
AWS Key Management 
Service Best Practices 

 

April 2017 

 

 

 

 

 

 

 

  



 

© 2017, Amazon Web Services, Inc. or its affiliates.  All rights reserved.  

Notices 

This document is provided for informational purposes only. It represents AWS’s 

current product offerings and practices as of the date of issue of this document, 

which are subject to change without notice. Customers are responsible for 

making their own independent assessment of the information in this document 

and any use of AWS’s products or services, each of which is provided “as is” 

without warranty of any kind, whether express or implied. This document does 

not create any warranties, representations, contractual commitments, 

conditions or assurances from AWS, its affiliates, suppliers or licensors. The 

responsibilities and liabilities of AWS to its customers are controlled by AWS 

agreements, and this document is not part of, nor does it modify, any 

agreement between AWS and its customers. 

  



 

Contents 

Abstract ................................................................................................................... i 

Introduction ............................................................................................................ 1 

Identity and Access Management ......................................................................... 2 

AWS KMS and IAM Policies .............................................................................. 2 

Key Policies ........................................................................................................ 2 

Cross Account Sharing of Keys ......................................................................... 5 

CMK Grants ........................................................................................................ 5 

Encryption Context ............................................................................................. 6 

Multi-Factor Authentication................................................................................. 7 

Detective Controls .................................................................................................. 8 

CMK Auditing ...................................................................................................... 8 

CMK Use Validation ........................................................................................... 9 

Infrastructure Security ............................................................................................ 9 

Customer Master Keys ....................................................................................... 9 

Using AWS KMS at Scale ................................................................................ 12 

Data Protection .................................................................................................... 13 

Common AWS KMS Use Cases ...................................................................... 13 

Enforcing Data at Rest Encryption within AWS Services ................................ 15 

Incident Response ............................................................................................... 18 

Security Automation of AWS KMS ................................................................... 18 

Deleting and Disabling CMKs .......................................................................... 18 

Conclusion............................................................................................................ 19 

Contributors .......................................................................................................... 19 

Document Revisions ............................................................................................ 20 

 

  



 

Abstract 

AWS Key Management Service (AWS KMS) is a managed service that allows 

you to concentrate on the cryptographic needs of your applications while 

Amazon Web Services (AWS) manages availability, physical security, logical 

access control, and maintenance of the underlying infrastructure. Further, AWS 

KMS allows you to audit usage of your keys by providing logs of all API calls 

made on them to help you meet compliance and regulatory requirements. 

Customers want to know how to effectively implement AWS KMS in their 

environment. This whitepaper discusses how to use AWS KMS for each 

capability described in the AWS Cloud Adoption Framework (CAF) Security 

Perspective whitepaper, including the differences between the different types of 

customer master keys, using AWS KMS key policies to ensure least privilege, 

auditing the use of the keys, and listing some use cases that work to protect 

sensitive information within AWS. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 1  

Introduction 

AWS Key Management Service (AWS KMS) is a managed service that makes it 

easy for you to create and control the encryption keys used to encrypt your 

data. AWS KMS uses Hardware Security Modules (HSMs) to protect the 

security of your keys.1 You can use AWS KMS to protect your data in AWS 

services and in your applications. The AWS Key Management Service 

Cryptographic Details whitepaper describes the design and controls 

implemented within the service to ensure the security and privacy of your data.2 

The AWS Cloud Adoption Framework (CAF) whitepaper provides guidance for 

coordinating the different parts of organizations that are moving to cloud 

computing.3 The AWS CAF guidance is broken into areas of focus that are 

relevant to implementing cloud-based IT systems, which we refer to as 

perspectives. The CAF Security Perspective whitepaper organizes the 

principles that will help drive the transformation of your organization’s security 

through five core capabilities: Identity and Access Management, Detective 

Control, Infrastructure Security, Data Protection, and Incident Response.4 

For each capability in the CAF Security Perspective, this whitepaper provides 

details on how your organization should use AWS KMS to protect sensitive 

information across a number of different use cases and the means of 

measuring progress: 

• Identity and Access Management: Enables you to create multiple 

access control mechanisms and manage the permissions for each. 

• Detective Controls: Provides you the capability for native logging and 

visibility into the service. 

• Infrastructure Security: Provides you with the capability to shape your 

security controls to fit your requirements. 

• Data Protection: Provides you with the capability for maintaining 

visibility and control over data. 

• Incident Response: Provides you with the capability to respond to, 

manage, reduce harm, and restore operations during and after an 

incident. 

http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf
https://d0.awsstatic.com/whitepapers/AWS_CAF_Security_Perspective.pdf


Amazon Web Services – AWS Key Management Service Best Practices 

Page 2  

Identity and Access Management 

The Identity and Access Management capability provides guidance on 

determining the controls for access management within AWS KMS to secure 

your infrastructure according to established best practices and internal policies. 

AWS KMS and IAM Policies 

You can use AWS Identity and Access Management (IAM) policies in 

combination with key policies to control access to your customer master keys 

(CMKs) in AWS KMS. This section discusses using IAM in the context of AWS 

KMS. It doesn’t provide detailed information about the IAM service. For 

complete IAM documentation, see the AWS IAM User Guide.5 

Policies attached to IAM identities (that is, users, groups, and roles) are called 

identity-based policies (or IAM policies). Policies attached to resources outside 

of IAM are called resource-based policies. In AWS KMS, you must attach 

resource-based policies to your customer master keys (CMKs). These are 

called key policies. All KMS CMKs have a key policy, and you must use it to 

control access to a CMK. IAM policies by themselves are not sufficient to allow 

access to a CMK, although you can use them in combination with a CMK key 

policy. To do so, ensure that the CMK key policy includes the policy statement 

that enables IAM policies.6 

By using an identity-based IAM policy, you can enforce least privilege by 

granting granular access to KMS API calls within an AWS account. Remember, 

IAM policies are based on a policy of default-denied unless you explicitly grant 

permission to a principal to perform an action. 

Key Policies 

Key policies are the primary way to control access to CMKs in AWS KMS. Each 

CMK has a key policy attached to it that defines permissions on the use and 

management of the key. The default policy enables any principals you define, 

as well as enables the root user in the account to add IAM policies that 

reference the key. We recommend that you edit the default CMK policy to align 

with your organization’s best practices for least privilege. To access an 

encrypted resource, the principal needs to have permissions to use the 

resource, as well as to use the encryption key that protects the resource. If the 

http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam


Amazon Web Services – AWS Key Management Service Best Practices 

Page 3  

principal does not have the necessary permissions for either of those actions, 

the request to use the encrypted resource will be denied. 

It’s also possible to constrain a CMK so that it can only be used by specific 

AWS services through the use of the kms:ViaService conditional statement 

within the CMK key policy. For more information, see the AWS KMS Developer 

Guide.7 

To create and use an encrypted Amazon Elastic Block Store (EBS) volume, you 

need permissions to use Amazon EBS. The key policy associated with the CMK 

would need to include something similar to the following: 

   { 

      "Sid": "Allow for use of this Key", 

      "Effect": "Allow", 

      "Principal": { 

        "AWS": "arn:aws:iam::111122223333:role/UserRole" 

      }, 

      "Action": [ 

        "kms:GenerateDataKeyWithoutPlaintext", 

        "kms:Decrypt" 

      ], 

      "Resource": "*" 

    }, 

    { 

      "Sid": "Allow for EC2 Use", 

      "Effect": "Allow", 

      "Principal": { 

        "AWS": "arn:aws:iam::111122223333:role/UserRole" 

      }, 

      "Action": [ 

        "kms:CreateGrant", 

        "kms:ListGrants", 

        "kms:RevokeGrant" 

      ], 

      "Resource": "*", 

      "Condition": { 

        "StringEquals": { 

          "kms:ViaService": "ec2.us-west-2.amazonaws.com" 

        } 

      } 

    } 

http://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
http://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service


Amazon Web Services – AWS Key Management Service Best Practices 

Page 4  

In this CMK policy, the first statement provides a specified IAM principal the 

ability to generate a data key and decrypt that data key from the CMK when 

necessary. These two APIs are necessary to encrypt the EBS volume while it’s 

attached to an Amazon Elastic Compute Cloud (EC2) instance. 

The second statement in this policy provides the specified IAM principal the 

ability to create, list, and revoke grants for Amazon EC2. Grants are used to 

delegate a subset of permissions to AWS services, or other principals, so that 

they can use your keys on your behalf. In this case, the condition policy 

explicitly ensures that only Amazon EC2 can use the grants. Amazon EC2 will 

use them to re-attach an encrypted EBS volume back to an instance if the 

volume gets detached due to a planned or unplanned outage. These events will 

be recorded within AWS CloudTrail when, and if, they do occur for your 

auditing. 

When developing a CMK policy, you should keep in mind how policy statements 

are evaluated within AWS. This means that if you have enabled IAM to help 

control access to a CMK, when AWS evaluates whether a permitted action is to 

be allowed or denied, the CMK policy is joined with the IAM policy. Additionally, 

you should ensure that the use and management of a key is restricted to the 

parties that are necessary. 

Least Privilege / Separation of Duties 

Key policies specify a resource, action, effect, principal, and conditions to grant 

access to CMKs. Key policies allow you to push more granular permissions to 

CMKs to enforce least privilege. For example, an application might make a 

KMS API call to encrypt data but there is no use case for that same application 

to decrypt data. In that use case, a key policy could grant access to the 

kms:Encrypt action but not kms:Decrypt and reduce the possibility for exposure. 

Additionally, AWS allows you to separate the usage permissions from 

administration permissions associated with the key. This means that an 

individual may have the ability to manipulate the key policy, but might not have 

the necessary permissions to use the key for cryptographic functions. 

Given that your CMKs are being used to protect your sensitive information, you 

should work to ensure that the corresponding key policies follow a model of 

least privilege. This includes ensuring that you do NOT include kms:* 

permissions in an IAM policy. This policy would grant the principal both 

administrative and usage permissions on all CMKs to which the principal has 

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam


Amazon Web Services – AWS Key Management Service Best Practices 

Page 5  

access. Similarly, including kms:* permissions for the principals within your key 

policy gives them both administrative and usage permissions on the CMK. 

It’s important to remember that explicit deny policies take precedence over 

implicit deny policies. When you use NotPrincipal in the same policy statement 

as "Effect: Deny", the permissions specified in the policy statement are explicitly 

denied to all principals except for the ones specified. A top-level KMS policy can 

explicitly deny access to virtually all KMS operations except for the roles that 

actually need them. This technique helps prevent unauthorized users from 

granting themselves KMS access. 

Cross Account Sharing of Keys 

Delegation of permissions to a CMK within AWS KMS can occur when you 

include the root principal of a trusted account within the CMK key policy. The 

trusted account then has the ability to further delegate these permissions to IAM 

users and roles within their own account using IAM policies. While this 

approach may simplify the management of the key policy, it also relies on the 

trusted accounts to ensure that the delegated permissions are correctly 

managed. The other approach would be to explicitly manage permissions to all 

authorized users using only the KMS key policy, which, in turn, could make the 

key policy complex and less manageable. Regardless of the approach you take, 

the specific trust should be broken out on a per key basis to ensure that you 

adhere to the least privilege model. 

CMK Grants 

Key policy changes follow the same permissions model used for policy editing 

elsewhere in AWS. That is, users either have permission to change the key 

policy or they do not. Users with the PutKeyPolicy permission for a CMK can 

completely replace the key policy for a CMK with a different key policy of their 

choice. You can use key policies to allow other principals to access a CMK, but 

key policies work best for relatively static assignments of permissions. To 

enable more granular permissions management, you can use grants. Grants 

are useful when you want to define scoped-down, temporary permissions for 

other principals to use your CMK on your behalf in the absence of a direct API 

call from you. 

It’s important to be aware of the grants per key and grants for a principal per 

key limits when you design applications that use grants to control access to 

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#NotPrincipal
http://docs.aws.amazon.com/kms/latest/developerguide/limits.html#grants-per-key
http://docs.aws.amazon.com/kms/latest/developerguide/limits.html#grants-per-key


Amazon Web Services – AWS Key Management Service Best Practices 

Page 6  

keys. Ensure that the retiring principal retires a grant after it’s used to avoid 

hitting these limits. 

Encryption Context 

In addition to limiting permission to the AWS KMS APIs, AWS KMS also gives 

you the ability to add an additional layer of authentication for your KMS API 

calls utilizing encryption context. The encryption context is a key-value pair of 

additional data that you want associated with AWS KMS-protected information. 

This is then incorporated into the additional authenticated data (AAD) of the 

authenticated encryption in AWS KMS-encrypted ciphertexts. If you submit the 

encryption context value in the encryption operation, you are required to pass it 

in the corresponding decryption operation. You can use the encryption context 

inside your policies to enforce tighter controls for your encrypted resources. 

Because the encryption context is logged in CloudTrail, you can get more 

insight into the usage of your keys from an audit perspective. Be aware that the 

encryption context is not encrypted and will be visible within CloudTrail logs. 

The encryption context should not be considered sensitive information and 

should not require secrecy. 

AWS services that use AWS KMS use encryption context to limit the scope of 

keys. For example, Amazon EBS sends the volume ID as the encryption 

context when encrypting/decrypting a volume, and when you take a snapshot 

the snapshot ID is used as the context. If Amazon EBS did not use this 

encryption context, an EC2 instance would be able to decrypt any EBS volume 

under that specific CMK. 

An encryption context can also be used for custom applications that you 

develop, and acts as an additional layer of control by ensuring that decrypt calls 

will succeed only if the encryption context matches what was passed in the 

encrypt call. If the encryption context for a specific application does not change, 

you can include that context within the AWS KMS key policy as a conditional 

statement. For example, if you have an application that requires the ability to 

encrypt and decrypt data, you can create a key policy on the CMK that ensures 

that it provides expected values. In the following policy, it is checking that the 

application name “ExampleApp” and its current version “1.0.24” are the values 

that are passed to AWS KMS during the encrypt and decrypt calls. If different 

values are passed, the call will be denied and the decrypt or encrypt action will 

not be performed. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 7  

 

{ 

  "Effect": "Allow", 

  "Principal": { 

    "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp" 

  }, 

  "Action": [ 

    "kms:Encrypt", 

    "kms:Decrypt" 

  ], 

  "Resource": "*", 

  "Condition": { 

    "StringEquals": { 

      "kms:EncryptionContext:AppName": "ExampleApp", 

      "kms:EncryptionContext:Version": "1.0.24" 

    } 

  } 

} 

 

This use of encryption context will help to further ensure that only authorized 

parties and/or applications can access and use the CMKs. Now the party will 

need to have IAM permissions to AWS KMS, a CMK policy that allows them to 

use the key in the requested fashion, and finally know the expected encryption 

context values. 

Multi-Factor Authentication 

To provide an additional layer of security over specific actions, you can 

implement an additional layer of protection using multi-factor authentication 

(MFA) on critical KMS API calls. Some of those calls are PutKeyPolicy, 

ScheduleKeyDeletion, DeleteAlias, and 

DeleteImportedKeyMaterial. This can be accomplished through a 

conditional statement within the key policy that checks for when or if an MFA 

device was used as part of authentication. 

If someone attempts to perform one of the critical AWS KMS actions, the 

following CMK policy will validate that their MFA was authenticated within the 

last 300 seconds, or 5 minutes, before performing the action. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 8  

{ 

  "Sid": "MFACriticalKMSEvents", 

  "Effect": "Allow", 

  "Principal": { 

    "AWS": "arn:aws:iam::111122223333:user/ExampleUser" 

  }, 

  "Action": [ 

    "kms:DeleteAlias", 

    "kms:DeleteImportedKeyMaterial", 

    "kms:PutKeyPolicy", 

    "kms:ScheduleKeyDeletion" 

  ], 

  "Resource": "*", 

  "Condition":{ 

    " NumericLessThan ":{"aws: MultiFactorAuthAge":"300"} 

  } 

} 

Detective Controls 

The Detective Controls capability ensures that you properly configure AWS 

KMS to log the necessary information you need to gain greater visibility into 

your environment. 

CMK Auditing 

AWS KMS is integrated with CloudTrail. To audit the usage of your keys in 

AWS KMS, you should enable CloudTrail logging in your AWS account. This 

ensures that all KMS API calls made on keys in your AWS account are 

automatically logged in files that are then delivered to an Amazon Simple 

Storage Service (S3) bucket that you specify. Using the information collected by 

CloudTrail, you can determine what request was made, the source IP address 

from which the request was made, who made the request, when it was made, 

and so on. 

AWS KMS integrates natively with many other AWS services to make 

monitoring easy. You can use these AWS services, or your existing security tool 

suite, to monitor your CloudTrail logs for specific actions such as 

ScheduleKeyDeletion, PutKeyPolicy, DeleteAlias, 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 9  

DisableKey, DeleteImportedKeyMaterial on your KMS key. 

Furthermore, AWS KMS emits Amazon CloudWatch Events when your CMK is 

rotated, deleted, and imported key material in your CMK expires. 

CMK Use Validation 

In addition to capturing audit data associated with key management and use, 

you should ensure that the data you are reviewing aligns with your established 

best practices and policies. One method is to continuously monitor and verify 

the CloudTrail logs as they come in. Another method is to use AWS Config 

rules. By using AWS Config rules you can ensure that the configuration of many 

of the AWS services are set up appropriately. For example, with EBS volumes 

you can use the AWS Config rule ENCRYPTED_VOLUMES to validate that 

attached EBS volumes are encrypted. 

Key Tags 

A CMK can have a tag applied to it for a variety of purposes. The most common 

use is to correlate a specific CMK back to a business category (such as a cost 

center, application name, or owner). The tags can then be used to verify that 

the correct CMK is being used for a given action. For example, in CloudTrail 

logs, for a given KMS action you can verify that the CMK being used belongs to 

the same business category as the resource that it’s being used on. Previously, 

this might have required a look up within a resource catalog, but now this 

external lookup is not required because of tagging within AWS KMS as well as 

many of the other AWS services. 

Infrastructure Security 

The Infrastructure Security capability provides you with best practices on how to 

configure AWS KMS to ensure that you have an agile implementation that can 

scale with your business while protecting your sensitive information. 

Customer Master Keys 

Within AWS KMS, your key hierarchy starts with a CMK. A CMK can be used to 

directly encrypt data blocks up to 4 KB or it can be used to secure data keys, 

which protect underlying data of any size. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 10  

AWS-managed and Customer-managed CMKs 

CMKs can be broken down into two general types: AWS-managed and 

customer-managed. An AWS-managed CMK is created when you choose to 

enable server-side encryption of an AWS resource under the AWS-managed 

CMK for that service for the first time (e.g., SSE-KMS). The AWS-managed 

CMK is unique to your AWS account and the Region in which it’s used. An 

AWS-managed CMK can only be used to protect resources within the specific 

AWS service for which it’s created. It does not provide the level of granular 

control that a customer-managed CMK provides. For more control, a best 

practice is to use a customer-managed CMK in all supported AWS services and 

in your applications. A customer-managed CMK is created at your request and 

should be configured based upon your explicit use case. 

The following chart summarizes the key differences and similarities between 

AWS-managed CMKs and customer-managed CMKs. 

 AWS-managed CMK Customer-managed CMK 

Creation AWS generated on 

customer’s behalf 

Customer generated 

Rotation Once every three years 

automatically 

Once a year automatically 

through opt-in or on-demand 

manually 

Deletion Can’t be deleted Can be deleted 

Scope of use Limited to a specific 

AWS service 

Controlled via KMS/IAM policy 

Key Access Policy AWS managed Customer managed  

User Access 

Management 

IAM policy IAM policy 

 

For customer-managed CMKs, you have two options for creating the underlying 

key material. When you choose to create a CMK using AWS KMS, you can let 

KMS create the cryptographic material for you, or you can choose to import 

your own key material. Both of these options provide you with the same level of 

control and auditing for the use of the CMK within your environment. The ability 

to import your own cryptographic material allows you to do the following: 

http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html#sse


Amazon Web Services – AWS Key Management Service Best Practices 

Page 11  

• Prove that you generated the key material using your approved source 

that meets your randomness requirements. 

• Use key material from your own infrastructure with AWS services, and 

use AWS KMS to manage the lifecycle of that key material within AWS. 

• Gain the ability to set an expiration time for the key material in AWS and 

manually delete it, but also make it available again in the future. 

• Own the original copy of the key material, and to keep it outside of AWS 

for additional durability and disaster recovery during the complete 

lifecycle of the key material. 

The decision to use imported key material or KMS-generated key material 

would depend on your organization’s policies and compliance requirements.  

Key Creation and Management 

Since AWS makes creating and managing keys easy through the use of AWS 

KMS, we recommend that you have a plan for how to use the service to best 

control the blast radius around individual keys. Previously, you may have used 

the same key across different geographic regions, environments, or even 

applications. With AWS KMS, you should define data classification levels and 

have at least one CMK per level. For example, you could define a CMK for data 

classified as “Confidential,” and so on. This ensures that authorized users only 

have permissions for the key material that they require to complete their job. 

You should also decide how you want to manage usage of AWS KMS. Creating 

KMS keys within each account that requires the ability to encrypt and decrypt 

sensitive data works best for most customers, but another option is to share the 

CMKs from a few centralized accounts. Maintaining the CMKs in the same 

account as the majority of the infrastructure using them helps users provision 

and run AWS services that use those keys. AWS services don’t allow for cross-

account searching unless the principal doing the searching has explicit List* 

permissions on resources owned by the external account. This can also only be 

accomplished via the CLI or SDK, and not through service console-based 

searches. Additionally, by storing the credentials in the local accounts, it might 

be easier to delegate permissions to individuals who know the IAM principals 

that require access to the specific CMKs. If you were sharing the keys via a 

centralized model, the AWS KMS administrators would need to know the full 

Amazon Resource Name (ARN) for all users of the CMKs to ensure least 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 12  

privilege. Otherwise, the administrators might provide overly permissive 

permissions on the keys. 

Your organization should also consider the frequency of rotation for CMKs. 

Many organizations rotate CMKs yearly. For customer-managed CMKs with 

KMS-generated key material, this is easy to enforce. You simply have to opt in 

to a yearly rotation schedule for your CMK. When the CMK is due for rotation, a 

new backing key is created and marked as the active key for all new requests to 

protect information. The old backing key remains available for use to decrypt 

any existing ciphertext values that were encrypted using this key. To rotate 

CMKs more frequently, you can also call UpdateAlias to point an alias to a 

new CMK, as described in the next section. The UpdateAlias method works 

for both customer-managed CMKs and CMKs with imported key material. AWS 

has found that the frequency of key rotation is highly dependent upon laws, 

regulations, and corporate policies. 

Key Aliases 

A key alias allows you to abstract key users away from the underlying Region-

specific key ID and key ARN. Authorized individuals can create a key alias that 

allows their applications to use a specific CMK independent of the Region or 

rotation schedule. Thus, multi-Region applications can use the same key alias 

to refer to KMS keys in multiple Regions without worrying about the key ID or 

the key ARN. You can also trigger manual rotation of a CMK by pointing a given 

key alias to a different CMK. Similar to how Domain Name Services (DNS) 

allows the abstraction of IP addresses, a key alias does the same for the key 

ID. When you are creating a key alias, we recommend that you determine a 

naming scheme that can be applied across your accounts such as 

alias/<Environment>-<Function>-<Service Team>. 

It should be noted that CMK aliases can’t be used within policies. This is 

because the mapping of aliases to keys can be manipulated outside the policy, 

which would allow for an escalation of privilege. Therefore, key IDs must be 

used in KMS key policies, IAM policies, and KMS grants. 

Using AWS KMS at Scale 

As noted earlier, a best practice is to use at least one CMK for a particular class 

of data. This will help you define policies that scope down permissions to the 

key and hence the data to authorized users. You may choose to further 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 13  

distribute your data across multiple CMKs to provide stronger security controls 

within a given data classification. 

AWS recommends using envelope encryption to scale your KMS 

implementation. Envelope encryption is the practice of encrypting plaintext data 

with a unique data key, and then encrypting the data key with a key encryption 

key (KEK). Within AWS KMS, the CMK is the KEK. You can encrypt your 

message with the data key and then encrypt the data key with the CMK. Then 

the encrypted data key can be stored along with the encrypted message. You 

can cache the plaintext version of the data key for repeated use, reducing the 

number of requests to AWS KMS. Additionally, envelope encryption can help to 

design your application for disaster recovery. You can move your encrypted 

data as-is between Regions and only have to re-encrypt the data keys with the 

Region-specific CMKs. 

The AWS Cryptographic team has released an AWS Encryption SDK that 

makes it easier to use AWS KMS in an efficient manner. This SDK 

transparently implements the low-level details for using AWS KMS. It also 

provides developers options for protecting their data keys after use to ensure 

that the performance of their application isn’t significantly affected by encrypting 

your sensitive data. 

Data Protection 

The Data Protection capability addresses some of the common AWS use cases 

for using AWS KMS within your organization to protect your sensitive 

information. 

Common AWS KMS Use Cases 

Encrypting PCI Data Using AWS KMS 

Since security and quality controls in AWS KMS have been validated and 

certified to meet the requirements of PCI DSS Level 1 certification, you can 

directly encrypt Primary Account Number (PAN) data with an AWS KMS CMK. 

The use of a CMK to directly encrypt data removes some of the burden of 

managing encryption libraries. Additionally, a CMK can’t be exported from AWS 

KMS, which alleviates the concern about the encryption key being stored in an 

insecure manner. As all KMS requests are logged in CloudTrail, use of the CMK 

https://github.com/awslabs/aws-encryption-sdk-java


Amazon Web Services – AWS Key Management Service Best Practices 

Page 14  

can be audited by reviewing the CloudTrail logs. It’s important to be aware of 

the requests per second limit when designing applications that use the CMK 

directly to protect Payment Card Industry (PCI) data. 

Secret Management Using AWS KMS and Amazon S3 

Although AWS KMS primarily provides key management functions, you can 

leverage AWS KMS and Amazon S3 to build your own secret management 

solution. 

Create a new Amazon s3 bucket to hold your secrets. Deploy a bucket policy 

onto the bucket to limit access to only authorized individuals and services. The 

secrets stored in the bucket utilize a predefined prefix per file to allow for 

granular control of access to the secrets. Each secret, when placed in the S3 

bucket, is encrypted using a specific customer-managed KMS key. 

Furthermore, due to the highly sensitive nature of the information being stored 

within this bucket, S3 access logging or CloudTrail Data Events are enabled for 

audit purposes. Then, when a user or service requires access to the secret, 

they assume an identity within AWS that has permissions to use both the object 

in the S3 bucket as well as the KMS key. An application that runs in an EC2 

instance uses an instance role that has the necessary permissions. 

Encrypting Lambda Environment Variables 

By default, when you create or update Lambda functions that use environment 

variables, those variables are encrypted using AWS KMS. When your Lambda 

function is invoked, those values are decrypted and made available to the 

Lambda code. You have the option to use the default KMS key for Lambda or 

specify a specific CMK of your choice. 

To further protect your environment variables, you should select the “Enable 

encryption helpers” checkbox. By selecting this option, your environment 

variables will also be individually encrypted using a CMK of your choice, and 

then your Lambda function will have to specifically decrypt each encrypted 

environment variable that is needed. 

Encrypting Data within Systems Manager Parameter Store 

Amazon EC2 Systems Manager is a collection of capabilities that can help you 

automate management tasks at scale. To efficiently store and reference 

http://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second


Amazon Web Services – AWS Key Management Service Best Practices 

Page 15  

sensitive configuration data such as passwords, license keys, and certificates, 

the Parameter Store lets you protect sensitive information within secure string 

parameters. 

A secure string is any sensitive data that needs to be stored and referenced in a 

secure manner. If you have data that you don't want users to alter or reference 

in clear text, such as domain join passwords or license keys, then specify those 

values using the Secure String data type. You should use secure strings in the 

following circumstances: 

• You want to use data/parameters across AWS services without exposing 

the values as clear text in commands, functions, agent logs, or 

CloudTrail logs. 

• You want to control who has access to sensitive data. 

• You want to be able to audit when sensitive data is accessed using 

CloudTrail. 

• You want AWS-level encryption for your sensitive data and you want to 

bring your own encryption keys to manage access. 

By selecting this option when you create your parameter, the Systems Manager 

encrypts that value when it’s passed into a command and decrypts it when 

processing it on the managed instance. The encryption is handled by AWS 

KMS and can be either a default KMS key for the Systems Manager or you can 

specify a specific CMK per parameter. 

Enforcing Data at Rest Encryption within AWS Services 

Your organization might require the encryption of all data that meets a specific 

classification. Depending on the specific service, you can enforce data 

encryption policies through preventative or detective controls. For some 

services like Amazon S3, a policy can prevent storing unencrypted data. For 

other services, the most efficient mechanism is to monitor the creation of 

storage resources and check whether encryption is enabled appropriately. In 

the event that unencrypted storage is created, you have a number of possible 

responses ranging from deleting the storage resource to notifying an 

administrator. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 16  

Data at Rest Encryption with Amazon S3 

Using Amazon S3, it’s possible to deploy an S3 bucket policy that ensures that 

all objects being uploaded are encrypted. The policy looks like the following: 

{ 

   "Version":"2012-10-17", 

   "Id":"PutObjPolicy", 

   "Statement":[{ 

         "Sid":"DenyUnEncryptedObjectUploads", 

         "Effect":"Deny", 

         "Principal":"*", 

         "Action":"s3:PutObject", 

         "Resource":"arn:aws:s3:::YourBucket/*", 

         "Condition":{ 

            "StringNotEquals":{ 

               "s3:x-amz-server-side-encryption":"aws:kms" 

            } 

         } 

      } 

   ] 

} 

Note that this doesn’t cause objects already in the bucket to be encrypted. This 

policy denies attempts to add new objects to the bucket unless those objects 

are encrypted. Objects already in the bucket before this policy is applied will 

remain either encrypted or unencrypted based on how they were first uploaded. 

Data at Rest Encryption with Amazon EBS 

You can create Amazon Machine Images (AMIs) that make use of encrypted 

EBS boot volumes and use the AMIs to launch EC2 instances. The stored data 

is encrypted, as is the data transfer path between the EBS volume and the EC2 

instance. The data is decrypted on the hypervisor of that instance on an as-

needed basis, then stored only in memory. This feature aids your security, 

compliance, and auditing efforts by allowing you to verify that all of the data that 

you store on the EBS volume is encrypted, whether it’s stored on a boot volume 

or on a data volume. Further, because this feature makes use of AWS KMS, 

you can track and audit all uses of the encryption keys. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 17  

There are two methods to ensure that EBS volumes are always encrypted. You 

can verify that the encryption flag as part of the CreateVolume context is set 

to “true” through an IAM policy. If the flag is not “true” then the IAM policy can 

prevent an individual from creating the EBS volume. The other method is to 

monitor the creation of EBS volumes. If a new EBS volume is created, 

CloudTrail will log an event. A Lambda function can be triggered by the 

CloudTrail event to check if the EBS volume is encrypted or not, and also what 

KMS key was used for the encryption. 

An AWS Lambda function can respond to the creation of an unencrypted 

volume in several different ways. The function could call the CopyImage API 

with the encrypted option to create a new encrypted version of the EBS volume 

and then attach it to the instance and delete the old version. Some customers 

choose to automatically delete the EC2 instance that has the unencrypted 

volume. Others choose to automatically quarantine the instance it by applying 

security groups that prevent most inbound connections. It’s also easy to write a 

Lambda function that posts to an Amazon Simple Notification Service (SNS) 

topic that alerts administrators to do a manual investigation and intervention. 

Note that most enforcement responses can—and should—be accomplished 

programmatically without human intervention. 

Data at Rest Encryption with Amazon RDS 

Amazon Relational Database Service (RDS) builds on Amazon EBS encryption 

to provide full disk encryption for database volumes. When you create an 

encrypted database instance with Amazon RDS, Amazon RDS creates an 

encrypted EBS volume on your behalf to store the database. Data stored at rest 

on the volume, database snapshots, automated backups, and read replicas are 

all encrypted under the KMS CMK that you specified when you created the 

database instance. 

Similar to Amazon EBS, you can set up an AWS Lambda function to monitor for 

the creation of new RDS instances via the CreateDBInstance API call via 

CloudTrail. Within the CreateDBInstance event, ensure that KmsKeyId 

parameter is set to the expected CMK. 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 18  

Incident Response 

The Incident Response capability focuses on your organization’s capability to 

remediate incidents that may involve AWS KMS. 

Security Automation of AWS KMS 

During your monitoring of your CMKs, if a specific action is detected, an AWS 

Lambda function could be configured to disable the CMK or perform any other 

incident response actions as dictated by your local security policies. Without 

human intervention, a potential exposure could be cut off in minutes by 

leveraging the automation tools inside AWS. 

Deleting and Disabling CMKs  

While deleting CMKs is possible it has significant ramifications to an 

organization. You should first consider whether it’s sufficient to set the CMK 

state to disabled on keys that you no longer intend to use. This will prevent all 

future use of the CMK. The CMK is still available, however, and can be re-

enabled in the future if it’s needed. Disabled keys are still stored by AWS KMS; 

thus, they continue to incur recurring storage charges. You should strongly 

consider disabling keys instead of deleting them until you are confident in their 

encrypted data management. 

Deleting a key must be very carefully thought out. Data can’t be decrypted if the 

corresponding CMK has been deleted. Moreover, once a CMK is deleted, it’s 

gone forever. AWS has no means to recover a deleted CMK once it’s finally 

deleted. Just as with other critical operations in AWS, you should apply a policy 

that requires MFA for CMK deletion. 

To help ensure that a CMK is not deleted by mistake, KMS enforces a minimum 

waiting period of seven days before the CMK is actually deleted. You can 

choose to increase this waiting period up to a maximum value of 30 days. 

During the waiting period, the CMK is still stored in KMS in a “Pending Deletion” 

state. It can’t be used for encrypt or decrypt operations. Any attempt to use a 

key that is in the “Pending Deletion” state for encryption or decryption will be 

logged to CloudTrail. You can set an Amazon CloudWatch Alarm for these 

events in your CloudTrail logs. This gives you a chance to cancel the deletion 

process if needed. Until the waiting period has expired, the CMK can be 



Amazon Web Services – AWS Key Management Service Best Practices 

Page 19  

recovered from the “Pending Deletion” state and restored to either the disabled 

or enabled state. 

Finally, it should also be noted that if you are using a CMK with imported key 

material, you can delete the imported key material immediately. This is different 

from deleting a CMK directly in several ways. When you perform the 

DeleteImportedKeyMaterial action, AWS KMS deletes the key material 

and the CMK key state changes to pending import. When the key material is 

deleted, the CMK is immediately unusable. There is no waiting period. To 

enable use of the CMK again, you must reimport the same key material. 

Deleting key material affects the CMK right away, but data encryption keys that 

are actively in use by AWS services are not immediately affected.  

For example, let’s say a CMK using your imported material was used to encrypt 

an object being placed in an S3 bucket using SSE-KMS.8 Right before you 

upload the object into the S3 bucket, you place the imported material into your 

CMK. After the object is uploaded, you can delete your key material from that 

CMK. The object will continue to sit in the S3 bucket in an encrypted state, but 

no one will be able to access it until the same key material is re-imported into 

the CMK. This flow obviously requires precise automation for importing and 

deleting key material from a CMK, but can provide an additional level of control 

within an environment. 

Conclusion 

AWS KMS provides your organization with a fully managed service to centrally 

control your encryption keys. Its native integration with other AWS services 

makes it easier for AWS KMS to encrypt the data that you store and process. 

By taking the time to properly architect and implement AWS KMS, you can 

ensure that your encryption keys are secure and available for applications and 

their authorized users. Additionally, you can show your auditors detailed logs 

associated with your key usage. 

Contributors 

The following individuals and organizations contributed to this document: 

• Matthew Bretan, Senior Security Consultant, AWS Professional Services 

http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html#sse


Amazon Web Services – AWS Key Management Service Best Practices 

Page 20  

• Sree Pisharody, Senior Product Manager – Technical, AWS 

Cryptography 

• Ken Beer, Senior Manager Software Development, AWS Cryptography 

• Brian Wagner, Security Consultant, AWS Professional Services 

• Eugene Yu, Managing Consultant, AWS Professional Services 

• Michael St.Onge, Global Cloud Security Architect, AWS Professional 

Services 

• Balaji Palanisamy, Senior Consultant, AWS Professional Services 

• Jonathan Rault, Senior Consultant, AWS Professional Services 

• Reef Dsouza, Consultant, AWS Professional Services 

• Paco Hope, Principal Consultant, AWS Professional Services 

Document Revisions 

Date Description 

April 2017 First publication. 

 

1 http://docs.aws.amazon.com/kms/latest/developerguide/overview.html 

2 https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf 

3 https://d0.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf 

4 https://d0.awsstatic.com/whitepapers/AWS_CAF_Security_Perspective.pdf 

5 http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html 

6 http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-

policy-default-allow-root-enable-iam 

7 http://docs.aws.amazon.com/kms/latest/developerguide/policy-

conditions.html#conditions-kms-via-service 

8 http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html#sse 

Notes 

http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf
https://d0.awsstatic.com/whitepapers/AWS_CAF_Security_Perspective.pdf
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html%23key-policy-default-allow-root-enable-iam
http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html%23key-policy-default-allow-root-enable-iam
http://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html%23conditions-kms-via-service
http://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html%23conditions-kms-via-service
http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html%23sse

	Abstract
	Introduction
	Identity and Access Management
	AWS KMS and IAM Policies
	Key Policies
	Least Privilege / Separation of Duties

	Cross Account Sharing of Keys
	CMK Grants
	Encryption Context
	Multi-Factor Authentication

	Detective Controls
	CMK Auditing
	CMK Use Validation
	Key Tags


	Infrastructure Security
	Customer Master Keys
	AWS-managed and Customer-managed CMKs
	Key Creation and Management
	Key Aliases

	Using AWS KMS at Scale

	Data Protection
	Common AWS KMS Use Cases
	Encrypting PCI Data Using AWS KMS
	Secret Management Using AWS KMS and Amazon S3
	Encrypting Lambda Environment Variables
	Encrypting Data within Systems Manager Parameter Store

	Enforcing Data at Rest Encryption within AWS Services
	Data at Rest Encryption with Amazon S3
	Data at Rest Encryption with Amazon EBS
	Data at Rest Encryption with Amazon RDS


	Incident Response
	Security Automation of AWS KMS
	Deleting and Disabling CMKs

	Conclusion
	Contributors
	Document Revisions

