
Best Practices for Deploying
Microsoft SQL Server on AWS

May 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

High Availability and Disaster Recovery ... 2

Availability Zones and Multi-AZ Deployment ... 3

Cluster Placement Groups and Enhanced Networking .. 4

Multi-Region Deployments ... 5

Disaster Recovery .. 7

Performance Optimization ... 9

Using Amazon Elastic Block Store (Amazon EBS) ... 10

Instance Storage .. 11

Amazon FSx for Windows File Server ... 12

Bandwidth and Latency .. 13

Read Replicas .. 13

Security Optimization... 14

Amazon VPC .. 14

Encryption at Rest .. 15

Encryption in Transit .. 15

Encryption in Use ... 16

AWS Key Management Service (AWS KMS) ... 16

Security Patches .. 16

Cost Optimization .. 16

Amazon EC2 CPU Optimization .. 17

Switch to SQL Server Standard Edition .. 17

z1d EC2 Instance Type .. 19

Eliminating Active Replica Licenses .. 20

Operational Excellence ... 22

Observability and Root Cause Analysis .. 22

Reducing Mean Time to Resolution (MTTR) ... 22

Patch Management .. 23

Conclusion ... 24

Contributors ... 24

Document Revisions.. 24

Abstract

This whitepaper focuses on best practices to attain the most value for the least cost

when running Microsoft SQL Server on AWS. Although for many general-purpose use

cases, Amazon Relational Database Service (Amazon RDS) for Microsoft SQL Server

provides an easy and quick solution, in this paper we focus on scenarios where you

need to push the limits to satisfy your special requirements.

In particular, this whitepaper explains how you can minimize your costs, maximize

availability of your SQL Server databases, optimize your infrastructure for maximum

performance, and tighten it for security compliance, while also enabling operational

excellence for ongoing maintenance. The flexibility of AWS services, combined with the

power of Microsoft SQL Server, can provide expanded capabilities for those who seek

innovative approaches to optimize their applications and transform their businesses.

The main focus of this paper is on the capabilities available in Microsoft SQL Server

2019, which is the most current version at the time of publication. Existing databases

that are running on previous versions (that is, 2008, 2012, 2014, 2016, and 2017) can

be migrated to SQL Server 2019 and run in compatibility mode.

Mainstream and extended support for SQL Server 2000, 2005 and 2008 has been

discontinued by Microsoft. Any database running on those versions of SQL Server must

be upgraded to a supported version first. Although it is possible to run those versions of

SQL Server on AWS, that discussion is outside the scope of this whitepaper.

https://support.microsoft.com/en-us/lifecycle/search

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 1

Introduction

AWS offers the best cloud for SQL Server, and it is the right cloud platform for running

Windows-based applications today and in the future. SQL Server on Windows or Linux

on Amazon EC2 enables you to increase or decrease capacity within minutes, not hours

or days. You can commission one, hundreds, or even thousands of server instances

simultaneously.

Customers have been running Windows workloads on AWS for over a decade. AWS

runs nearly two times more Windows Server instances than the next largest cloud

provider, according to an IDC report. AWS continues to be the most preferred option for

deploying and running Microsoft SQL Server. This is due to the unique combination of

breadth and depth of services and capabilities offered by AWS, providing the optimum

platform for MS SQL Server workloads.

Requirements for running SQL Server often fall under following categories:

• High availability and disaster recovery

• Performance

• Security

• Cost

• Monitoring and maintenance

These requirements map directly to the five pillars of the AWS Well-Architected

Framework, namely:

• Reliability

• Performance efficiency

• Security

• Cost optimization

• Operational excellence

This paper will discuss each of these requirements in further detail, along with best

practices using AWS services to address them.

https://pages.awscloud.com/IDC-Windows-Server-Market-Update.html?trk=ar_card
https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 2

High Availability and Disaster Recovery

Every business seeks data solutions that can address their operational requirements.

These requirements often translate to specific values of the Recovery Time Objective

(RTO), and Recovery Point Objective (RPO). The RTO indicates how long the business

can endure database and application outages, and the RPO determines how much data

loss is tolerable. For example, a RTO of one hour tells us that, in the hapless event of

an application outage, the recovery plans should aim to bring the application back

online within one hour. Likewise, a RPO of zero indicates that, should there be any

minor or major issues impacting the application, there should be no data loss after the

application is brought back online.

The combination of RTO and RPO requirements dictates what solution should be

adopted. Typically, applications with RPO and RTO values close to zero need to use a

high availability (HA) solution, whereas disaster recovery (DR) solutions could be used

for those with higher values. In many cases, HA and DR solutions can also be mixed to

address more complex requirements.

Microsoft SQL Server offers several High Availability and Disaster Recovery (HA/DR)

solutions, each suitable for specific requirements. The following table comparatively

shows these solutions:

Table 1: HA/DR options in Microsoft SQL Server

Solution HA DR Enterprise edition Standard edition

Log shipping No Yes Yes Yes

Mirroring

(deprecated)

Yes Yes Yes Yes (Full safety

only)

Always On

availability groups

Yes Yes Yes Yes (2 nodes)1

Always On failover Yes No Yes Yes (2 nodes)

1 Always On basic availability groups in SQL Server 2019 Standard edition support up to two

passive replicas (in addition to the primary replica) for a single database per availability

group. If you need multiple databases in HA mode, a separate availability group needs to

be defined for each database. The maximum number of replicas using Microsoft SQL

Server 2016 and 2017 drops to one. Basic availability groups are not available with lower

versions of SQL Server.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups?view=sql-server-ver15

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 3

cluster instances

Distributed

availability groups

Yes Yes Yes No

These solutions rely on one or more secondary servers with SQL Server running as

active or passive standby. Based on the specific HA/DR requirements, these servers

can be located in close proximity to each other or far apart.

In AWS, you can choose between low latency or an extremely low probability of failure.

You can also combine these options to create the solution that is most suitable to your

use case. In this paper, we look at these options and how they can be used with SQL

Server workloads.

Availability Zones and Multi-AZ Deployment

AWS Availability Zones are designed to provide separate failure domains, while keeping

workloads in relatively close proximity for low latency communications. Availability

Zones are a good solution for synchronous replication of your databases using

Mirroring, Always On Availability Groups, Basic Availability Groups, or Failover Cluster

Instances. SQL Server provides zero data loss and, when combined with the low-

latency infrastructure of Availability Zones, provides high performance.

This is one of the main differences between most on-premises deployments and AWS.

For example, Always On Failover Cluster Instances (FCI) is often used inside a single

data center. This is because all nodes in an FCI cluster must have access to the same

shared storage. Locating these nodes in different data centers could degrade

performance. However, with AWS, FCI nodes can be located in separate Availability

Zones and still provide high performance because of the low-latency network link

between all Availability Zones within a Region.

This feature enables a higher level of availability and could eliminate the need for a third

node, which is often coupled with an FCI cluster for disaster recovery purposes.

SQL Server FCI relies on shared storage being accessible from all nodes participating

in FCI. Amazon FSx for Windows File Server is a fully managed service providing

shared storage that automatically replicates the data synchronously across two

Availability Zones, provides high availability with automatic failure detection, failover,

and failback, and fully supports the SMB Continuous Availability (CA) feature. This

enables you to simplify your SQL Server Always On deployments and use Amazon FSx

as storage tier for MSSQL FCI.

https://aws.amazon.com/fsx/windows/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 4

Scenarios where Amazon FSx is applicable for performance tuning and cost

optimization are discussed in subsequent sections of this document.

Figure 1: SQL Server Always On Failover Cluster Instances in AWS

Cluster Placement Groups and Enhanced Networking

Traditionally, higher availability is often at the expense of lower performance. In AWS,

there are ways to mitigate odds of this dichotomy.

Amazon EC2 enables you to deploy a number of EC2 instances inside a cluster

placement group. This means that those EC2 instances are not only inside a single AZ,

but also, to ensure minimum network latency, within close physical proximity in the

same data center. To gain the highest bandwidth on AWS, you can leverage enhanced

networking and Elastic Network Adapter (ENA), or the new Elastic Fabric Adapter (EFA)

which, when combined with M5n, M5dn, R5n, and R5dn instances, can provide up to

100-Gbps bandwidth.

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking.html
https://aws.amazon.com/hpc/efa/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 5

At first glance, this might appear to conflict with HA requirements because the close

proximity of servers increases the likelihood of simultaneous failures. However, this

approach can be combined with Multi-AZ, to provide higher levels of availability. For

example, you can create an Always On FCI inside a cluster placement group and add

that cluster as a node to a Multi-AZ Always On Availability Group using asynchronous

replication. This arrangement gives you maximum performance while providing

automatic failover to another local instance if a process or instance fails.

Additionally, in the event of an AZ failure, you can manually fail over your database to

the second AZ. Relatively low latency between Availability Zone provides near-zero

data-loss, even with asynchronous replication in place. This is an example of HA with

close to zero performance penalty for applications that are sensitive to latency,

combined with a DR solution within the same AWS Region.

As noted previously, although using a cluster placement group reduces network latency

to a minimum, it increases the likelihood of simultaneous failures for instances running

inside it. For example, if you have two EC2 instances, both running on the same

physical host, or both sharing the same power source and network switch, a failure of

any of these underlying components results in the failure of both of your EC2 instances.

Instead, you may prefer to sacrifice the lower latency of cluster placement groups in

exchange for lowering the probability of simultaneous failures of your EC2 instances. In

such cases, you can leverage spread placement groups to ensure that your instances

are placed far enough apart to minimize chances of a partial or full failure at the same

time.

Multi-Region Deployments

For those workloads that require even more resilience against unplanned events, you

can leverage the global scale of AWS to ensure availability under almost any

circumstances.

Since by default Amazon Virtual Private Cloud (Amazon VPC) is confined within a

single Region, for a multi-region deployment, you would need to establish connectivity

between your SQL Server instances that are deployed in different Regions. In AWS,

there are a number of ways to do this, each suitable for a range of requirements:

1. VPC peering: Provides an encrypted network connectivity between two VPCs.

The traffic flows through the AWS networking backbone, therefore eliminating

latency and other hazards of the internet.

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 6

2. AWS Transit Gateway: If you need to connect two or more VPCs or on-premises

sites, you can use AWS Transit Gateway to simplify management and

configuration overhead of establishing network connection between them.

3. VPN connections: AWS VPN solutions are especially useful when you need to

operate in a hybrid environment, and connect your AWS VPCs to your on-

premises sites and clients.

4. VPC Sharing: If your applications or other clients are spread across multiple

AWS accounts, an easy way to make your SQL Server instance available to all

of them is using VPC Sharing. A shared VPC can also be connected to other

VPCs using AWS Transit Gateway, AWS VPN CloudHub, VPN connections, or

VPC peering. These connections are useful when workloads are spread across

multiple accounts and Regions.

If you have applications or users that are deployed in remote Regions which need to

connect to your SQL Server instances, you can use the AWS Direct Connect feature

that provides connectivity from any Direct Connect connection to all AWS Regions.

Although it is possible to have synchronous replication in a multi-region SQL Server

deployment, the farther apart your selected Regions are, the more severe the

performance penalty is for a synchronous replication. Often the best practice for multi-

region deployments is to establish an asynchronous replication, especially for Regions

that are geographically distant. For those workloads that come with aggressive RPO

requirements, asynchronous multi-region deployment can be combined with a Multi-AZ

or Single-AZ synchronous replication. You can also combine all three methods into a

single solution. However, these combinations would impose a significant increase in

your SQL Server license costs, which must be considered as part of your planning.

In cases involving several replicas across two or more Regions, distributed availability

groups might be the most suitable option. This feature allows you to combine availability

groups deployed in each Region into a larger distributed availability group.

Distributed availability groups can also be used to increase the number of read replicas.

A traditional availability group allows up to 8 read replicas. This means that you can

have a total of 9 replicas, including the primary. Using a distributed availability group, a

second availability group can be added to the first, increasing the total number of

replicas to 18. This process can be repeated with a third availability group and a second

distributed availability group. The second distributed availability group can be configured

to include either the first or second availability groups as its primary. Distributed

availability groups is the means through which SQL Server Always On can achieve

virtually unlimited scale.

https://aws.amazon.com/transit-gateway/
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html
file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/2%09https:/docs.aws.amazon.com/directconnect/latest/UserGuide/remote_regions.html
file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/2%09https:/docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/distributed-availability-%20groups
file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/2%09https:/docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/distributed-availability-%20groups

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 7

Another use case of a distributed availability group is for zero downtime database

migrations, when during migration a read-only replica is available at target destination.

The independence of SQL Server Distributed Availability Group from Active Directory

and Windows Server Failover Cluster (WSFC) is the main benefactor for these cases. It

allows you to keep both sides of the migration synchronized without having to worry

about the complexities of Active Directory or WSFC. You can refer to this blog post for

more details.

Figure 2: SQL Server Distributed Availability Group in AWS

Disaster Recovery

Similar to high availability (HA) solutions, disaster recovery (DR) solutions also require a

replica of SQL Server databases in another server. However, for DR, the other server is

often in a remote site far away from the primary site. This means higher latency, and

https://aws.amazon.com/blogs/database/how-to-architect-a-hybrid-microsoft-sql-server-solution-using-distributed-availability-groups/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 8

therefore, lower performance if relying on HA solutions that use synchronous

replication.

DR solutions often rely on asynchronous replication of data. Similar to HA, DR solutions

are also based on either block-level or database-level replication. For example, SQL

Server Log Shipping replicates data at the database-level, while Windows Storage

Replica can be used to implement block-level replication.

DR solutions are selected based on their requirements, such as cost, RPO, RTO,

complexity, and the effort to implement each solution.

In addition to common SQL Server DR solutions, such as Log Shipping and Windows

Storage Replica, AWS also provides CloudEndure Disaster Recovery. You can use

CloudEndure Disaster Recovery to reduce downtime to a few minutes, protect against

data loss for sub-second RPO, simplify implementation, increase reliability, and

decrease the total cost of ownership. CloudEndure is an agent-based solution that

replicates entire virtual machines, including the operating system, all installed

applications, and all databases, into a staging area. The staging area contains low-cost

resources automatically provisioned and managed by CloudEndure Disaster Recovery.

This greatly reduces the cost of provisioning duplicate resources. Because the staging

area does not run a live version of your workloads, you don’t need to pay for duplicate

software licenses or high performance compute. Rather, you pay for low cost compute

and storage. The fully provisioned recovery environment, with the right-sized compute

and higher-performance storage required for recovered workloads, is only launched

during a disaster or drill.

AWS also makes CloudEndure available at no additional cost for migration projects.

Figure 3: CloudEndure Disaster Recovery

https://aws.amazon.com/cloudendure-disaster-recovery/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 9

Performance Optimization

In some cases, maximizing performance might be your utmost priority. Both SQL Server

and AWS have several options to substantially increase performance of your workloads.

The first and most effective way to improve the performance of your workloads is by

optimizing your applications and database schemas. You might also be able to

significantly improve application performance by changing your application to use

purpose-built database solutions instead of a traditional relational database. AWS

database options for modernizing applications include Amazon DynamoDB for key-

value and document storage, Amazon Neptune for graph data, Amazon Quantum

Ledger Database, and Amazon Managed Blockchain.

To modernize applications that still need to use a relational database, many businesses

choose Amazon Aurora. Aurora is a managed, open-source, enterprise-grade RDBMS

service built for the cloud, which is fully compatible with MySQL and PostgreSQL. It is

up to five times faster than standard MySQL databases and three times faster than

standard PostgreSQL databases. It provides the security, availability, and reliability of

commercial databases at one tenth the cost. Amazon Aurora is fully managed by

Amazon Relational Database Service (RDS), which automates time-consuming

administration tasks like hardware provisioning, database setup, patching, and backups.

You can also benefit from Aurora’s serverless capability to achieve highest degrees of

cost optimization coupled with steady performance, without having to manage your

servers.

Another area to consider for performance tuning is your physical database schema.

Careful physical design, defining non-clustered indexes, and using horizontal

partitioning of tables and indexes, can drastically increase your database performance.

For analytic processing of transactional data, you might leverage columnstore indexes,

a feature of Microsoft SQL Server, which can provide up to ten times performance and

data compression improvements.

Sometimes, you can solve your scaling problems by logically slicing your data into

smaller chunks and then hosting each chunk on a separate server. This technique is

called sharding and is particularly useful for scaling write-heavy databases.

However, you might have already done application and DB level optimization, or your

situation might not lend itself to such practices (for example, having to run legacy line-

of-business applications, or projecting impending load increase, etc.) In these cases,

the next place to focus is on your infrastructure and assess how it can be reconfigured

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/rds/mysql/what-is-mysql/
https://aws.amazon.com/rds/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 10

to solve or alleviate your problem. The next sections focus on infrastructure design

options for maximizing performance of Microsoft SQL Server in the AWS Cloud.

Using Amazon Elastic Block Store (Amazon EBS)

Amazon EBS is a Single-AZ block storage service with a number of flexible options to

cater to diverse requirements. When it comes to maximizing performance with

consistent and predictable results on a single volume, using a Provisioned IOPS volume

type (io1) is the easiest choice. You can provision up to 64,000 IOPS per io1 EBS

volume (based on 16 KiB I/O size), along with 1000-MB/s throughput.

If you need more IOPS and throughput than provided by a single EBS volume, you can

create multiple volumes and stripe them in your Windows or Linux instance (Microsoft

SQL Server 2017 and later can be installed on both Windows and Linux systems).

Striping allows you to further increase the available IOPS per instance up to 80,000,

and throughput per instance up to 2,375 MB/s.

One point to remember is to use EBS-optimized EC2 instance types. This means that a

dedicated network connection is allocated to serve requests between your EC2 instance

and the EBS volumes attached to it.

While you can use a single Provisioned IOPS (io1) volume to meet your IOPS and

throughput requirements, General Purpose SSD (gp2) volumes offer a better balance of

price and performance for SQL Server workloads when configured appropriately.

General Purpose SSD (gp2) volumes deliver single-digit millisecond latencies and the

ability to burst to 3,000 IOPS for extended periods. This ability is well suited to SQL

Server. The IOPS load generated by a relational database like SQL Server tends to

spike frequently. For example, table scan operations require a burst of throughput, while

other transactional operations require consistent low latency.

One of the major benefits of using EBS volumes, is the ability to create point-in-time and

instantaneous EBS snapshots. This feature copies the EBS snapshot to Amazon S3

infrastructure, which provides 99.999999999% durability. Despite EBS volumes being

confined to a single AZ, EBS snapshots can be restored to any AZ within the same

Region. Note that block-level snapshots are not the same as database backups and not

all features of database backups are attainable this way. Therefore, this method is often

combined and complemented with a regular database backup plan.

Although each EBS volume can be as large as 16 TB, it could take a long time to

transfer all of its data to Amazon S3, but EBS snapshots are always point-in-time. This

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 11

means that SQL Server and other applications can continue reading and writing to and

from the EBS volume while data is being transferred in the background.

When you restore a volume from a snapshot, the volume is immediately available to

applications for read and write operations. However, it takes some time until it gets to its

full performance capacity. Using Amazon EBS fast snapshot restore, you can eliminate

the latency of I/O operations on a block when it is accessed for the first time. Volumes

created using fast snapshot restore instantly deliver all of their provisioned performance.

You can use AWS Systems Manager Run Command to take application-consistent EBS

snapshots of your online SQL Server files at any time, with no need to bring your

database offline or in read-only mode. The snapshot process uses Windows Volume

Shadow Copy Service (VSS) to take image-level backups of VSS-aware applications.

Microsoft SQL Server is VSS-aware and is perfectly compatible with this technique. It is

also possible to take VSS snapshots of Linux instances, however, that process requires

some manual steps, because Linux does not natively support VSS.

You can also take crash-consistent EBS snapshots across multiple EBS volumes,

attached to a Windows or Linux EC2 instance, without using orchestrator applications.

Using this method, you only lose uncommitted transactions and writes that are not

flushed to the disk. SQL Server is capable of restoring databases to a consistent point

before the crash time.

EBS volumes are simple and convenient to use, and in most cases effective, too.

However, there might be circumstances where you need even higher IOPS and

throughput than what is achievable using Amazon EBS.

Instance Storage

Storage-optimized EC2 instance types use fixed-size local disks and a variety of

different storage technologies are available. Among these, Non-Volatile Memory

express (NVMe) is the fastest technology with the highest IOPS and throughput. The i3

class of instance types provides NVMe SSD drives, for example, i3.16xlarge, comes

with eight disks, each with 1.9 TB of storage. When selecting storage-optimized EC2

instance types for maximum performance, it is essential to understand that some of the

smaller instance types provide instance storage that is shared with other instances.

These are virtual disks that reside on a physical disk attached to the physical host. By

selecting a bigger instance type, such as i3.2xlarge, you ensure that there is a 1:1

correspondence between your instance store disk and the underlying physical disk. This

ensures consistent disk performance and eliminates the noisy-neighbor problem.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-fast-snapshot-restore.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-vss.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-vss.html
https://aws.amazon.com/blogs/storage/taking-crash-consistent-snapshots-across-multiple-amazon-ebs-volumes-on-an-amazon-ec2-instance/
file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/8%09https:/docs.aws.amazon.com/AWSEC2/latest/UserGuide/storage-optimized-instances.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 12

Instance disks are ephemeral and only live as long as their associated EC2 instance. If

the EC2 instance fails, or is stopped or terminated, all of its instance storage disks are

wiped out and the data stored on them is irrecoverable. Unlike EBS volumes, instance

storage disks cannot be backed up using a snapshot. Therefore, if you choose to use

EC2 instance storage for your permanent data, you need to provide a way to increase

its durability.

One suitable use for instance storage may be the tempdb system database files

because those files are recreated each time the SQL Server service is restarted. SQL

Server drops all tempdb temporary tables and stored procedures during shut down. As

a best practice, the tempdb files should be stored on a fast volume, separate from user

databases. For the best performance, ensure that the tempdb data files within the same

filegroup are the same size and stored on striped volumes.

Another use for EC2 instance storage is the buffer pool extension. Buffer pool extension

is available on both the Enterprise and Standard editions of Microsoft SQL Server. This

feature uses fast random-access disks (SSD) as a secondary cache between RAM and

persistent disk storage, thus, striking a balance between cost and performance when

running workloads on SQL Server.

Although instance storage disks are the fastest available to EC2 instances, their

performance is capped at the speed of the physical disk. You can go beyond the single

disk maximum by striping across several disks.

You could also use instance storage disks as the cache layer in a Storage Spaces (for

single Windows instances) and Storage Spaces Direct (for Windows Server failover

clusters) storage pools.

Amazon FSx for Windows File Server

Amazon FSx for Windows File Server is another storage option for SQL Server on

Amazon EC2. This option is suitable for three major use-cases:

• As shared storage used by SQL Server nodes participating in a Failover Cluster

Instance

• As file-share witness to be used with any SQL Server cluster on top of Windows

Server Failover Cluster

• As an option to attain higher throughput levels than available in dedicated EBS

optimization

file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/8%09https:/docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database
file://///WorkDocs/sepehrs-amazon/My%20Documents/Amazon/Docs/SQL%20Server/8%09https:/docs.microsoft.com/en-us/sql/database-engine/configure-windows/buffer-pool-extension
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 13

The first two cases were discussed in an earlier section of this document. To better

understand the second case, notice that EBS throughput depends on EC2 instance

size. Smaller EC2 instance sizes provide lower EBS throughput, therefore to attain EBS

higher throughput you need bigger instance sizes. However, higher instance sizes cost

more. If a workload leaves a big portion of its network bandwidth unused, but requires

higher throughput to access underlying storage, using a shared file system over SMB

may unlock its required performance, while reducing cost by using smaller EC2 instance

sizes.

Amazon FSx provides fast performance with baseline throughput up to 2 GB/second per

file system, hundreds of thousands of IOPS, and consistent submillisecond latencies.

To provide the right performance for your SQL instances, you can choose a throughput

level that is independent of your file system size. Higher levels of throughput capacity

also come with higher levels of IOPS that the file server can serve to the SQL Server

instances accessing it. The storage capacity determines not only how much data you

can store, but also how many I/O operations per second (IOPS) you can perform on the

storage – each GB of storage provides three IOPS. You can provision each file system

to be up to 64 TB in size.

Bandwidth and Latency

When tuning for performance, it is important to remember the difference between

latency and bandwidth. You should find a balance between network latency and

availability. Using ENA drivers maximizes bandwidth, but it has no effect on latency.

Network latency changes in direct correlation with the distance between interconnecting

nodes. Clustering nodes is a way to increase availability, but placing cluster nodes too

close to each other increases the probability of simultaneous failure, therefore, reducing

availability. Putting them too far apart yields the highest availability, but at the expense

of higher latency.

AWS Availability Zones within each AWS Region are engineered to provide a balance

that fits most practical cases. Each AZ is engineered to be physically separated from

other Availability Zone, while keeping in close geographic proximity to provide low

network latency. Therefore, in the overwhelming number of cases, the best practice is to

spread cluster nodes across multiple Availability Zone.

Read Replicas

You might determine that many of your DB transactions are read-only queries, and that

the sheer number of incoming connections is flooding your database. Read replicas are

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/fsx-baseline-throughput.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 14

a known solution for this situation. You can offload your read-only transactions from

your primary SQL Server instance to one or more read replica instances. Read replicas

can also be used to perform backup operations, relieving primary instance from

performance hits during backup windows. When using availability group listeners, if you

mark your connection strings as read-only, SQL Server routes incoming connections to

any available read replicas and only sends read/write transactions to the primary

instance.

Always On Availability Groups, introduced in SQL Server 2012, supports up to four

secondary replicas. In more recent versions of SQL Server (that is, 2014, 2016, 2017,

and 2019), Always On Availability Groups support one set of primary databases and

one to eight sets of corresponding secondary databases.

There might be cases where you have users or applications connecting to your

databases from geographically dispersed locations. If latency is a concern, you can

locate read replicas close to your users and applications.

When you use a secondary database for read-only transactions, you must ensure that

the server software is properly licensed.

Security Optimization

Cloud security at AWS is the highest priority, and there are many AWS security features

available to you. These features can be combined with the built-in security features of

Microsoft SQL Server to satisfy even the most stringent requirements and expectations.

Amazon VPC

There are many features in Amazon Virtual Private Cloud (Amazon VPC) that can help

you secure your data in transit. You can use security groups to restrict access to your

EC2 instances and only allow certain endpoints and protocols. You can also use

network access control lists to deny known sources of threats.

A best practice is to deploy your SQL Server instances in private subnets inside a VPC,

and only allow access to the internet through a VPC NAT gateway, or a custom NAT

instance.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-ver15

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 15

Encryption at Rest

If you are using EBS volumes to store your SQL Server database files, you have the

option to enable block-level encryption. Amazon EBS transparently handles encryption

and decryption for you. This is available through a simple check box, with no further

action necessary. Amazon FSx for Windows File Server also includes built-in encryption

at rest. Both EBS and Amazon FSx are integrated with AWS Key Management Service

(AWS KMS) for managing encryption keys. This means, through AWS KMS, you can

either use keys provided by AWS, or bring your own keys. For more information, visit

the AWS KMS documentation.

At the database level, you can use SQL Server Transparent Data Encryption (TDE), a

feature available in Microsoft SQL Server that provides transparent encryption of your

data at rest. TDE is available on Amazon RDS for SQL Server, and you can also enable

it on your SQL Server workloads on EC2 instances.

Previously, TDE was only available on SQL Server Enterprise Edition. However, SQL

Server 2019 has also made it available on Standard Edition. If you want to have

encryption-at-rest for your database files on Standard Edition on an earlier version of

SQL Server, you can use EBS encryption instead.

It is important to understand the tradeoffs and differences between EBS encryption and

TDE. EBS encryption is done at the block level, that is, data is encrypted when it is

stored and decrypted when it is retrieved. However, with TDE, the encryption is done at

the file level, that is, database files are encrypted and can only be decrypted using the

corresponding certificate.

For example, this means that if you use EBS encryption without TDE and copy your

database data or log files from your EC2 instance to an S3 bucket that does not have

encryption enabled, the files will not be encrypted. Furthermore, if someone gains

access to your EC2 instance, database files will be exposed instantly.

However, there is no performance penalty when using EBS encryption, whereas

enabling TDE adds additional drag on your server resources.

Encryption in Transit

As a best practice, you can enable encryption in transit for your SQL Server workloads

using the SSL/TLS protocol. Microsoft SQL Server supports encrypted connections, and

SQL Server workloads in AWS are no exception. Furthermore, when using SMB

protocol for SQL Server storage layer, Amazon FSx automatically encrypts all data in

https://docs.aws.amazon.com/kms/index.html
file:///D:/Sepehr/IT/Amazon/WorkDocs/Amazon/Docs/SQL%20Server/9%09https:/docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-ver15
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 16

transit using SMB encryption as you access your file system without the need for you to

modify SQL Server or other applications’ configurations.

Encryption in Use

Microsoft SQL Server offers Always Encrypted to protect sensitive data using client

certificates, therefore providing separation provides a separation between those who

own the data and can view it, and those who manage the data but should have no

access. This feature is also available on both Amazon RDS for SQL Server, as well as

SQL Server workloads on Amazon EC2.

AWS Key Management Service (AWS KMS)

AWS KMS is a fully managed service to create and store encryption keys. You can use

KMS-generated keys or bring your own keys. In either case, keys never leave AWS

KMS and are protected from any unauthorized access. You can use KMS keys to

encrypt your SQL Server backup files when you store them on Amazon S3, Amazon S3

Glacier, or any other storage service. Amazon EBS encryption also integrates with AWS

KMS.

Security Patches

One of the common security requirements is the regular deployment of security patches

and updates. In AWS, you can use AWS Systems Manager Patch Manager to automate

this process. Note that use cases for Patch Manager are not restricted to security

patches. For more details, refer to the patch management discussion under operational

excellence topic in this whitepaper.

Cost Optimization

SQL Server can be hosted on AWS through License Included (LI), as well as Bring Your

Own License (BYOL) licensing models. With LI, you run SQL Server on AWS and pay

for the licenses as a component of your AWS hourly usage bill. The advantage of this

model is that you do not need to have any long-term commitments and can stop using

the product at any time and stop paying for its usage.

However, many businesses already have considerable investments in SQL Server

licenses and might want to reuse their existing licenses on AWS. This is possible using

BYOL:

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-patch.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 17

• If you have Software Assurance (SA), one of its benefits is the Microsoft License

Mobility through Software Assurance program. This program allows you to use

your licenses on server instances running anywhere, including on Amazon EC2

instances.

• If you do not have SA, you may still be able to use your own licenses on AWS

using Amazon EC2 Dedicated Hosts. For more details, consult the licensing

section of the FAQ for Microsoft workloads on AWS to ensure license

compliance.

The BYOL option on EC2 Dedicated Hosts can significantly reduce costs, as the

number of physical cores on an EC2 host is about half of the total number of vCPU

available on that host. However, one of the common challenges with this option is the

difficulty of tracking license usage and compliance. AWS License Manager helps you

solve this problem by tracking license usage, and optionally enforcing license

compliance, based on your defined license terms and conditions. AWS License

Manager is available to AWS customers at no additional cost.

Amazon EC2 CPU Optimization

The z1d instance types provide the maximum CPU power, allowing you to reduce the

number of CPU cores for compute-intensive SQL Server deployments. However, your

SQL Server deployments might not be compute-intensive and require an EC2 instance

type that provides intensity on other resources, such as memory or storage. Because

EC2 instance types that provide these resources are also providing a fixed number of

cores that might be more than your requirement, the end result can be a higher

licensing cost for cores that are not used at all. Fortunately AWS offers a solution for

these situations. You can use EC2 CPU optimization to reduce the number of cores

available to an EC2 instance and avoid unnecessary licensing costs.

Switch to SQL Server Standard Edition

Enterprise-grade features of SQL Server are exclusively available in the Enterprise

edition. However, over time many of these features have also been made available in

the Standard edition, therefore enabling you to switch to Standard edition, if you’ve

been using Enterprise edition only for those features. One example is encryption at rest

using Transparent Data Encryption (TDE), which is now available in Standard edition as

of SQL Server 2019.

One of the most common reasons for using Enterprise edition has always been its

mission-critical HA capabilities. However, there are alternative options that enable

https://aws.amazon.com/windows/resources/licensemobility/
https://aws.amazon.com/windows/resources/licensemobility/
https://aws.amazon.com/ec2/dedicated-hosts/
https://aws.amazon.com/windows/faq/
https://aws.amazon.com/license-manager/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 18

switching to Standard edition without degrading availability. You can use these options

to cost-optimize your SQL Server deployments.

One option is using Always On Basic Availability Groups. This option is similar to

Always On Availability Groups, but comes with a number of limitations. The most

important limitation is that you can have only one database in a basic availability group.

This limitation rules this option out for applications that rely on multiple databases.

The other option is using Always On Failover Cluster Instance (FCI). Since FCI provides

HA at the instance level, it does not matter how many databases are hosted on your

SQL Server instance. Traditionally this option was restricted to HA within a single data

center. However, as discussed earlier, you can use Amazon FSx for Windows File

Server to overcome that limitation. See the high availability and disaster recovery

section of this document.

You can simplify the complexity and cost of running Microsoft SQL FCI deployments

using Amazon FSx in the following scenarios:

• Due to the complexity and cost of implementing a shared storage solution for

FCI, you might have opted to use availability groups and SQL Server Enterprise

Edition. However, now you can switch to Standard edition and significantly

reduce your licensing costs, and also simplify the overall complexity of your SQL

deployment and ongoing management.

• You might already be using SQL Server FCI with shared storage using a third-

party storage replication software solution. That implies that you needed to

purchase a license for the storage replication solution, and then deploy,

administer, and maintain the shared storage solution yourself. You can now

switch to using a fully managed shared storage solution with Amazon FSx, and

thus simplify and reduce costs of your SQL Server FCI deployment.

• If you were running your SQL Server Always On deployment on-premises, using

a combination of FCI and AG – FCI to provide high availability within your

primary data center site, and AG providing a disaster recovery solution across

sites. The combination of Availability Zones and the support in Amazon FSx for

highly available shared storage deployed across multiple Availability Zones, now

makes it possible for you to eliminate the need for separate HA and DR

solutions, and thus reduce costs as well as simplify deployment complexities.

For a more detailed discussion of Microsoft SQL Server FCI deployments using

Amazon FSx, visit the blog post Simplify your Microsoft SQL Server high availability

deployments using Amazon FSx for Windows File Server.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups?view=sql-server-ver15
https://aws.amazon.com/blogs/storage/simplify-your-microsoft-sql-server-high-availability-deployments-using-amazon-fsx-for-windows-file-server/
https://aws.amazon.com/blogs/storage/simplify-your-microsoft-sql-server-high-availability-deployments-using-amazon-fsx-for-windows-file-server/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 19

z1d EC2 Instance Type

The high-performance z1d instance is optimized for workloads that carry high licensing

costs, such as Microsoft SQL Server and Oracle databases. The z1d instance is built

with a custom Intel Xeon Scalable Processor that delivers a sustained all core Turbo

frequency of up to 4.0 GHz, which is significantly faster than other instances. For

workloads that need faster sequential processing, you can run fewer cores with a z1d

instance and get the same or better performance as running other instances with more

cores.

For example, moving an SQL Server Enterprise workload running on an r4.4xlarge to a

z1d.3xlarge can deliver up to 24% in savings because of licensing fewer cores. The

same savings are realized when moving a workload from an r4.16xlarge to a

z1d.12xlarge as it is the same 4:3 ratio.

Figure 4: TCO Comparison Between SQL Server on r4.4xlarge and z1d.3xlarge

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 20

Eliminating Active Replica Licenses

Another opportunity for cost optimization in the cloud is through applying a combination

of BYOL and LI models. A common use case is SQL Server Always On Availability

Groups with active replicas. Active replicas are used primarily for:

• Reporting

• Backup

• OLAP Batch jobs

• HA

Out of the above four operations, the first three are often performed intermittently. This

means that you would not need an instance continuously up and dedicated to running

those operations. In a traditional on-premises environment, you would have to create an

active replica that is continuously synchronized with the primary instance. This means

you need to obtain an additional license for the active replica.

Figure 5: SQL Server Active Replication On Premises

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 21

In AWS, there is an opportunity to optimize this architecture by replacing the active

replica with a passive replica, therefore relegating its role solely for the purpose of HA.

Other operations can be performed on a separate instance using License Included

which could run for a few hours and then be shut down or terminated. The data can be

restored through an EBS snapshot of the primary instance. This snapshot can be taken

using VSS-enabled EBS snapshots, thus ensuring no performance impact or downtime

on the primary.

Figure 6: Eliminating Active Replica Licenses in AWS

This solution is applicable when jobs on the active replica run with a low frequency.

However, if you need a replica for jobs that run continuously or at a high frequency,

consider using AWS Database Migration Service (AWS DMS) to continuously replicate

data from your primary instance into a secondary. The primary benefit of this method is

because you can do it using SQL Server Standard edition, it avoids the high cost of

SQL Server Enterprise edition licensing.

Refer to the AWS Microsoft licensing page for more details on ways you can optimize

licensing costs on AWS.

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://aws.amazon.com/windows/resources/licensing/

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 22

Operational Excellence

Most of the discussions explored so far in this whitepaper pertain to the best practices

available at deployment time of Microsoft SQL Server in AWS. However, another crucial

dimension is operating and maintaining these workloads post-deployment.

As a general principle, the best practice is to assume that failures and incidents happen

all the time. It is important to be prepared and equipped to respond to these incidents.

This objective is composed of three subobjectives, namely:

• Observe and detect anomaly

• Detect the root cause

• Act to resolve the problem

AWS provides tools and services for each of these purposes.

Observability and Root Cause Analysis

Amazon CloudWatch is a service that enables real-time monitoring of AWS resources

and other applications. You can use CloudWatch to collect and track metrics, which are

variables you can measure for your resources and applications.

Amazon CloudWatch Application Insights for .NET and SQL Server is a feature of

Amazon CloudWatch that is designed to enable operational excellence for Microsoft

SQL Server and .NET applications. Once enabled, it identifies and sets up key metrics

and logs across your application resources and technology stack. It continuously

monitors the metrics and logs to detect anomalies and errors, while using artificial

intelligence and machine learning (AI/ML) to correlate detected errors and anomalies.

When errors and anomalies are detected, Application Insights generates CloudWatch

Events. To aid with troubleshooting, it creates automated dashboards for the detected

problems, which include correlated metric anomalies and log errors, along with

additional insights to point you to the potential root cause.

Reducing Mean Time to Resolution (MTTR)

The automated dashboards generated by Amazon CloudWatch Application Insights

help you to take swift remedial actions to keep your applications healthy and to prevent

impact to the end users of your application. It also creates OpsItems so you can resolve

problems using AWS Systems Manager OpsCenter.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/appinsights-what-is.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/OpsCenter.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 23

AWS Systems Manager is a service that enables you to view and control your

infrastructure in AWS, on premises, and in other clouds. OpsCenter is a capability of

AWS Systems Manager, designed to reduce the mean time to resolution. OpsCenter

also provides Systems Manager Automation documents (runbooks) that you can use to

fully or partially automate resolution of issues.

Patch Management

AWS Systems Manager Patch Manager is a comprehensive patch management

solution, fully integrated with native Windows APIs, and supporting Windows Server and

Linux operating systems, as well as Microsoft applications, including Microsoft SQL

Server.

Systems Manager Patch Manager integrates with AWS Systems Manager Maintenance

Windows, allowing you to define a predictable schedule to prevent potential disruption

of business operations.

You can also use AWS Systems Manager Configuration Compliance dashboards to

quickly see patch compliance state or other configuration inconsistencies across your

fleet.

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-patch.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-maintenance.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-maintenance.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-compliance.html

Amazon Web Services Best Practices for Deploying Microsoft SQL Server on AWS

 24

Conclusion

In this whitepaper, we described a number of best practices for deploying Microsoft SQL

Server workloads on AWS. We saw how AWS services can be used to compliment

Microsoft SQL Server features to address different requirements.

AWS offers the greatest breadth and depth of services in the cloud, and Amazon EC2 is

the most flexible option for deploying Microsoft SQL Server workloads. Each solution

and associated trade-offs may be embraced according to particular business

requirements.

The five pillars of AWS Well-Architected Framework (that is, reliability, security,

performance, cost optimization, and operational excellence) are explored as applicable

to SQL Server workloads and AWS services supporting each requirement are

introduced.

Contributors

The following individuals and organizations contributed to this document:

• Sepehr Samiei, Solutions Architect, Amazon Web Services

Document Revisions

Date Description

May 2020 Revisited the whole document to cover new AWS services and

capabilities supporting Microsoft SQL Server workloads.

March 2019 Information regarding Total Cost of Ownership (TCO), using z1d

instance types and EC2 CPU Optimization added.

September 2018 First publication

	Introduction
	High Availability and Disaster Recovery
	Availability Zones and Multi-AZ Deployment
	Cluster Placement Groups and Enhanced Networking
	Multi-Region Deployments
	Disaster Recovery

	Performance Optimization
	Using Amazon Elastic Block Store (Amazon EBS)
	Instance Storage
	Amazon FSx for Windows File Server
	Bandwidth and Latency
	Read Replicas

	Security Optimization
	Amazon VPC
	Encryption at Rest
	Encryption in Transit
	Encryption in Use
	AWS Key Management Service (AWS KMS)
	Security Patches

	Cost Optimization
	Amazon EC2 CPU Optimization
	Switch to SQL Server Standard Edition
	z1d EC2 Instance Type
	Eliminating Active Replica Licenses

	Operational Excellence
	Observability and Root Cause Analysis
	Reducing Mean Time to Resolution (MTTR)
	Patch Management

	Conclusion
	Contributors
	Document Revisions

