices.io/patterns/data/saga.html

52 http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-

step-functions/

53 https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf

54 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

55 https://aws.amazon.com/lambda/faqs/

56 http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

57 http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

58 https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

59 http://docs.aws.amazon.com/lambda/latest/dg/vpc.html

60 http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-

caching.html

61 http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

62 https://aws.amazon.com/dynamodb/dax/

63 http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html

64

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.htm

l

65

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.

html

http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
http://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
http://docs.aws.amazon.com/lambda/latest/dg/dlq.html
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/error-handling-patterns-in-amazon-api-gateway-and-aws-lambda/
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://microservices.io/patterns/data/saga.html
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://d0.awsstatic.com/whitepapers/microservices-on-aws.pdf
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://aws.amazon.com/lambda/faqs/
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
http://docs.aws.amazon.com/lambda/latest/dg/vpc.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/dynamodb/dax/
http://docs.aws.amazon.com/streams/latest/dev/amazon-kinesis-streams.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html

Archived

Amazon Web Services Serverless Application Lens

 77

66 http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html

67 http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-

state.html

68 https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

69 https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-

workflows-on-aws-workflow-layer-part-4-of-4/

70 https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-

architectures.pdf

71 https://aws.amazon.com/well-architected

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
http://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://aws.amazon.com/well-architected

	Introduction
	Definitions
	Compute Layer
	Data Layer
	Messaging and Streaming Layer
	User Management and Identity Layer
	Edge Layer
	Systems Monitoring and Deployment
	Deployment Approaches
	All-at-once Deployments
	Blue/Green Deployments
	Canary Deployments
	Lambda Version Control

	General Design Principles
	Scenarios
	RESTful Microservices
	Alexa Skills
	Mobile Backend
	Stream Processing
	Web Application

	The Pillars of the Well-Architected Framework
	Operational Excellence Pillar
	Definition
	Best Practices
	Prepare
	Operate
	Metrics and Alerts
	Centralized and structured logging
	Distributed Tracing
	Prototyping
	Testing
	Deploying
	Evolve

	Key AWS Services
	Resources

	Security Pillar
	Definition
	Best Practices
	Identity and Access Management
	Detective Controls
	Infrastructure Protection
	Data Protection

	Key AWS Services
	Resources
	Documentation & Blogs
	Whitepapers
	Partner Solutions
	Third-Party Tools

	Reliability Pillar
	Definition
	Best Practices
	Foundations
	Throttling
	Asynchronous Calls and Events
	Change Management
	Failure Management

	Limits
	Key AWS Services
	Resources
	Documentation & Blogs
	Whitepapers

	Performance Efficiency Pillar
	Definition
	Selection
	Optimize
	Asynchronous Transactions
	Serverless Data Processing
	Serverless Event Submission with Status Updates

	Review
	Monitoring
	Tradeoffs
	Key AWS Services
	Resources
	Documentation & Blogs

	Cost Optimization Pillar
	Definition
	Best Practices
	Cost-Effective Resources
	Matching Supply and Demand
	Expenditure Awareness
	Optimizing Over Time
	Logging Ingestion and Storage
	Direct Integrations
	Code optimization

	Resources
	Documentation & Blogs
	Whitepaper

	Conclusion
	Contributors
	Further Reading
	Document Revisions

