
Financial Services Grid
Computing on AWS

September 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Introduction .. 2

Grid Computing on AWS ... 5

Compute and Networking .. 6

Storage and Data Sharing ... 11

Data Management and Transfer .. 17

Operations and Management .. 18

Orchestration .. 20

Security and Compliance ... 23

Migration Approaches, Patterns and Anti-Patterns .. 25

Conclusion ... 27

Contributors ... 29

Further Reading ... 29

Document Revisions.. 29

Glossary of Terms ... 30

Abstract

Financial services organizations rely on high performance computing (HPC)

infrastructure grids to calculate risk, value portfolios, and provide reports to their internal

control functions and external regulators. The scale, cost, and complexity of this

infrastructure is an increasing challenge. Amazon Web Services (AWS) provides a

number of services that enable these customers to surpass their current capabilities by

delivering results quickly and at a lower cost than on-premises resources.

The intended audience of this paper is grid computing managers, architects, and

engineers within financial services organizations who want to improve their service. It

describes the key AWS services to consider, some best practices, and includes relevant

reference architecture diagrams.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 1

Overview

High performance computing (HPC) in the financial services industry is an ongoing

challenge because of the pressures from ever-increasing demand across retail,

commercial, and investment groups, combined with growing cost and capital

constraints. The approaches to solving these problems have evolved over generations

from centralized, monolithic solutions, to business-aligned clusters of commodity

hardware, to modern grid architectures with centralized schedulers that manage

disparate compute capacity.

Regulators and large financial institutions are increasingly accepting hyperscale cloud

providers, which has resulted in significant interest in how to best leverage new

capabilities while ensuring good governance and cost controls. Cloud concepts such as

capacity on demand and pay as you go pricing models offer new opportunities to teams

who run HPC platforms.

Historically, the challenge has been to manage a fixed set of on-premises resources,

while maximizing utilization and minimize queuing. In a model with capacity that is

effectively unconstrained, the focus shifts away from managing and throttling demand

towards optimizing supply. With this model, decisions become more granular and

tailored to each customer, and focus on how fast and at what cost, with the ability to

make adjustments as required by the business. With this basically limitless capacity,

concepts such as queuing and prioritization become irrelevant as clients are able to

submit calculation requests and have them serviced immediately. This also results in

upstream consumers increasingly expecting and demanding near instantaneous

execution of their workloads at any scale.

Initial cloud migrations of HPC platforms are often seen as extensions or evolutions of

on-premises grid implementations. However, forward-looking institutions see much in

common with the patterns of HPC and serverless execution models, such as AWS

Lambda. Both solutions focus on executing code on demand, and customers want the

lowest cost allocation of capacity with no provisioning or management of servers.

As HPC environments move to the cloud, the applications that are associated with them

start to migrate too. Risk management systems which drive compute grids quickly

become a bottleneck when the downstream HPC platform is unconstrained. By

migrating applications with the compute grid, they also benefit from the elasticity that the

cloud provides. In turn, data sources such as market and static data are sourced

natively from within the cloud, from the same providers that customers work with today.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 2

Many of the building blocks required for fully serverless solutions for risk management

and reporting already exist today within AWS services. As financial institutions become

increasingly familiar and comfortable with these services, it’s likely that serverless

patterns will become the predominant HPC architectures of the future.

Introduction

In general, HPC systems are used to solve complex mathematical problems that require

thousands or even millions of CPU-hours. These systems are commonly used in

academic institutions, biotech, and engineering firms. In banking organizations, HPC

systems are used to quantify the risk of given trades or portfolios, which allows traders

to develop effective hedging strategies, price trades, and report positions to their

internal control functions and ultimately to external regulators. Insurance companies

leverage HPC systems in a similar way for actuarial modeling and in support of their

own regulatory requirements.

Unpredictable, seasonal, and time-bound usage patterns contribute to a mixture of

demands on HPC platforms. This includes short, latency-sensitive, intraday pricing

tasks, and near real-time risk measures calculated in response to changing market

conditions, or large overnight batch workloads and back-testing to measure the efficacy

of new models to historic events. Combined, these workloads can generate hundreds of

millions of tasks per day with a significant proportion running for less than a second.

Because of the regulatory landscape, demand for these calculations continues to

outpace the progress of Moore’s law. Regulations such as the Fundamental Review of

the Trading Book (FRTB) and IFRS 17 require even more analysis, with some

customers estimating between 40% and 1000% increases in demand as a result. As a

result, financial services organizations continue to grow their grid computing platforms

and increasingly wrestle with the costs associated with purchasing and managing this

infrastructure.

Risk and pricing calculations in financial services are most commonly embarrassingly

parallel, do not require communication between nodes to complete calculations, and

broadly benefit from horizontal scalability. Because of this, they are well suited to a

shared-nothing architectural approach, in which each compute node is independent

from the other. For example, a financial model based on the Monte Carlo method can

create millions of scenarios to be divided across a large number of compute nodes for

calculation in parallel. Each scenario shows a different market condition based on a

number of variables. In general, doubling the number of compute nodes allows these

tasks to be distributed more widely, which reduces by half the overall duration of the job.

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

Amazon Web Services Financial Services Grid Computing on AWS

 Page 3

Access to increased compute capacity through AWS allows for additional scenarios and

greater precision in the results in a given timeframe. Alternatively, customers can use

the additional capacity to complete the same calculations in less time.

Financial services firms typically use a grid scheduler to orchestrate their HPC

workloads, which have these features in common:

• A central scheduler to coordinate multiple clients and a large number (typically

hundreds or thousands) of compute nodes. The scheduler manages the loss of

any given component, and reschedules the work accordingly.

• Deployment tools to ensure that software binaries and data are reliably

distributed to compute nodes that are allocated a specific task.

• An engine to allow rules to be defined to ensure that certain workloads are

prioritized over others in the event that the total capacity of the grid is exhausted.

• Brokers are typically employed to manage the direct allocation of tasks that are

submitted by a client to the compute grid. In some cases, an allocated compute

node makes a direct connection back to a client to collect tasks to reduce

latency. Brokers are usually horizontally scalable and are well suited to the

elasticity of cloud.

In some cases, the client is another grid node that generates further tasks. Such multi-

tier, recursive architectures are not uncommon, but present further challenges for

software engineers and HPC administrators who want to maximize utilization while

managing risks, such as deadlock when parent tasks are unable to yield to child tasks.

The key benefit of running HPC workloads on AWS is the ability to allocate large

amounts of compute capacity on-demand without the need to commit to the upfront and

on-going costs of a large hardware investment. Capacity can be scaled minute-by-

minute according to the customer needs at the time. This avoids pre-provisioning of

capacity according to some estimate of future peak demand. Also, because AWS

infrastructure is charged by consumption of CPU-hours, it’s possible to complete the

same workload in less time, for the same price, by simply scaling the capacity.

Figure 1 shows two approaches to provisioning capacity. In the first, two CPUs are

provisioned for 10 hours. In the second, 10 CPUs are provisioned for two hours. In a

CPU-hour billing model the overall cost is the same but the latter produces results in

one fifth of the time.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 4

Figure 1 – Two approaches to provisioning 20 CPU-hours of capacity

Developers of the analytics calculations used in HPC applications can use the latest

CPUs, GPUs, and FPGAs available through the many Amazon EC2 instance types.

This drives efficiency-per-core, and differs from on-premises grids that tend to be a

mixture of infrastructure, which reflects historic procurement rather than current needs.

In addition, diverse pricing models offer flexibility to these customers. For example,

Amazon EC2 Spot Instances can reduce compute costs by up to 90%. These instances

are occasionally interrupted by AWS, but HPC schedulers with a history of managing

scavenged CPU resources can react to these events and rescheduling tasks

accordingly.

This document includes several recommended approaches to building HPC systems in

the cloud, and highlights AWS services that are used by financial services organizations

to help to address compute, networking, storage, and security requirements.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/spot/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 5

Grid Computing on AWS

A key driver for the migration of HPC workloads from on-premises environments to the

cloud is flexibility. AWS offers HPC teams the opportunity to build reliable and cost-

efficient solutions for their customers, while retaining the ability to experiment and

innovate as new solutions and approaches become available.

HPC teams that want to migrate an existing HPC solution to the cloud, or to build a new

solution, should review the AWS Well-Architected Framework. This framework applies

to any cloud deployment and seeks to ensure that systems are architected according to

best practices. The HPC specific lens document also identifies key elements to help

ensure the successful deployment and operation of HPC systems in the cloud.

The following sections include information about AWS services that are most relevant to

HPC systems, particularly those that support financial services customers.

Figure 2 – A typical HPC architecture with the key components, including the risk management

system (RMS), grid master, grid brokers, and two compute instance pools

https://aws.amazon.com/well-architected
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf

Amazon Web Services Financial Services Grid Computing on AWS

 Page 6

Compute and Networking

AWS offers a wide range of Amazon Elastic Compute Cloud (Amazon EC2) instance

types, which enables customers to select the configuration that is best suited to their

needs at any given time. This is a departure from the typical Bill of Materials approach,

which limits the configurations available on-premises in favor of deployment simplicity. It

also offers ever greening, which enables you to take advantage of the latest CPU

technologies as they are released without consideration for any prior investment. HPC

customers in financial services should consider the following instances types.

• Amazon EC2 Compute Optimized instances – C class instances are optimized

for compute-intensive workloads and deliver cost-effective high performance at a

low price per compute ratio.

• Amazon EC2 General Purpose instances:

o M class – Commonly used in HPC applications because they offer a good

balance of compute, memory, and networking resources.

o Z class– Offer the highest CPU frequencies with a high memory footprint.

o T series — Provide a baseline level of CPU performance with the ability to

burst to a higher level when required. The use of these instances for HPC

workloads can be attractive for some workloads, however, their variable

performance profile can result in inconsistent behavior which might be

undesirable.

• Instances with the suffix a, are AMD processors, for example, R5a.

• Amazon EC2 Accelerated Computing instances use hardware accelerators, or

co-processors, to perform functions, such as floating point number calculations,

graphics processing, or data pattern matching, more efficiently than is possible in

software running on CPUs.

o P class instances are intended for general-purpose GPU compute

applications.

o F class instances offer customizable hardware acceleration with field

programmable gate arrays (FPGAs).

Many of the latest AWS instances are based on the AWS Nitro System. The Nitro

system is collection of AWS-built hardware and software components that enable high

performance, high availability, high security, and bare metal capabilities to eliminate

virtualization overhead. By selecting Nitro based instances, HPC applications can

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

Amazon Web Services Financial Services Grid Computing on AWS

 Page 7

expect performance levels that are indistinguishable to a bare-metal system while

retaining all of the benefits of an ephemeral virtual host.

Table 1 – Amazon EC2 instance types that are typically used for HPC workloads

Instance Type Class Description

General Purpose T Burstable, general purpose, low cost

M General purpose instances

Compute Optimized C For compute intensive workloads

Memory Optimized R For memory intensive workloads

X For memory intensive workloads

Z High compute capacity and high memory

Accelerated Computing P / F General purpose GPU (P) or FPGA (F) capabilities

This diverse selection of instance types helps support a wide variety of workloads with

optimal hardware and promotes experimentation. HPC teams can benchmark diverse

sets of instances to optimize their scheduling strategies. Quantitative developers can try

new approaches with GPUs, FPGAs, or the latest CPUs, without upfront costs or

protracted procurement processes. You can immediately deploy at scale your optimal

approach, without the traditional hardware lifecycle considerations.

When you run experiments, or if a subset of production workloads require a specific

instance type, grid schedulers typically enable tasks to be directed to the appropriate

hardware through compute resource groups.

Amazon EC2 instances support multithreading, which enables multiple threads to run

concurrently on a single CPU core. Each thread is represented as a virtual CPU (vCPU)

on the instance. An instance has a default number of CPU cores, which varies

according to instance type. To make sure that each vCPU is used effectively, it’s

important to understand the behavior of the calculations running in the HPC

environment. If all processes are single-threaded, a good initial strategy is to have the

scheduler assign one process per vCPU on each instance. However, if the calculations

require multithreading, tuning might be required to maximize the use of vCPUs without

introducing excessive CPU context switching.

Amazon EC2 instances have hyperthreading (HT) enabled by default. You can disable

HT either at boot or at runtime if the analytics perform better without it, which you can

Amazon Web Services Financial Services Grid Computing on AWS

 Page 8

establish through benchmarking. The Disabling Intel Hyper-Threading Technology on

Amazon Linux blog post has an explanation of the methods you can use to configure

HT on an Amazon Linux instance.

Customers might typically tune their infrastructure to increase processor performance

consistency or to reduce latency. Some Amazon EC2 instances allow control of

processor C-states (idle state power saving) and P-states (optimization of voltage and

CPU frequency during execution). The default settings for C-state and P-state are tuned

for maximum performance for most workloads. If an application might benefit from

reduced latency in exchange for lower frequencies, or from more consistent

performance without the benefit of Turbo Boost, then changes to the C-state and P-

state configurations might be worth considering. For information about the instance

types that support the adjustment and how to make these changes to an Amazon Linux

2-based instance, see Processor State Control for Your EC2 Instance in the Amazon

Elastic Compute Cloud User Guide for Linux Instances.

Another potential optimization is over-subscription. This approach is useful when you

know processes spend time on non-CPU intensive activities, such as waiting on data

transfers or loading binaries into memory. For example, if this overhead is estimated at

10%, you might be able to schedule one additional task on the host for every 10 vCPUs

to achieve higher CPU utilization and throughput.

Compiler selection is another consideration. The use of a complier that is optimized for

the target CPU architecture can yield performance improvements. For example,

quantitative analysts might see value in developing analytics using the Intel C++

Compiler and running on instances that support AVX-512 capable CPUs.

In addition to the instance types and classes shown in Table 1, there are also options

for procuring instances.

• Amazon EC2 On-Demand Instances offer capacity as required, for as long as

they are needed. Customers are only charged for the time that the instance is

active. These are ideal for components that benefit from elasticity and predictable

availability, such as brokers, compute instances hosting long-running tasks, or

tasks that generate further generations of tasks.

https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/
https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://aws.amazon.com/ec2/pricing/on-demand/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 9

• Amazon EC2 Spot Instances are particularly appropriate for HPC compute

instances because they benefit from substantial savings over the equivalent on-

demand cost. Spot Instances can occasionally be terminated by AWS when

capacity is constrained, but grid schedulers can accommodate the occasional

interruptions. Additionally, it might be possible for some HPC applications to

react to an impending termination notification and save a snapshot of their

current state to a datastore (checkpointing). For applications with relatively long

tasks, this approach ensures that progress on the calculation is not lost, and a

future Amazon EC2 instance can continue from that point.

• Amazon Reserved Instances provide a significant discount of up to 75% based

on a one-year or three-year commitment. Convertible Reserved Instances offer

additional flexibility on the instance family, operating system, and tenancy of the

reservation. Relatively static hosts, such as HPC Master nodes or data caching

hosts, might benefit from Reserved Instances.

Compute Instance Provisioning and Management Strategies

In response to a Spot Instance interruption, Amazon EC2 supports hibernation. This

feature operates like closing and opening the lid on a laptop computer, and saves the

memory state to an Amazon Elastic Block Store (EBS) disk. However, this approach to

managing interruptions should be used with caution because the grid scheduler might

not be able to track such quiesced workloads, which could result in timeouts and

rescheduling tasks if the hibernated image is not reactivated quickly.

To reduce the frequency of interruptions, Amazon EC2 Spot Blocks try to make sure

that instances are available for a predefined period of up to 6 hours and are only

interrupted in rare situations. Instances are generally available for the duration

specified, at a cost premium over the usual Spot Instance pricing. Instances are

automatically terminated when the BlockDuration time expires.

Amazon EC2 Spot Fleets enable customers to launch a fleet of Spot Instances that

span various EC2 instance types and Availability Zones. By defining the target capacity

using an appropriate metric (for example, a Slot for an HPC application) the fleet

sources capacity from EC2 Spot Instances at the best possible price. HPC teams can

define Spot Fleet strategies that use diverse instance types to make sure customers

have the best experience at the lowest cost.

Amazon EC2 Fleet takes the Spot Fleet model and enables customers to quickly create

fleets that are further diversified by using EC2 On-Demand Instances, Reserved

https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/blogs/aws/new-ec2-spot-blocks-for-defined-duration-workloads/
https://aws.amazon.com/blogs/aws/amazon-ec2-spot-fleet-api-manage-thousands-of-instances-with-one-request/
https://aws.amazon.com/blogs/aws/ec2-fleet-manage-thousands-of-on-demand-and-spot-instances-with-one-request/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 10

Instance, and Spot Instances. With this approach, you can optimize your HPC capacity

management plan according to the changing demands of your workloads.

Amazon EC2 Launch Templates contain the configuration information used to launch an

instance. The template can define the AMI ID, instance type, and network settings for

the compute instances. You can use templates with EC2 Fleet, Spot Fleet, or EC2 Auto

Scaling and make it easier to implement and track configuration standards.

One option to begin an HPC deployment is to use only On-Demand Instances. After you

understand the performance of your workloads, you can determine the correct process

to develop and optimize a strategy to provision instances using Amazon EC2 Fleet. For

example, you can deploy a number of Reserved Instances to host core grid services,

such as schedulers that are required to be available at all times. You can provision On-

Demand Instances during the intraday period to ensure predictable performance for

synchronous pricing calculations. For the overnight batch, you can use large fleets of

Spot Instances to provide massive volumes of capacity at a minimum cost, and

supplement it as necessary by On-Demand Instances to ensure predictable

performance for the most time sensitive workloads.

Figure 3 shows two approaches to provisioning. In each case, 10 vCPUs of Reserved

Instance capacity remain online for the stateful scheduling components. In the first

case, 20 further vCPUs are provisioned using On-Demand Instances for 10 hours to

accommodate a batch that runs for 200 vCPU hours with a 10-hour SLA. In the second

approach, the 20 vCPUs are also provisioned at the outset to provide confidence in the

batch delivery, but low-cost Spot Instances are also added. Because of the volume of

Spot Instances, the batch completes much more quickly (in about 3 hours) and at a

significantly reduced cost. However, if the Spot Instances were not available for any

reason, the batch would still complete on time with the On-Demand Instances

provisioned.

Figure 3 – AWS instance provisioning strategies

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 11

One of the key benefits of deploying applications in the AWS Cloud is elasticity. AWS

Auto Scaling enables HPC managers to configure Amazon EC2 instance provisioning

and decommissioning events based on the real-time demands of their platform. Though

grids were previously provisioned based on predictions of peak demands (with periods

of both constraint and idle capacity), Auto Scaling automatically adds and removes

instances based on demand.

When you remove hosts from a running cluster, make sure to allow for a drain down

period. During this period, the targeted host stops taking on new work, but is allowed to

complete work in progress. When you select nodes for removal, make sure to avoid any

long-running tasks, so that the shutdown is not delayed and you don’t lose effort on

long-running tasks. If the scheduler allows a query of total execution time of tasks in

progress, grouped by instance, you can use this group to identity which are the optimal

candidates for removal, specifically the instances with the lowest aggregate total of

execution time by tasks in progress.

Storage and Data Sharing

In HPC systems, there are two primary data distribution challenges. The first is the

distribution of binaries. In financial services, large and complex analytical packages are

common. These packages are often 1GB or more in size, and often multiple versions

are in use at the same time on the same HPC platform, to support different businesses

or back-testing of new models.

In a constrained, on-premises environment, you can mitigate this challenge by relatively

infrequent updates to the package and a fixed set of instances. However, in a cloud-

based environment, instances are short-lived and the number of instances can be much

larger. As a result, multiple packages are distributed to thousands of instances on an

hourly basis as new instances are provisioned and new packages are deployed.

There are a number of possible approaches to this problem. One is to maintain a build

pipeline that incorporates binary packages into the Amazon Machine Images (AMIs).

This means that once the machine has started, it can process a workload immediately

because the packages are already in place. A limitation of this approach is that it

doesn’t accommodate the deployment of new packages to running instances, and it

requires them to be terminated and replaced to get new versions.

Another approach is to update running instances. There are two different methods for

this type of update, which are sometimes combined.

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 12

The first method is pull (or lazy) deployment. In this mode, when a task reaches an

instance and it depends on a package that is not in place, the engine pulls it from a

central store before it executes the task. This approach minimizes the distribution of

packages and saves on local storage because only the minimum set of packages is

deployed. However, these benefits are at the expense of delaying tasks in an

unpredictable way, such as the introduction of a new instance in the middle of a latency

sensitive pricing job. This approach may not be acceptable if large volumes of tasks

have to wait for the grid nodes to pull packages from a central store which could

struggle to service very large numbers of requests for data.

The second method is push deployment. In this mode you can instruct instance engines

to proactively get a specific package before they receive a task that depends on it. This

approach allows for rolling upgrades and ensures tasks are not delayed by a package

update. One challenge with this method is the possibility that new instances (which can

be added at any time) might miss a push message, which means you must keep a list of

all currently live packages.

In practice, a combination of these approaches is common. Standard analytics

packages are pushed because they’re likely to be needed by the majority of tasks.

Experimental packages are then pulled, perhaps to a smaller set of instances.

It might also be necessary to purge deprecated packages, especially if you deploy

experimental packages. In this case, you can use your list of live packages to enable

your compute instances to purge any packages that are not in the list and thus are not

current.

Figure 4 shows a cloud-native implementation of these approaches. It uses a

centralized package store in Amazon Simple Storage Service (Amazon S3) with agents

that respond to messages delivered through an Amazon Simple Notification Service

(Amazon SNS) topic.

After the package is in place on Amazon S3, notifications of new releases can be

generated either by an operator or as a final step in an automated build pipeline.

Compute instances subscribed to an SNS topic (or to multiple topics for different

applications) use these messages as a trigger to retrieve packages from Amazon S3.

You can also use the same mechanism to distribute delete messages to remove

packages, if required.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 13

Figure 4 – Data distribution architecture using Amazon SNS messages and S3 Object Storage

The second data distribution challenge in HPC is managing data related to the tasks

being processed. Typically, this is bi-directional, with data flowing to the engines that

support the processing and resulting data passed back to the clients. There are three

common approaches for this process.

In the first approach, communications are inbound (see Figure 5) with all data passing

through the grid scheduler along with task data. This is less common because it can

cause a performance bottleneck as the cluster grows.

Figure 5 – An inbound data distribution approach

In another approach, tasks pass through the scheduler, but the data is handled out-of-

bounds through a shared, scalable data store or an in-memory data grid (see Figure 6).

The task data contains a reference to the data’s location and the compute instances can

retrieve it as required.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 14

Figure 6 – An out-of-bounds data distribution approach

Finally, some schedulers support a direct data transfer (DDT) approach. In this model

the scheduler grid broker allocates compute instances which then communicate directly

with the client. This architecture can work well, especially with very short running tasks

with little data. However, in a hybrid model, with thousands of engines running on AWS

that need to access a single, on-premises client, this can present challenges to on-

premises firewall rules, or to the availability of ephemeral ports on the client host.

Figure 7 – DDT (direct data transfer) data distribution approach

All of these approaches can be enhanced with caches located as close as possible to,

or hosted on, the compute instances. Such caches help to minimize the distribution of

data, especially if a significantly similar set is required for many calculations. Some

Amazon Web Services Financial Services Grid Computing on AWS

 Page 15

schedulers support a form of data-aware scheduling that tries to ensure that tasks that

require a specific dataset are scheduled to instances that already have that dataset.

This cannot be guaranteed, but often provides a significant performance improvement

at the cost of local memory or storage on each compute instance.

Though the combination of grid schedulers and distributed cache technologies used on

premises can provide solutions to these challenges, their capabilities vary and they are

not typically engineered for a cloud deployment with highly elastic, ephemeral

instances. You can consider the following AWS services as potential solutions to the

typical HPC data management use cases.

Amazon Simple Storage Service

The Amazon Simple Storage Service (Amazon S3) provides virtually unlimited object

storage designed for 11 9’s of durability and high availability. For binary packages, it

offers both versioning and various immutability features, such as Object Lock, which

prevents deletion or replacement of objects. You can include this feature in your

deployment pipeline to make sure that the analytics binaries you use in production are

the same as those that you validated. Binary immutability is a common audit

requirement in regulated industries, which require you to demonstrate that the binaries

approved in the testing phase are identical to those used to produce reports. This

service also offers easy to implement encryption and granular access controls.

Some HPC architectures use checkpointing (compute instances save a snapshot of

their current state to a datastore) to minimize the computational effort that could be lost

if a node fails or is interrupted during processing. For this purpose, a distributed object

store (such as Amazon S3) might be an ideal solution. Because the data is likely to only

be needed for the life of the batch, you can use Amazon S3 life cycling rules to

automatically purge these objects after a small number of days and reduce cost.

Amazon Elastic File System

Amazon Elastic File System (Amazon EFS) offers shared network storage that is elastic,

which means it grows and shrinks as required. Thousands of Amazon EC2 instances

can mount EFS volumes at once, which enables shared access to common data such

as analytics packages. Amazon EFS does not currently support Windows clients.

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 16

Amazon FSx for Lustre

For transient job data, the Amazon FSx for Lustre service provides a high performance

file system that offers sub-millisecond access to data and read-write speeds of up to

hundreds of gigabytes per second with millions of IOPs. Amazon FSx for Lustre can link

to an Amazon S3 bucket, which makes it easy for clients to write data objects to the

bucket (including clients from an on-premises system) and have those objects available

to thousands of compute nodes in the cloud (see Figure 8).

Figure 8 – An example of an Amazon FSx for Lustre implementation

Amazon Elastic Block Store

After a compute instance has binary or job data, it might not be possible to keep it in

memory, so you might want to keep a copy on a local disk. Amazon Elastic Block Store

(Amazon EBS) offers persistent block storage volumes for Amazon EC2 instances.

Though the volumes for compute nodes can be relatively small (10GB can be sufficient

to store a variety of binary package versions and some job data) there might be some

benefit to the higher IOPS and throughput offered by the Amazon EBS provisioned

IOPS SSD drives. These offer up to 64,000 IOPS per volume and up to 1,000MB/s of

throughout, which could be valuable for workloads that require frequent, high-

performance access to these datasets. Because these volumes incur additional cost,

you should complete an analysis of whether they provide any additional value over the

standard, general purpose volumes.

https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/ebs/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 17

Data Management and Transfer

Although HPC systems in financial services are typically loosely coupled, with limited

need for East-West communication between compute instances, there are still

significant demands for North-South communication bandwidth between layers in the

stack. A key consideration for networking is where in the stack any separation between

on-premises systems and cloud-based systems occurs. This is because communication

within the AWS network is typically of higher bandwidth and lower cost than

communication to external networks. As a result, any architecture that causes hundreds

or thousands of compute instances to connect to an external network—particularly if

they’re requesting the same binaries or task data—would create a bottleneck.

Ideally, the fan out point (the point in the architecture at which large numbers of

instances are introduced) is in the cloud. This means that the larger volumes of

communication stay in the AWS network with relatively few connections to on-premises

systems.

AWS offers networking services that complement the financial services HPC systems. A

common starting point is to deploy AWS Direct Connect connections between customer

datacenters and an AWS region through a third-party point of presence (PoP) provider.

A Direct Connect link offers a consistent and predictable experience. You can employ

multiple diverse Direct Connect links to provide highly resilient, high-bandwidth

connectivity.

Though most HPC applications within financial services are loosely coupled, this isn’t

universal and there are times when network bandwidth is a significant component of

overall performance. AWS offers the Elastic Network Adapter (ENA) which is available

for a number of instance types, including C5 and M5 instances. The ENA can provide

up to 20Gbps of consistent, low-latency performance to other instances with a

Placement Group. A Placement Group attempts to place Amazon EC2 instances

physically close together in an Availability Zone to reduce network latency.

The Elastic Fabric Adaptor service (EFA) enhances ENA and is specifically engineered

to support tightly-coupled HPC workloads which require low latency communication

between instances. An EFA is a virtual network device which can be attached to an

Amazon EC2 instance. Most suited to workloads using the Message Passing Interface

(MPI) the service may be worthy of consideration for some financial services workloads

such as weather predictions as part of an insurance industry catastrophic event model.

EFA traffic that bypasses the operating system (OS-bypass) is not routable, so it’s

limited to a single subnet. As a result, any peers in this network must be in the same

https://aws.amazon.com/directconnect/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://en.wikipedia.org/wiki/Message_Passing_Interface

Amazon Web Services Financial Services Grid Computing on AWS

 Page 18

subnet and Availability Zone, which could alter resiliency strategies. The OS-bypass

capabilities of EFA are also not supported on Windows.

Some Amazon EC2 instance types support jumbo frames where the Network Maximum

Transmission Unit (the number of bytes per packet) is increased. AWS supports MTUs

of up to 9001 bytes. By using fewer packets to send the same amount of data, end-to-

end network performance is improved.

Operations and Management

HPC systems are traditionally highly decoupled and resilient to the failure of any given

component, with minimal disruption. However, HPC systems in financial services

organizations tend to be both mission critical and limited by the capabilities of traditional

approaches, such as physical primary and secondary datacenters. In this model, HPC

teams have to choose between having secondary infrastructure sitting mostly idle in

case of the loss of a datacenter, or using all of the infrastructure on a daily basis but

with the possibility of losing up to 50% of that capacity in a disaster event. Some add a

third or fourth location to reduce the impact of the loss of a site, but at the cost of an

increased likelihood of an outage and network inefficiencies.

When you move to the cloud, you not only open up the availability of new services, but

also new approaches to solving these problems. AWS operates a model with Regions

and Availability Zones that are always active and offer high levels of availability.

By architecting HPC systems for multiple AWS Availability Zones, financial services

customers can benefit from high levels of resiliency and utilization. In the unlikely event

of the loss of an Availability Zone, additional instances can be automatically provisioned

in the remaining Availability Zones to enable workloads to continue without any loss of

data and only a brief interruption in service.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 19

Figure 9 – A sample HPC architecture for a Multi-AZ deployment

The high-level architecture in Figure 9 shows the use of multiple Availability Zones and

separate subnets for the stateful scheduler infrastructure (including schedulers, brokers,

data stores) and the compute instances. You can base your scheduler instances on

long-running Reserved Instances with static IP addresses to help them communicate

with on-premises infrastructure by simplifying firewall rules. Conversely, you can base

your compute instances on On-Demand Instance or Spot Instances with dynamically

allocated IP addresses. Security Groups act as a virtual firewall, which you can

configure to allow the compute instances to communicate only with scheduler instances.

One of the keys to effective HPC operations are the metrics you collect and the tools to

explore and manipulate them. A common question from end users is, “Why is my job

slow?” It’s important to set up your HPC operation in a way that enables you to either

answer that question, or to empower users to find it for themselves.

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 20

AWS offers tools you can use to collect metrics and logs, at scale. Amazon CloudWatch

is a monitoring and management service that not only collects metrics and logs related

to AWS services, but through an agent, it can also be a target for telemetry from HPC

systems and the applications running on them. This provides a valuable central store for

your data, and allows diverse data sources to be presented on a common timeseries,

and helps you to correlate events when you diagnose issues. You can also use

CloudWatch as an auditable record of the calculations that were completed, with the

analytics binary versions that were used. You can export these logs to Amazon S3 and

protect them with the object lock feature for long term, immutable retention.

Some grid schedulers require a relational database for the retention of statistics data.

For this purpose, you can use Amazon Relational Database Service (Amazon RDS),

which provides cost-efficient and resizable database capacity, while automating

administration tasks such as hardware provisioning, patching, and backups.

Another common challenge with shared tenancy HPC systems is the apportioning of

cost. The ability to provide very granular cost metrics according to usage can drive

effective business decisions within financial services.

The pay as you go pricing model of AWS empowers HPC managers and their end

customers to realize the benefits from the optimization of the system or its use. AWS

tools such as resource tagging and the AWS Cost Explorer can be combined to provide

rich cost data and to build reports that highlight the sources of cost within the system.

Tags can include details of report types, cost centers, or other information pertinent to

the client organization. There’s also an AWS Budgets tool which can be used to create

reports and alerts according to consumption.

When you combine detailed infrastructure costs with usage statistics, you can create

very granular cost attribution reports. Some trades are particularly demanding of HPC

capacity, to the extent that the business might decide to exit the trade instead of

continuing to support the cost.

Orchestration

It’s common for financial services organizations to use a third-party grid scheduler to

coordinate HPC workloads. As mentioned in the Overview section, these schedulers are

highly optimized for making low-latency scheduling decisions to maximize usage of a

fixed set of resources. When you plan a migration, a valid option is to migrate the on-

premises solution first, and then consider optimizations. For example, an initial

implementation might use Amazon EC2 On-Demand Instances to provision capacity,

which yields some immediate benefits from elasticity. Some of the commercial

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/rds/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/aws-cost-management/aws-budgets/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 21

schedulers also have integrations with AWS, which enable them to add and remove

nodes according to demand.

When you are comfortable with running critical workloads on AWS, you can then further

optimize your implementation with options such as using more native services for data

management and capacity provisioning. Ultimately, the scheduler might be in scope, at

which point you can consider a few different approaches.

Though financial services workloads are often composed of very large volumes of

relatively short-running calculations, there are some cases where longer-running

calculations need to be scheduled. In these situations, AWS Batch could be a viable

alternative or a complementary service. AWS Batch plans, schedules, and executes

batch workloads while dynamically provisioning compute resources using containers.

Customers can configure parallel computation and job dependencies to allow for

workloads where the results of one job are used by another. AWS Batch is also offered

at no additional charge, only the AWS resources it consumes generate costs.

Customers looking to simplify their architecture might consider a queue-based

architecture in which clients submit tasks to a stateful queue. This can then be serviced

by an elastic group of hungry worker processes that take pending workloads, process

them, and then return results. The Amazon Simple Queue Service (Amazon SQS) can

be used for this purpose. Amazon SQS is a fully managed message queuing service

that is ideal for this type of decoupled architecture. As a serverless offering, it reduces

the administrative burden of infrastructure management and offers seamless elastic

scaling.

Figure 10 – A simple HPC approach with Amazon SQS

Amazon SQS queues can be serviced by groups of Amazon EC2 instances that are

managed by AWS Auto Scaling Groups. You can configure the AWS Auto Scaling

https://aws.amazon.com/batch/
https://aws.amazon.com/sqs/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 22

Groups to scale capacity up or down based on metrics such as average CPU load or

the depth of the queue. AWS Auto Scaling Groups can also incorporate provisioning

strategies that can combine Amazon EC2 On-Demand Instances or Spot Instances to

provide flexible and low-cost capacity.

With serverless queuing provided by Amazon SQS, it’s logical to think about serverless

compute capacity. With AWS Lambda, you can run code without provisioning or

managing any servers. This function-as-a-service product allows you to only pay for the

computation time you consume. You can also configure Lambda to process workloads

from SQS, scaling out horizontally to consume messages in a queue. Lambda attempts

to process the items from the queue as quickly as possible, and is constrained only by

the maximum concurrency allowed by the account, memory, and runtime limits.

Figure 11 – A serverless, event-driven approach to HPC

When you explore these simplified approaches, especially in comparison to established

schedulers, it’s important to consider all of the features required to run what can be a

critical system. Metrics gathering, data management, and management tooling are only

some of the typical requirements that must be addressed and should not be overlooked.

A key benefit of running HPC workloads on AWS is the flexibility of the offerings that

can allow you to combine various solutions to meet very specific needs. An HPC

architect can use Amazon EC2 reserved instances for long-running, stateful hosts. You

can use Amazon EC2 On-Demand Instances for long-running tasks, or to secure

capacity at the start of a batch. Additionally, you can provision Amazon EC2 Spot

Instances to try to deliver a batch more quickly and at lower cost. Some workloads can

then be directed to alternative platforms, such as GPU enabled instances or Lambda

https://aws.amazon.com/lambda/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 23

functions. You can optimize the overall mix of these options on a regular basis to adapt

to the changing needs of your business.

Security and Compliance

The approach to security in High Performance Computing systems running in the cloud

is often different from other applications. This is because of the ephemeral and stateless

nature of the majority of the resources. Issues of patching, inventory tooling, or human

access can be eliminated because of the short-lived nature of the resources.

• Patching – When you use a pre-patched Linux AMI, the host is in a known

compliant state at startup. If a relatively short limit is placed on the life of the

instance, it’s likely that this approach will meet all necessary patching standards.

• Inventory Tooling – On-premises hosts typically interact with compliance and

inventory systems. Controls around the instance image and the delivery of

binaries mean that instances remain in a known state, so these controls might

not be necessary. Because highly scalable and elastic resources can put

excessive load on such systems, Amazon CloudTrail might provide a more

suitable alternative.

• Root Access – When you enable all debugging by centralized metrics, you can

mandate zero access to the compute nodes. Without any root access, you can

avoid key rotation and access control issues.

When you consider migrating to the cloud, an important early step is to decide which

internal tools and processes (if any) need to be replicated in the cloud. Amazon EC2

instances that are unencumbered by tooling tend to start up more quickly, which is

important when additional capacity is required to meet a business need.

Because of the stateless nature of the workloads, there is often little need to store data

for long periods, particularly when the job data isn’t especially sensitive, doesn’t include

personally identifying information (PII), and largely consists of public market data sets.

Regardless, encryption by default is easy to implement across a wide range of AWS

services.

Because binary analytics packages often contain proprietary code that has intellectual

value, you should give particular consideration the security of these assets. Financial

services organizations encrypt these binaries while in transit and use built-in AWS tools

to ensure they’re encrypted while at rest in AWS storage. If compute instances are

configured for minimal or no access, the risk of exfiltration while the binaries are in

memory is minimized.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 24

AWS has a wide range of certifications and attestations relevant to financial services

and other industries. For full details of AWS certifications, see AWS Compliance.

Before you design secure systems in AWS, to make sure you understand the respective

areas of responsibility for AWS and the customer, review the Shared Responsibility

Model.

Figure 12 – The AWS Shared Responsibility Model

This model is complemented by an extensive suite of tools and services to help

customers be secure in the cloud. For more detailed information, review the AWS Well-

Architected Framework Security Pillar.

One service of particular interest to HPC applications is the AWS Identity and Access

Management (IAM) service, which provides fine-grained access control across all of the

AWS services included in this paper. IAM also offers integration with your existing

identity providers through identity federation.

Interactions with the AWS APIs can be tracked with AWS CloudTrail, a service that

enables governance and auditing across the AWS account. This event history simplifies

security analyses, changes to resources, and troubleshooting.

Encryption by default is becoming increasing common within financial services, and

many AWS services now offer simple encryption features that integrate with AWS Key

Management Service (AWS KMS). This service makes it easy for customers to create

https://aws.amazon.com/compliance/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 25

and manage keys that can be used across a wide variety of AWS services. For HPC

applications, keys managed by AWS KMS might be used to encrypt AMIs or Amazon

S3 buckets that contain analytics binaries, or to encrypt data stored in the Parameter

Store.

AWS KMS uses FIPS 140-2 validated hardware security modules (HSMs) to generate

and protect customer keys. The keys never leave these devices unencrypted.

Customers with specific internal or external rules regarding HSMs can choose AWS

CloudHSM, which is a fully managed FIPS 140-3 level 3 validated HSM cluster with

dedicated, single-tenant access.

Migration Approaches, Patterns and

Anti-Patterns

Many financial services organizations already have some form of HPC environment

hosted in an on-premises datacenter. If you’re migrating from such an implementation,

it’s important to consider what might be the best method to complete the migration. The

optimal approach depends on the desired outcome, risk appetite, and timescale, but

typically begins with one of the 6 R's: Rehosting, Replatforming, Repurchasing,

Refactoring/Re-architecting, and (to a lesser degree) Retiring, or Retaining (revisiting).

HPC cloud migrations typically progress through three stages. The nuances and timings

of each stage depends on the individual businesses involved.

The first stage is Bursting capacity. In this mode, very little changes with the existing on-

premises HPC environment. However, at times of peak demand, Amazon EC2

instances can be created and added to the system to provide additional capacity. The

trigger for the creation of these instances is usually either:

• Scheduled – If workloads are predictable in terms of timing and scale, then a

simple schedule to add and remove a fixed number of hosts at predefined times

can be effective. The schedule can be managed by an on-premises system, or

with Amazon CloudWatch Event triggers.

• Demand based – In this mode, a component can monitor the performance of

workloads, and add or remove capacity based on demand. If a task queue starts

to increase, additional instances can be requested through the AWS API, and if

the queue decreases, some instances can be removed.

https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Scheduled-Rule.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 26

• Predictive – In some cases, especially when the startup time for a new instance

is long (perhaps because of very large package dependencies or complex OS

builds), it might be desirable to use a simple machine learning model to analyze

historic demand and determine when to bring capacity online. This approach is

rare, but can work well when combined with a demand-based approach.

As customers build confidence in their ability to supplement existing capacity with cloud-

based instances, they often make a decision to complete a migration. However, with

existing on-premises hardware still available, customers want to keep the value of that

infrastructure before it can be decommissioned. In this case, it can make sense to

provision a new strategic grid—with all of the same scheduler components—into the

cloud, and retain the existing on-premises grid. It’s then left to the upstream clients to

direct workloads accordingly, switching to the cloud-based grid as the on-premises

capacity is gradually retired.

When customers have completed migration and are running all of their HPC workloads

in the cloud, the on-premises infrastructure can be removed. At this point customers,

have completed a Rehosting approach. When their infrastructure is in the cloud, they

then have the flexibility to look at Replatforming or Refactoring their environment. The

ability to build entirely new architectures in the cloud alongside existing production

systems means that new approaches can be fully tested before they’re put into

production.

One anti-pattern that’s occasionally proposed by customers involves platform stacking.

In this approach, solutions such as virtualization and container platforms are placed

under the HPC platform, to try to create portability between cloud-based systems and

on-premises systems. This approach has a number of disadvantages:

• Computational inefficiency – By adding more layers between the analytics

binaries and CPUs performance, computational efficiency is inevitably degraded

as CPU cycles are consumed by the abstraction layers.

• Licensing costs – HPC environments are large and continue to grow. Though

enterprise licenses can keep the up-front costs of using these technologies very

low, the large number of CPU cores involved in HPC workloads can mean

significant additional costs when the licenses are due for renewal.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 27

• Management overhead – In the simplest approach, an Amazon EC2 instance

can be created on demand using an Amazon Linux 2 AMI. This AMI is patched

and up to date and because it exists for just a few hours, it requires no further

management. However, by building HPC stacks on top of other abstractions,

those long-running layers need patching and upgrading, and when multiple

layers are involved, the scope for disruption through planned maintenance or an

unplanned outage increases significantly.

• Scaling challenges – Amazon EC2 instances can be available very quickly on

demand. If scaling out involves the creation of a complex stack before processes

can execute, this adds to the billing time of the instance before useful work can

be done. In worst-case scenarios, there can be a temptation to leave large

numbers of instances running so that they’re available if additional workloads

arise.

• Optimization challenges – HPC systems are already complex, especially when

supporting huge volumes of variable workloads with different CPU and memory

requirements. Knowing where CPU and memory resources are consumed is vital

to identifying bottlenecks or debugging failures. If an HPC platform is based on a

series of abstraction layers, this can introduce additional variables that make it

difficult to see where inefficiencies exist, and as a result they might never be

found.

• Security challenges – Securing a more complex stack can be challenging

because there are more components to configure, monitor, and maintain to

ensure the integrity of the system.

Keeping HPC systems as simple as possible provides the best performance at the

lowest cost. Most HPC solutions are already platforms by design and offer portability

through simple deployment patterns to standard operating systems.

Conclusion

AWS has a long history of helping customers from various industries—including

financial services—to optimize their HPC workloads. This experience over many years

from customers with diverse requirements has directly contributed to the products and

services offered today, and will continue to do so. AWS regularly accommodates very

large-scale requests for Amazon EC2 instances.

For example, Western Digital ran a hard disk drive simulation on AWS to simulate

crucial elements of upcoming head designs for their next-generation hard disk drives.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 28

The simulation involved the completion of around 2.5 million tasks, and ran to

completion in just 8 hours on a 1 million vCPU Amazon EC2 cluster. This was a

significant reduction from the 20 days that the calculation would have taken on their

usual cluster configuration. This offered a significant advantage in an industry driven by

innovation.

In another example, a group of researchers from Clemson University created a high-

performance cluster on the AWS Cloud using more than 1.1 million vCPUs on Amazon

EC2 Spot Instances running in a single AWS Region. This cluster was used to study

how human language is processed by computers.

High Performance Computing platforms are crucial enablers for many different types of

financial services organizations including capital markets, insurance, banking and

payments. However, as demands on these platforms increase as a result of regulatory

demands, it’s clear that the traditional approaches to provisioning HPC infrastructure

are inefficient and ultimately unsustainable. Constraints on capital and capital

expenditure further compound the challenge.

By migrating these systems to AWS, customers benefit from a wide variety of compute

instances and relevant services, but also from a fundamental change in the delivery of

compute capacity. This new approach offers tremendous flexibility, both in terms of the

management of workloads that vary day-to-day, but also in the overall approach to cost

optimizations, security, availability, and operations.

HPC workloads already have much in common with stateless, function-as-a-service

architectural patterns. As these approaches mature, it’s likely that just as financial

services moved from local calculations to clusters and into grids, they will move to

decentralized, serverless approaches. As scaling become transparent, bottlenecks will

continue to be removed until processing becomes near real-time.

If you have challenges with the scale, cost, and capacity challenges of managing a

High-Performance Computing system today, AWS has a number of services and

partner relationships that can help.

To learn more, you can contact AWS Financial Services through the AWS Financial

Services – Contact Sales form.

http://www.clemson.edu/
https://aws.amazon.com/ec2/spot/
https://pages.awscloud.com/FinancialServicesContactSales.html
https://pages.awscloud.com/FinancialServicesContactSales.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 29

Contributors

Contributors to this document include:

• Alex Kimber, Solutions Architect, Global Financial Services, Amazon Web

Services

• Ian Meyers, Solutions Architect Head of Technology, Amazon Web Services

Further Reading

For additional information, see:

• AWS Well-Architected Framework

• AWS Well-Architected Framework – HPC Lens

Document Revisions

Date Description

September 2019 Updates to services, diagrams, and topology.

January 2016 Updates to services and topology.

January 2015 Initial publication.

https://aws.amazon.com/well-architected
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf

Amazon Web Services Financial Services Grid Computing on AWS

 Page 30

Glossary of Terms

The following are the definitions for the terms that appear throughout this document.

Binary Package – A set of binaries that execute Tasks. A typical HPC environment can

support multiple packages of various versions running in parallel. The package and

version required are defined by the client or risk system at the point of job submission.

These packages typically contain proprietary models that are built by the firm’s

Quantitative Analysis teams (quants) and are often the subject of intellectual property

concerns as they can form competitive differentiation.

Broker – A component of a typical HPC / Grid platform. The broker is typically

responsible for coordinating tasks and/or client connections to compute instances. As

grids and task volumes grow, the number of brokers is typically scaled out to ensure

throughput can be maintained.

Client – A software system, accessed by a user, that generates job requests and

presents results. In financial services, this is generally some form of risk management

system (RMS).

Engine – A software component responsible for invoking the calculation of a task using

a given binary package. A compute instance can run multiple engines in parallel,

perhaps one or more within each Slot.

Instance – An Amazon EC2 virtual server. Each instance has a number of available

virtual CPUs (vCPU) and an allocation of memory.

Job (or Session) – The definition of a series of one or more related tasks. For example,

a job might define a series of scenarios and how they are sub-divided into a set of

tasks.

Job Data – The set of data that is required in addition to the Task metadata. Typically,

Job Data is passed to the compute instance as a reference, bypassing the scheduler

itself. In investment banking applications, Job Data is generally a combination of static

reference data (such as holiday calendars used to calculate trade expiration dates),

market data (used to build the market environment), and trade data (referencing the

trade or portfolio of trades which are the focus of the calculation).

Master – A component of a typical HPC / Grid platform. The master is responsible for

tracking the state of compute instances and Brokers as well as hosting API or GUI

interfaces and metrics. The Master host is generally not involved in the scheduling of

individual tasks.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 31

Quantitative Analysts / Quants – The team associated with the development of

mathematical models to predict the behavior of financial products.

Risk Management System (RMS) – To improve oversight of risk calculations,

centralize operations and improve efficiency financial services firms are increasingly

leveraging Risk Management Systems to sit between the users and the HPC platform.

Scheduler / Grid Scheduler – A software component responsible for managing the

lifecycle of tasks through receipt, allocation to compute instances, collection of results,

and metrics and management processes.

Slot – A unit of compute currency used to approximate homogeneity within a

heterogenous compute environment. For example, a slot might be defined as two CPU

cores and 8GB of RAM, and would be considered interchangeable, regardless of

whether the compute instance was able to provide two or 32 slots.

Task – A unit of work to be scheduled to a compute instance. A task can define external

dependencies (such as market and reference data). In recursive workload patterns, a

parent task can spawn a child Job or a series of other child tasks.

Thread – An Engine runs either single-threaded or multi-threaded processes. Ideally,

each thread runs on a separate vCPU to minimize the overhead of CPU context

switching.

User – In financial services, a user is typically a member of the front office, either a

trader managing positions or desk-head who wants oversight, and ensures successful

internal or external reporting is completed.

	Overview
	Introduction
	Grid Computing on AWS
	Compute and Networking
	Compute Instance Provisioning and Management Strategies

	Storage and Data Sharing
	Amazon Simple Storage Service
	Amazon Elastic File System
	Amazon FSx for Lustre
	Amazon Elastic Block Store

	Data Management and Transfer
	Operations and Management
	Orchestration
	Security and Compliance

	Migration Approaches, Patterns and Anti-Patterns
	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Glossary of Terms

