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Abstract
This whitepaper helps cloud engineers, security engineers, Machine Learning Ops (MLOps) engineers, and
data scientists understand the various components of building a secure enterprise machine learning (ML)
platform. It provides prescriptive guidance on building a secure ML platform on Amazon Web Services
(AWS).

Introduction
Building an enterprise ML platform for regulated industries such as financial services can be a
complex architectural, operational, and governance challenge. There are many architecture design
considerations, including AWS account design, networking architecture, security, automation pipelines,
data management, and model serving architecture in an ML platform implementation. In addition,
organizations need to think about operational considerations such as the monitoring of pipelines, model
training, and production model hosting environment, as well as establishing incident response processes
for the ML platform operation. Lastly, having strong governance controls such as guardrails, model
management, auditability, and data and model lineage tracking are essential to meet the stringent
regulatory and compliance requirements faced by regulated customers.

AWS provides a wide range of services for building highly flexible, secure, and scalable ML platforms
for the most demanding use cases and requirements. This paper provides architecture patterns, code
samples, and best practices for building an enterprise ML platform on AWS.
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Personas for an ML platform
Building an enterprise machine learning platform requires the collaboration of different cross-functional
teams such as data scientists, cloud engineering, security architecture, data engineering, and audit and
governance. The different personas from the different teams all contribute in the build-out, usage and
operations of an ML platform, each having a different role and responsibilities. This document focuses on
the following personas in an enterprise:

• Cloud and security engineers — In most organizations, cloud engineering and security engineering
teams are responsible for creating, configuring, and managing the AWS accounts, and the resources in
the accounts. They set up AWS accounts for the different lines of business and operating environments
(for example, data science, user acceptance testing (UAT), production) and configure networking
and security. Cloud and security engineers also work with other security functions, such as identity
and access management, to set up the required users, roles, and policies to grant users and services
permissions to perform various operations in the AWS accounts. On the governance front, cloud and
security engineers implement governance controls such as resource tagging, audit trail, and other
preventive and detective controls to meet both internal requirements and external regulations.

• Data engineers — Data engineers work closely with data scientists and ML engineers to help identify
data sources, build out data management capabilities, and data processing pipelines. They establish
security controls around data to enable both data science experimentation and automated pipelines.
They are also responsible for data quality and data obfuscation management.

• MLOps engineers — MLOps engineers build and manage automation pipelines to operationalize
the ML platform and ML pipelines for fully/partially automated CI/CD pipelines, such as pipelines
for building Docker images, model training, and model deployment. They utilize different services
such as pipeline tools, code repository, container repository, library package management, model
management, and ML training and hosting platform to build and operate pipelines. MLOps engineers
also have a role in overall platform governance such as data / model lineage, as well as infrastructure
monitoring and model monitoring.

• Data scientists and ML engineers — Data scientists and ML engineers are the end-users of the
platform. They use the platform for experimentation, such as exploratory data analysis, data
preparation and feature engineering, model training and model validation. They also help analyze
model monitoring results and determine if the model is performing as expected in production.

• IT Auditors — IT auditors are responsible for analyzing system access activities, identifying anomalies
and violations, preparing audit reports for audit findings, and recommending remediations.

• Model risk managers — Model risk managers are responsible for ensuring machine learning models
meet various external and internal control requirements such as model inventory, model explainability,
model performance monitoring, and model lifecycle management.

2
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AWS accounts
Building an ML platform on AWS starts with setting up AWS accounts, and it is recommended to set up
a multi-accounts architecture to meet the needs of an enterprise and its busines units. The following
section discusses one multi-account pattern for building out an enterprise ML platform.

AWS account design

• Shared Services account — A Shared Services account is used to deploy and operate common services
and resources within an enterprise ML platform. Common resources like shared code repositories,
library package repositories, Docker image repositories, service catalog factory, and model repository
can be hosted in the Shared Services Account. In addition to common resources, the Shared Services
account would also host automation pipelines for end-to-end ML workflows. While it is not explicitly
listed here, you also need to establish lower environments for the development and testing of
common resources and services in the Shared Services account.

• Data management account — While data management is outside of this document's scope, it is
recommended to have a separate data management AWS account that can feed data to the various
machine learning workload or business unit accounts and is accessible from those accounts. Similar
to the Shared Services account, data management also should have multiple environments for the
development and testing of data services.

• Data science account — The data science account is used by data scientists and ML engineering to
perform science experimentation. Data scientists use tools such as Amazon SageMaker to perform

3
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exploratory data analysis against data sources such as Amazon Simple Storage Service (Amazon
S3), and they build, train, and evaluate the model. They also have access to resources in the Shared
Services account such as code, container, and library repositories, as well as access to on-prem
resources. Note that data scientists need production datasets to build and train models in the data
science account, so the access and distribution of data in the data science account need to be treated
as data in a production environment.

• Testing/UAT account — MLOps engineers use testing/UAT accounts to build and train ML models in
automated pipelines using automation services such as AWS CodePipeline and AWS CodeBuild hosted
in the shared services account. Data scientists and ML engineers should not have change access to the
testing/UAT account. If needed, they can be provided with read access to view model training metrics
or training logs. If the model building and training workflows need to be tested in a lower environment
before moving to the Testing/UAT account, the workflows can run in the data science account or a
separate development account.

• Production account — The production account is used for production model deployment for both
online inference and batch inference. Machine learning models should be deployed in the production
account using automation pipelines defined in the Shared Services account.

You can use AWS Control Tower to build such a multi-account environment. You can determine what
accounts are needed based on your requirements for account isolation requirements such business units
or projects. AWS Control Tower offers you a mechanism to easily set up and govern a new, secure multi-
account AWS environment. In AWS Control Tower, AWS Organizations helps centrally manage billing,
access, control, compliance, security, and share resources across your member AWS accounts. Accounts
are grouped into logical groups, called organizational units (OUs), as shown in the following figure.

4
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AWS Organizations

For machine learning projects, the accounts can be created within the Workloads OU or Line of Business 
(LoB) OU, as shown in the figure.

The creation of OUs enables you to set up organizational level pre-defined guardrails. These guardrails 
consist of AWS Config Rules that are designed to help you maintain the compliance of your environment. 
You can use them to identify and audit non-compliant resources that are launched in your environment; 
for example, for data protection, a common set of guardrails may be:

• Disallow public access to Amazon S3 buckets.

• Disallow S3 buckets that are not encrypted.

• Disallow S3 buckets that don't have versioning enabled.

5
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To set up additional guardrails, you can use Service Control Policies, which are described in more detail
later in this document.
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Networking architecture
Enterprise ML platforms built on AWS normally have requirements to access on-premises resources, such
as on-premises code repositories or databases. Secure communications such as AWS Direct Connect or
VPN should be established. To enable flexible network routing across different AWS accounts and the
on-prem network, consider using the AWS Transit Gateway service. If you want all internet traffic to
go through your corporate network, configure an internet egress route to allow internet traffic to go
through the on-premises network. The following figure shows a network design with multiple accounts
and an on-premises environment.

Networking design

For enhanced network security, you can configure resources in different AWS accounts to communicate
via the Amazon Virtual Private Cloud (VPC) using VPC endpoints. A VPC endpoint enables private
connections between your VPC and supported AWS services. There are different types of VPC endpoints
such as interface endpoint and gateway endpoint. An interface endpoint is an elastic network interface
(ENI) with a private IP address from the IP address range of your subnet that you can control network
access using a VPC security group. To access resources inside a VPC, you need to establish a route to the
subnet where your interface endpoint is located. A gateway endpoint is a gateway that you specify as a
target for a route in your route table. You can control access to resources behind a VPC endpoint using a
VPC endpoint policy.

For data scientists to use Amazon SageMaker, AWS recommend the following VPC endpoints:

• Amazon S3
• Amazon SageMaker (to call SageMaker APIs)
• Amazon SageMaker Runtime (only use this in accounts which have permissions to invoke SageMaker

endpoints)
• Amazon SageMaker Feature Store Runtime
• Amazon Security Token Service (STS)
• Amazon CloudWatch (for logging)
• AWS CloudTrail (for auditing API calls made by the service)
• Amazon Elastic Container Registry (ECR)
• AWS CodePipeline

6
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• AWS CodeBuild
• AWS CodeArtifact

The following figure shows the networking architecture for SageMaker with private endpoints for all the
dependent services.

Networking architecture for Amazon SageMaker Studio inside a VPC (Not all VPC endpoints are shown for
simplicity)

7
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User roles

Identity and access management
To establish a secure ML environment, both human and machine identities need to be defined and
created to allow for the intended access into the environment. AWS Identity and Access Management
(IAM) is the primary access control mechanism you’ll use for provisioning access to AWS resources in your
environment. The IAM service provides capabilities for both identity management, such as support for
identity federation, and authorization management for performing actions against AWS services such as
Amazon SageMaker and Amazon S3.

For managing human users, identity federation is the recommended practice to allow for employee
lifecycle events to be reflected in your ML environment when they are made in the source identity
provider. You can set up identity federation to AWS using either AWS Single Sign-On (SSO) or IAM while
leveraging your existing identity providers such as Okta or PingFederate. You can manage users and
access to Amazon SageMaker Studio directly with AWS SSO, which enables user to sign in to SageMaker
Studio with their existing corporate credentials.

After configuring identity management for your environment, you’ll need to define the permissions
necessary for your users and services. Following is a list of user and service roles to consider for your ML
environment:

User roles
User roles are assigned to the actual people who perform operations in an AWS account through AWS
Management Console, The AWS Command Line Interface (AWS CLI), or APIs. Following are some of the
primary user roles:

• Data scientist/ML engineering role — The IAM role for the data scientist / ML engineer persona
provides access to the resources and services that are mainly used for experimentation. These services
could include Amazon SageMaker Studio or SageMaker Notebook for data science notebook authoring,
Amazon S3 for data access, and Amazon Athena for data querying against the data sources. Multiple
such roles might be needed for the different data scientists or different teams of data scientists to
ensure proper separation of data and resources.

• Data engineering role — The IAM role for the data engineering persona provides access to the
resources and services mainly used for data management, data pipeline development, and operations.
These services could include S3, AWS Glue, Amazon EMR, Athena, Amazon Relational Database Service
(Amazon RDS), SageMaker Feature Store, and SageMaker Notebooks. Multiple such roles might be
needed for the different data engineering teams to ensure proper separation of data and resources.

• MLOps engineering role — The IAM role for the MLOps persona provides access to the resources and
services mainly used for building automation pipelines and infrastructure monitoring. These services
could include SageMaker for model training and deployment, and services for ML workflow such as
AWS CodePipeline, AWS CodeBuild, AWS CloudFormation, Amazon ECR, AWS Lambda, and AWS Step
Functions.

Service roles
Services roles are assumed by AWS services to perform different tasks such as running a SageMaker
training job or Step Functions workflow. Following are some of the main service roles:

• SageMaker notebook execution role — This role is assumed by a SageMaker Notebook instance or
SageMaker Studio Application when code or AWS commands (such as CLI) are run in the notebook
instance or Studio environment. This role provides access to resources such as the SageMaker training
service, or hosting service from the notebook and Studio environment. This role is different from the
data scientist / ML engineer user role.
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• SageMaker processing job role — This role is assumed by SageMaker processing when a processing
job is run. This role provides access to resources such as an S3 bucket to use for input and output for
the job. While it might be feasible to use theSageMaker notebook executionrole to run the processing
job, it is best practice to have this as a separate role to ensure it is in accordance with least privilege
standard.

• SageMaker training/tuning job role — This role is assumed by the SageMaker training/tuning job
when the job is run. Similarly, the SageMaker notebook executionrole can be used to run the training
job. However, it is a good practice to have a separate role, which prevents giving end-users more rights
than required.

• SageMaker model execution role — This role is assumed by the inference container hosting the model
when deployed to a SageMaker endpoint or used by the SageMaker Batch Transform job.

• Other service roles — Other services such as AWS Glue, Step Functions, and CodePipeline also need
service roles to assume when running a job or a pipeline.

The following figure shows the typical user and service roles for a SageMaker user and SageMaker service
functions.

User role and services roles for Sagemaker

Permissions
IAM policies need to be created and attached to different roles to perform different operations. IAM
provides fine-grained controls to allow / deny access to different SageMaker operations such as
launching SageMaker Notebook instances or starting SageMaker training jobs. Following are some
example IAM policies for controlling access to various SageMaker operations for the different roles. Note
that the following IAM policies serve as examples only. It is important that you modify and test them for
your specific needs.
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• Data scientist/ML engineer role — Data scientists/ML engineers mainly need access to SageMaker
Notebook instances or Studio for experimentation, or SageMaker console to view job status or other
metadata. The following sample policies provide the data scientist / ML engineer role with controlled
access to the SageMaker Notebook instance or SageMaker Studio domain.

• SageMaker Console access — The following sample policy enables an AWS user to gain read-only
permission to the SageMaker console, so the user can navigate inside the console and perform
additional privileged operations such as launching a SageMaker Notebook instance if additional
permissions are granted in other policies. If you need to restrict read-only access to a subset of actions,
you can replace List*, Describe*, and Get* with specific actions instead.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerReadAccess",
      "Effect": "Allow",
      "Action": [

"sagemaker:List*",
"sagemaker:Describe*",
"sagemaker:Get*"

      ],
      "Resource": "*"
    }
  ]
}

• SageMaker Notebook Access — The following sample policy enables an AWS user to launch a
SageMaker Notebook instance from the SageMaker console when the user has an AWS userid (for
example, AXXXXXXXXXXXXXXXXXXXX or <IAM Role ID>:<user name> for a Security Assertion
Markup Language (SAML) federated user) that matches the value of the “owner” tag associated with
the notebook instance. The Governance section of this guide covers more detail on resource tagging
and how it is used for permission management. The following IAM policy can be attached to an IAM
user directly, or to an IAM role (for example, a data scientist role) that a user assumes.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerNotebookAccessbyOwner",
      "Effect": "Allow",
      "Action": [

"sagemaker:StartNotebookInstance",
"sagemaker:StopNotebookInstance",
"sagemaker:CreatePresignedNotebookInstanceUrl"

      ],
      "Resource": "*",
      "Condition": {

"StringEquals": {
"sagemaker:ResourceTag/owner": "${aws:userid}"

}
      }
    }
  ]
}

The previous example uses aws:userid to manage fine-grained access to the SageMaker Notebook
instances by the individual users. Another option is to use the Session tags and match the tag on
the principal to resource, as shown in the following code sample. For more information about the
Principal tag, see Working backward: From IAM policies and principal tags to standardized names
and tags for your AWS resources.
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{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerNotebookAccessbyOwner",
      "Effect": "Allow",
      "Action": [

"sagemaker:StartNotebookInstance",
"sagemaker:StopNotebookInstance",
"sagemaker:CreatePresignedNotebookInstanceUrl"

      ],
      "Resource": "*",
      "Condition": {

"StringEquals": {
"sagemaker:ResourceTag/owner": "${aws:PrincipalTag/owner}"

}
      }
    }
  ]
}

• SageMaker Studio access — The following sample policy enables a SageMaker Studio user to access 
the SageMaker Studio where the user profile matches the user ID. This IAM policy can be attached to 
an IAM user directly, or an IAM role (for example, a data scientist role) that a user assumes. Similar to 
the previous example, you can also use Session tags and match the principal and resource tags in the 
condition. From an authentication perspective, SageMaker Studio also supports AWS Single-Sign-On 
based authentication.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerStudioAccessbyOwner"
      "Effect": "Allow",
      "Action": [

"sagemaker:CreatePresignedDomainUrl"
      ],
      "Resource": "*",
      "Condition": {

"StringLike": {
"sagemaker:ResourceTag/owner": "${aws:userid}"

}
      }
    }
  ]

• SageMaker Notebook execution role — The SageMaker notebook execution role needs access to data
stored in S3, and permission to run SageMaker processing, training, or tuning jobs.

The following sample policy allows a SageMaker notebook execution role to create a SageMaker
processing, training, and tuning job and pass a job execution role to it.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerTraining",
      "Effect": "Allow",
      "Action": [

"sagemaker:CreateTrainingJob",
"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:CreateProcessingJob"
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      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerPassRoleTraining",
      "Effect": "Allow",
      "Action": [

"iam:PassRole"
      ],
      "Resource": "<SAGEMAKER_TRAINING_EXECUTION_ROLE_ARN>",
      "Condition": {

"StringEquals": {
"iam:PassedToService": "sagemaker.amazonaws.com"

}
      }
    }
  ]
}

For quick experimentation, data scientists can build and push Docker images for model training
to an Amazon ECR repo from the SageMaker Notebook instance. The following sample policy can
be attached to the SageMaker Notebook execution role to enable this. The following policy also
checks for ECR repos with resource tag equal to SageMaker to provide fine-grained access control
to the different repos in the ECR. SageMaker also provides a suite of built-in algorithms containers
and managed machine learning framework containers. These containers are accessible by various
SageMaker jobs such as training jobs without the need for additional permission.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SagemakerCreateECR",
      "Effect": "Allow",
      "Action": [

"ecr:CreateRepository"
      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*",
      "Condition": {

"StringEquals": {
"aws:RequestTag/CreatedBy": "SageMaker"

}
      }
    },
    {
      "Sid": "SageMakerECRAccess",
      "Effect": "Allow",
      "Action": [

"ecr:GetAuthorizationToken"
      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*"
    },
    {
      "Sid": "SagemakerECRRepo",
      "Effect": "Allow",
      "Action": [

"ecr:BatchGetImage",
"ecr:CompleteLayerUpload",
"ecr:UploadLayerPart",
"ecr:DescribeImages",
"ecr:ListImages",
"ecr:InitiateLayerUpload",
"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
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"ecr:PutImage"
      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*",
      "Condition": {

"StringEquals": {
"aws:ResourceTag/CreatedBy": "SageMaker"

}
      }
    },
    {
      "Sid": "SagemakerECRRead",
      "Effect": "Allow",
      "Action": [

"ecr:DescribeRepositories"
      ],
      "Resource": "arn:aws:ecr:*:*:repository/*"
    }
  ]
}

The following sample policy, when attached to the SageMaker notebook execution role, enables a user
to create a model and deploy an endpoint in SageMaker.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerModel",
      "Effect": "Allow",
      "Action": [

"sagemaker:CreateModel",
"sagemaker:DescribeEndpointConfig",
"sagemaker:CreateEndpointConfig",
"sagemaker:CreateEndpoint",
"sagemaker:DescribeEndpoint"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerPassRoleModel",
      "Effect": "Allow",
      "Action": [

"iam:PassRole"
      ],
      "Resource": "<SAGEMAKER_MODEL_EXECUTION_ROLE_ARN>",
      "Condition": {

"StringEquals": {
"iam:PassedToService": "sagemaker.amazonaws.com"

}
      }
    }
  ]
}

• Training / tuning / processing job role — When the SageMaker processing, training, or tuning job
runs, it needs access to resources such as AWS Key Management Service (AWS KMS), CloudWatch Logs,
and access to S3 data sources and ECR repository.

The following sample shows a policy that can be attached to a training / tuning / processing job role
to run the SageMaker training / processing / tuning job and use an S3 bucket as the input source and
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output target. This policy also allows the SageMaker job to create Elastic Network Interface (ENI) and
communicate to other VPC resources with actions such as ec2:CreateNetworkInterface.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerLog",
      "Effect": "Allow",
      "Action": [

"cloudwatch:PutMetricData",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
"logs:DescribeLogStreams"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerEC2Management",
      "Effect": "Allow",
      "Action": [

"ec2:CreateNetworkInterface",
"ec2:CreateNetworkInterfacePermission",
"ec2:DeleteNetworkInterface",
"ec2:DeleteNetworkInterfacePermission",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeVpcs",
"ec2:DescribeDhcpOptions",
"ec2:DescribeSubnets",
"ec2:DescribeSecurityGroups"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerKMSUsage",
      "Effect": "Allow",
      "Action": [

"kms:CreateGrant",
"kms:Decrypt",
"kms:DescribeKey",
"kms:Encrypt"

      ],
      "Resource": "<DATA_KMS_CMK_ARN>"
    },
    {
      "Effect": "Allow",
      "Action": [

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject"

      ],
      "Resource": [

"arn:aws:s3::<ACCOUNT_ID>:<INPUT_BUCKET_NAME>",
"arn:aws:s3::<ACCOUNT_ID>:<OUTPUT_BUCKET_NAME>/<PATH_NAME>"

      ]
    },
    {
      "Sid": "SageMakerECRAccess",
      "Effect": "Allow",
      "Action": [

"ecr:GetAuthorizationToken"
      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*"
    },
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    {
      "Effect": "Allow",
      "Action": [

"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage"

      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*",
      "Condition": {

"StringEquals": {
"aws:ResourceTag/CreatedBy": "SageMaker"

}
      }
    }
  ]
} 

• SageMaker Model hosting role — the IAM policies for the SageMaker model will need access to EC2,
AWS KMS, CloudWatch, and application auto-scaling to host the model in a SageMaker endpoint.

The following example shows a policy that can be attached to the model hosting role to set up a
SageMaker endpoint. You should further specify the resources to restrict access by the different
actions based on requirements.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerLog",
      "Effect": "Allow",
      "Action": [

"cloudwatch:PutMetricData",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
"logs:DescribeLogStreams"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerEC2Management",
      "Effect": "Allow",
      "Action": [

"ec2:CreateNetworkInterface",
"ec2:CreateNetworkInterfacePermission",
"ec2:DeleteNetworkInterface",
"ec2:DeleteNetworkInterfacePermission",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribeVpcs",
"ec2:DescribeDhcpOptions",
"ec2:DescribeSubnets",
"ec2:DescribeSecurityGroups"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerAutoscaling",
      "Effect": "Allow",
      "Action": [

"application-autoscaling:DeleteScalingPolicy",
"application-autoscaling:DeleteScheduledAction",
"application-autoscaling:DeregisterScalableTarget",
"application-autoscaling:DescribeScalableTargets",
"application-autoscaling:DescribeScalingActivities",
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"application-autoscaling:DescribeScalingPolicies",
"application-autoscaling:DescribeScheduledActions",
"application-autoscaling:PutScalingPolicy",
"application-autoscaling:PutScheduledAction",
"application-autoscaling:RegisterScalableTarget"

      ],
      "Resource": "*"
    },
    {
      "Sid": "SageMakerKMSUsage",
      "Effect": "Allow",
      "Action": [

"kms:CreateGrant",
"kms:Decrypt",
"kms:DescribeKey",
"kms:Encrypt"

      ],
      "Resource": "<DATA_KMS_CMK_ARN>"
    },
    {
      "Sid": "SageMakerECRAccess",
      "Effect": "Allow",
      "Action": [

"ecr:GetAuthorizationToken"
      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*",
    },
    {
      "Sid": "SageMakerECRUsage",
      "Effect": "Allow",
      "Action": [

"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage"

      ],
      "Resource": "arn:aws:ecr:*:<ACCOUNT_ID>:repository/*",
      "Condition": {

"StringEquals": {
"aws:ResourceTag/CreatedBy": "SageMaker"

}
      }
    },
    {
      "Sid": "SageMakerElasticInterface",
      "Effect": "Allow",
      "Action": [

"elastic-inference:Connect"
      ],
      "Resource": "*"
    }
  ]
}

• VPC endpoint — You can create VPC endpoint policy to restrict access to resources behind VPC
endpoints. The following policy will allow any user or service within the VPC to access the specified S3
buckets.

{
    "Version": "2012-10-17",
    "Sid": "AccessOnlytoSpecificBucket",
    "Statement": [

{
"Effect": "Allow",
"Principal": "*",
"Action": [
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"s3:GetObject",
"s3:PutObject",
"s3:ListBucket",
"s3:GetBucketLocation",
"s3:ListAllMyBuckets"

],
"Resource": [

"arn:aws:s3:::<bucket_name>",
"arn:aws:s3:::<bucket_name>/*"

]
}

    ]
} 

There are additional sample managed policies and custom policies that can be used as references for
building IAM policies to meet different needs. For pushing containers from within Studio notebooks
to ECR, see Using the Amazon SageMaker Studio Image Build CLI to build container images from your
Studio notebooks. Guardrails can be set up at the account level to enforce policies such as network
isolation or limiting training to a specific VPC. See the Guardrails (p. 34) section of this document for
additional detail.

Encryption with AWS KMS
Amazon SageMaker automatically encrypts model artifacts and storage volumes attached to training
instances with AWS managed encryption key. All network traffic within the SageMaker service account
and between the service account and your VPC is encrypted-in-transit using Transport Layer Security
(TLS 1.2).

For regulated workloads with highly sensitive data, you might require data encryption using customer-
managed Customer Master Key (CMK). The following set of AWS services provide data encryption
support with CMK.

• SageMaker Processing, SageMaker Training (including AutoPilot), SageMaker Hosting (including Model
Monitoring), SageMaker Batch Transform, SageMaker Notebook instance, SageMaker Feature Store,
Amazon S3, AWS Glue, Amazon ECR, AWS CodeBuild, AWS Step Functions, AWS Lambda, Amazon EFS.

AWS KMS provides organizations with a fully managed service to centrally control their encryption keys.
With AWS KMS, you can ensure your encryption keys are secure and available for the different services in
the ML platform. For more information, see the AWS Key Management Service Best Practices whitepaper.
If compliance needs dictate that keys must be frequently rotated, you can manually rotate the CMK with
a new CMK. AWS KMS also rotates CMKs automatically once a year.

17

https://docs.aws.amazon.com/sagemaker/latest/dg/access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html
https://aws.amazon.com/blogs/machine-learning/using-the-amazon-sagemaker-studio-image-build-cli-to-build-container-images-from-your-studio-notebooks/
https://aws.amazon.com/blogs/machine-learning/using-the-amazon-sagemaker-studio-image-build-cli-to-build-container-images-from-your-studio-notebooks/
https://docs.aws.amazon.com/kms/latest/developerguide/create-cmk-keystore.html
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/whitepapers/latest/kms-best-practices/welcome.html


Build a Secure Enterprise Machine Learning
Platform on AWS AWS Technical Guide

Data management

Building the ML platform
To support data science workflows from experimentation to ML model productionization, an ML
platform needs to provide several core platform capabilities, including:

• Data management with tooling for data ingestion, processing, distribution, orchestration, and data
access control

• Data science experimentation environment with tooling for data analysis / preparation, model
training / debugging / validation / deployment, access to code management repos and library
packages, and self-service provisioning

• Workflow automation and CI/CD pipelines for automated model training, code / Docker image
packaging, and model deployment in the production environment

Data management
Amazon S3 is the primary storage for building an ML platform on AWS. The datasets needed for machine
learning workflow should be ingested into S3 for easy and secure access from other data processing and
machine learning services. AWS recommends that you build a data lake on S3 to centrally manage data
storage, ETL, data catalog, and security. You can consider the AWS Lake Formation service to build out
the data lake architecture. The following figure shows a high-level data management architecture for
machine learning.

Data management architecture for analytics and machine learning

Detailed enterprise data management design is out of scope for this document. The following section
focuses on the S3 bucket design to support machine learning tasks in various environments.

Machine learning services such as SageMaker use Amazon S3 as the primary storage for experimentation,
data processing, model training, and model hosting. To support data scientists' workflow and the
automated CI/CD ML pipelines, a set of S3 buckets or folders should be created with proper data
classification and data access control in mind. S3 provides security and access management features
through IAM to control access to different buckets and folders. Follow known S3 best practices and
other techniques such as data partitioning to optimize S3 performance. For machine learning workflow
support, the following S3 buckets should be considered:
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• Buckets for users / project teams — These buckets are used by individual data scientists or teams of
data scientists with common access permission to the experimentation data. Data scientists pull data
from the enterprise data management platform or other data sources and store them in these buckets
for further wrangling and analysis. Data scientists also store training / validation / test datasets,
and other experimentation artifacts such as training scripts and Docker files in these buckets for
individual / team experimentations.

• Buckets for common features — Common features (for example, customer features, product features,
and embedding features) that can be shared across different teams or projects can be stored in a set
of common feature buckets. Organizational data access policies should govern access to these buckets,
and consider providing individual data scientists with read-only access to these datasets if the data is
not meant to be modified by individual data scientists. If you want to use a managed feature store,
consider the SageMaker Feature Store to share features across teams.

• Buckets for training / validation/test datasets — For formal model training and tracking, the
training / validation/test datasets for each model training pipeline need to be properly managed and
versioned for traceability and reproducibility. These buckets will be the data sources for automated ML
training pipelines.

• Buckets for ML automation pipelines — These are buckets used to store data needed for automation
pipelines and should only be accessible by the automation services. For example, a bucket used by
AWS CodePipeline to store artifacts (such as training script or Docker files) checked out from a code
repository.

• Buckets for models — Model artifacts generated by the automation pipelines are stored in model
buckets. Models used in production should be properly version controlled and tracked for lineage
traceability.

Data science experimentation environment
Data scientists and ML engineers use the experimentation environment for individual or team-based
experimentations for the different science projects. The environment needs to provide services and tools
for data querying and analysis, code authoring, data processing, model training and tuning, container
development, model hosting testing, source code control, and data science library package access.

Data science services
The following services can be provisioned in the experimentation environment in the data science
account:

Amazon Athena — Data scientists and ML engineers can use Amazon Athena to query data in the data
lake directly using SQL language. Athena provides an easy way to quickly identify and analyze a large
amount of data directly against data stored in S3.

Amazon SageMaker Notebook Instance and SageMaker Studio — Data scientists and ML engineers
can use a SageMaker Notebook instance or SageMaker Studio to author code, prepare data, and run
model training directly inside a Jupyter environment. SageMaker Notebook instances and SageMaker
Studio come pre-installed with a list of library packages and kernels (such as TensorFlow, Scikit-learn,
and PyTorch) for easy model development.

If you use a SageMaker Notebook instance for code authoring and experimentation, the SageMaker
Notebook instance provides Lifecycle script support, which can be used for:

• Setting up environment variables such as VPC, Security Group, and KMS keys

• Configuring the Code Repo connection

• Configuring a connection to the internal package management server (such as ArtiFactory or
CodeArtifact)
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This sample CloudFormation script creates a Lifecycle configuration that sets up environment variables,
configures a GitHub connection, and configure a PyPi mirror server. If you use SageMaker Studio, you can
use the SageMaker Studio custom image to set up connection to private package management server.
A SageMaker Studio custom image allows you to create a Docker image with your own selections of
kernels, language packages, and other files to run a Jupyter notebook in SageMaker Studio. For more
information, see Private package installation in Amazon SageMaker running in internet-free mode.

To use SageMaker Notebook instances or Studio in an enterprise environment, data scientists often
need to provide infrastructure configuration information such as VPC configurations, KMS keys, and IAM
roles for processing, training and hosing. To pass configurations to SageMaker training, processing jobs
or model endpoints, consider using AWS Systems Manager Parameter Store to store these parameters
in an encrypted fashion, and use a Python script to call these parameters via APIs. The Python script
can be loaded onto the SageMaker notebook instance at startup using lifecycle configurations, or in a
SageMaker Studio custom image.

• Amazon SageMaker Data Wrangler (Data Wrangler) — Data Wrangler is a feature of SageMaker
Studio to import, transform, visualize, and analyze data. Data scientists can use Data Wrangler to
perform data preparation tasks such as plotting histogram and scatter charts against datasets, running
data transformations such as one-hot encoding, or handing data outliers.

• Amazon SageMaker Processing — Data scientists and ML engineers can use SageMaker processing for
large data processing jobs. SageMaker processing provides built-in open-source containers for Scikit-
learn and Spark. Data scientists can also bring custom containers to run processing jobs.

• Amazon SageMaker Feature Store — SageMaker Feature Store can help data scientists share common
data features with other data scientists across teams for model training and inference. SageMaker
Feature Store supports both offline feature store for training and online feature store for online
inferencing.

• Amazon SageMaker Training / Tuning service — For model training and tuning, SageMaker provides
fully managed model training and tuning services. It provides a list of built-in algorithms for different
machine learning tasks such as classification, regression, clustering, computer vision, natural language
processing, time series, and anomaly detection. It also provides a list of fully managed training open-
source containers for TensorFlow, PyTorch, Apache MXNet, and Scikit-learn. Custom training containers
can also be used for model training and tuning.

• Amazon SageMaker Clarify (SageMaker Clarify) — Data scientists and ML engineers can use
SageMaker Clarify to compute pre-training and post-training bias metrics and feature attribution for
explainability.

• Amazon SageMaker Hosting — Data scientists and ML engineers can test model deployment and
real-time inference using the SageMaker hosting service. Models trained using the SageMaker built-
in algorithms and managed containers can be deployed quickly using a single API command. Custom
model inference containers can also be brought in to host custom models.

• Amazon SageMaker Pipelines — SageMaker Pipelines is a fully managed CI/CD service for machine
learning. It can be used to automate various steps of the ML workflow such as data processing/
transformation, training and tuning, and model deployment.

• AWS Step Functions — AWS Step Functions is a fully managed workflow orchestration tool. It comes
with a data science SDK that provides easy integration of SageMaker services such as processing,
training, tuning, and hosting. Data scientists and ML engineers can use AWS Step Functions to build
workflow pipelines to automate the different steps (such as data processing and model training) in the
experimentation environments.

• Code repository — A code repository such as Bitbucket or CodeCommit should be provided to data
scientists and ML engineers for code management and version control. The code repository can reside
in the Shared Services account or on-premises, and it is accessible from the data science account.

• Amazon ECR (ECR) — ECR is used to store training, processing, and inference containers. Data
scientists and ML engineers can use ECR in the data science account to manage custom containers for
experimentation.

• Artifacts repository — Organizations with strict internet access control often do not allow its users
to download and install library packages from public package repositories directly, such as the Python

20

https://github.com/aws-samples/secure-data-science-reference-architecture/blob/production/cloudformation/ds_env_sagemaker.yaml
https://aws.amazon.com/es/blogs/machine-learning/private-package-installation-in-amazon-sagemaker-running-in-internet-free-mode/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/sagemaker/data-wrangler/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/
https://aws.amazon.com/sagemaker/feature-store/
https://aws.amazon.com/getting-started/hands-on/train-tune-deep-learning-model-amazon-sagemaker/
https://www.tensorflow.org/
https://pytorch.org/
https://mxnet.apache.org/versions/1.8.0/
https://scikit-learn.org/stable/
https://aws.amazon.com/sagemaker/clarify/
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-deployment.html#how-it-works-hosting
https://aws.amazon.com/sagemaker/pipelines/
https://aws.amazon.com/step-functions
https://bitbucket.org/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/ecr/
http://pypi.org/


Build a Secure Enterprise Machine Learning
Platform on AWS AWS Technical Guide

Enabling self-service

Package Index (PyPi) or Anaconda. Private package repositories such as Artifactory, AWS CodeArtifact,
or mirroring PyPI servers can be created to support private packages management. These servers can
be used to host private packages as well as a mirroring site for public package sites such as the PyPi for
Pip or Anaconda main package channel and Conda-forge channel for Anaconda.

Core components in the experimentation environment

Enabling self-service
To improve onboarding efficiency for data scientists and ML engineers, consider developing a self-service
capability using the AWS Service Catalog. The AWS Service Catalog enables you to create self-service
portfolio and products using CloudFormation scripts, and data scientists can directly request access
to SageMaker Notebook / SageMaker Studio and other related AWS services without going through
manual provisioning. Follow the instructions in Enable self-service, secured data science using Amazon
SageMaker notebooks and AWS Service Catalog to enable self-service for data science products.

Enabling self-service for data science products with AWS Service Catalog
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Automation pipelines
Automated MLOps pipelines can enable formal and repeatable data processing, model training, model
evaluation, and model deployment. In addition to process automation, MLOps pipelines can help enforce
standards (for example, naming conventions, tagging, and security controls) and enable data and model
lineage tracking. MLOps pipelines are built and operated by the MLOps engineering team, and they
mainly consist of the following components:

• Code repository — A code repository is the source for an MLOps pipeline run. It contains artifacts
such as docker files, training scripts, and other dependency packages for building containers, training
models, and deploying models. Other artifacts such as AWS CloudFormation scripts and pipeline
configuration templates are also stored in the code repository. A code repository can reside in the
Shared Services account or in the on-prem environment.

• Code build service — A code build service is used to build custom artifacts such as custom Docker
containers and push containers to a Docker image repository such as Amazon ECR. AWS CodeBuild or
other third-party services such as Jenkins Build Server can be used as the code build service.

• Data processing service — Data processing service is used to process raw data into training/
validation/testing datasets for model training purpose. SageMaker Processing can be used in an
automated pipeline to process data.

• Model training service — SageMaker training service is used for model training in an automated
pipeline. SageMaker training service takes input data sources from S3, train the model using a training
container, and save the models in an S3 output bucket.

• Model registry — A model registry contains the metadata associated with model artifacts such as the
location of the model artifacts, the associated inference container image, and the IAM role for running
the container. Models can be registered in the Amazon SageMaker Model Registry for model inventory
management and model deployment.

• Model hosting service — SageMaker provides a model hosting service for both real-time inference
and batch inference. It takes model artifacts from the SageMaker Model Registry and deploys it to a
serving endpoint.

• Pipeline management — The end-to-end pipeline management is controlled by the AWS
CodePipeline service. AWS CodePipeline integrates with a code repository (such as AWS CodeCommit
or BitBucket), and AWS CodeBuild. It also supports different deployment actions using AWS Lambda,
AWS CloudFormation, and AWS Step Functions within the same account or across accounts. One of the
main components in an end-to-end pipeline is the model build workflow orchestration for repeatable
automated model building. The orchestration can be managed through services like SageMaker
Pipelines or AWS Step Functions.

The following figure illustrates one MLOps pipeline reference architecture that works across multiple
AWS accounts to build a custom container, process data, train a model, and deploy a model to an
endpoint.
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Cross-account CI/CD flow for model training and deployment

The pipeline in the figure consists of the following five stages:

1. Change commit stage — The data scientist/ML engineer commits code changes into a code repository
(such as CodeCommit) from the data science account from the SageMaker notebook / Studio.

2. Pipeline start stage — A CodePipeline pipeline run is triggered in the Shared Services account.
CodePipeline natively integrates with AWS CodeCommit, Enterprise Git, and BitBucket, downloads
source codes from the code repository, and saves them into an S3 bucket used for CodePipeline inputs
and outputs that's accessible by the different pipeline stages and action.

3. Container build stage — A CodeBuild project is then run as the next step in the pipeline in the Shared
Services account. It uses the source code saved in the S3 bucket to build a custom Docker container
and pushes the container image to the Amazon ECR repository in the Shared Services account.

4. Model building stage — Upon the successful Docker image build, the model training step is kicked
off across the account (from the Shared Services account to the Test / UAT account) by launching a
AWS CloudFormation script in the Test/UAT account. The AWS CloudFormation script first creates an
AWS Step Functions state machine workflow consisting of a SageMaker processing step, a SageMaker
model training step, and an endpoint deployment step in the test / UAT account for testing purposes.
After the state machine is created, the CodePipeline triggers the Step Functions state machine to run
all the steps defined in the state machine. The processing step and training step use containers hosted
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in the Shared Services account Amazon ECR or public containers (built-in algorithms or managed
containers) hosted by the SageMaker platform.

In addition to Step Functions, other workflow orchestration tools such as SageMaker Pipeline and
AirFlow can also be used to orchestrate model training steps such as data processing, model training
and model registration. SageMaker Pipeline enables you to create a workflow definition using the
SageMaker SDK or a JSON pipeline definition. The CodeBuild job in the Shared Service account builds
the SageMaker pipeline definition and runs the pipeline in the Test / UAT account by assuming an
across-account role. You can also directly visualize the pipelines and track the running of differently
pipelines directly inside SageMaker Studio.

CI/CD pipeline with SageMaker Pipeline

5. Model registration stage — For centralized model management and inventory control. The trained
model is registered in the SageMaker model registry in the Shared Services account. Any useful model
metadata will also be saved in the central model registry for each model.

6. Production deploymentstage — When it is ready for production deployment, a separate CodePipeline
workflow can be invoked in the Shared Services account to obtain release approval and run a
CloudFormation script in the Production account to stand up a SageMaker endpoint for real-time
inference. The production pipeline can be integrated with a release management ticketing system
such as ServiceNow to raise a service ticket for tracking.

Cross-account CodePipeline setup
When you create a pipeline with actions from multiple accounts, you must configure your actions with
proper permission so that they can access resources within the limitations of cross-account pipelines.
The following section reviews some of the key steps and components needed to enable a cross-account
pipeline.
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Cross account pipeline access

In the preceding figure, CodePipeline A represents the training pipeline, and CodePipeline A2 represents
the production deployment pipeline.

• CodePipeline Role A — This role is assumed by CodePipeline A to run the model training pipeline
in the Test / UAT account using CloudFormation. This role has access to the KMS key used for data
encryption for CodePipeline A’s input / output bucket. It also has full access to the CodePipeline
input / output bucket.

• Cross Account Role B — This role is assumed by CodePipeline Role A to perform operations in the
Test / UAT account. Specifically, this role is used to run the CloudFormation script to set up the Step
Functions state machine for the training workflow, and invoke the Step Functions state machine after
it is created.

• Cross Account Role A2 — This role is assumed by CodePipeline A2 to run the model deployment
pipeline in the production account.

• Cross Account Role C — This role is assumed by CodePipeline Role A2 to perform operations in
the Production account. Specifically, this role is used to run the CloudFormation script to set up the
SageMaker endpoint and other related resources such as Lambda functions and API Gateway to front
the SageMaker endpoint.
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• CodePipeline Input/output bucket — This bucket is used for sharing artifacts across different pipeline
stages and different accounts. AWS Lambda supports bucket policies that can directly be attached to a
bucket. In the preceding figure, Policy A is an S3 bucket policy that can provide different accounts with
direct bucket access.

• KMS Key — A KMS key is required to encrypt data in the CodePipeline input/output bucket. The KMS
key needs to provide access to the Test / UAT account, Production account, and CodePipeline role
A. The KMS key is in the same region as the CodePipeline and CodePipeline input / output bucket.
CodePipeline Role A will need access to this KMS key.

Cross-account resource access via VPC endpoint
To ensure all network communication takes place within the private network, private endpoints should
be used for accessing resources within the same AWS account or across different AWS accounts.

Access resources across account via VPC endpoint

The preceding figure illustrates how Amazon S3 and ECR can be accessed across accounts using VPC
endpoints. In this diagram, SageMaker is attached to a VPC in the Test / UAT account through an Elastic
Network Interface (ENI), and the VPC endpoints for S3 and ECR are attached to the Test / UAT account.
To provide SageMaker role access to S3 buckets and ECR repositories in both the Test / UAT account and
Shared Service account, you need to attach bucket policies and ECR repository policies that permit the
SageMaker role to access the target S3 buckets and ECR repositories. Note that the S3 endpoint only
supports buckets in the same AWS Region, and the ECR endpoint also only supports repositories in the
same AWS Region.

Cross-account pipeline example
To demonstrate how to build a cross-account pipeline using CodePipeline, review a sample CodePipeline
definition with the following 2 stages:

• Source stage — This is the first stage in a pipeline that connects to a AWS CodeCommit repository.
AWS CodeCommit is used to store any scripts for model training and CloudFormation templates used
in the pipeline. This stage runs in the shared services account.

• Deploy training workflow stage — The second stage is for training and testing models in the Test
account. First use a CloudFormation script to create a Step Functions state machine consisting of
data processing and a model training step. Later you will invoke the created state machines to train a
model.

26

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html


Build a Secure Enterprise Machine Learning
Platform on AWS AWS Technical Guide

Cross-account pipeline example

Sample CodePipeline definition with cross account support:

{
    "pipeline": {

"name": "<pipeline name>",
"roleArn": "arn:aws:iam::<SHARED_SERVICE_ACCOUNT>:role/service-role/

<codepipeline_role_name>",
"artifactStore": {

"type": "S3",
"location": "<S3 bucket name>",
"encryptionKey": {

"id": "arn:aws:kms:<REGION>: <SHARED_SERVICE_ACCOUNT>:alias/<kms key
 name>",

"type": "KMS"
}

},
"stages": [

{
"name": "Source",
"actions": [

{
"name": "Source",
"actionTypeId": {

"category": "Source",
"owner": "AWS",
"provider": "CodeCommit",
"version": "1"

},
"runOrder": 1,
"configuration": {

"BranchName": "<code branch name>",
"PollForSourceChanges": "false",
"RepositoryName": "<code repository name>"

},
"outputArtifacts": [

{
"name": "SourceArtifact"

}
],
"inputArtifacts": [],
"region": "<region>",
"namespace": "SourceVariables"

}
]

},
{

"name": "Deploy_Training_Workflow",
"actions": [

{
"name": "deploy-cf-train-test-external",
"actionTypeId": {

"category": "Deploy",
"owner": "AWS",
"provider": "CloudFormation",
"version": "1"

},
"namespace":"train-stack",
"runOrder": 1,
"configuration": {

"ActionMode": "CREATE_UPDATE",
"OutputFileName": "<output file name>",
"RoleArn": "arn:aws:iam::TEST_ACCOUNT:role/

<cloudformation_role_name>",
"StackName": "<CFN stack name>",
"TemplatePath": "SourceArtifact::<CFN template file name>"
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},
"outputArtifacts": [

{
"name": "deploy-cf-train-test-output"

}
],
"inputArtifacts": [

{
"name": "SourceArtifact"

}
],
"roleArn": "arn:aws:iam::<TEST_ACCOUNT>:role/<Cross Account Role

 Name>",
"region": "<REGION>"

},
{

"name": "invoke-Step-Function",
"actionTypeId": {

"category": "Invoke",
"owner": "AWS",
"provider": "StepFunctions",
"version": "1"

},
"runOrder": 2,
"configuration": {

"InputType": "Literal",
"StateMachineArn": "#{train-stack.StateMachineARN}"

},
"outputArtifacts": [],
"inputArtifacts": [

{
"name": "SourceArtifact"

}
],
"roleArn": "arn:aws:iam::<TEST_ACCOUNT>:role/<Cross Account Role

 Name>",
"region": "<REGION>"

}
]

}
],
"version": 10

    }
}

Sample CloudFormation template for creating a Step Functions state machine for model training:

{
  "AWSTemplateFormatVersion": "2010-09-09",
  "Description": "An example template for a Step Functions state machine.",
  "Resources": {
    "MyStateMachine": {
      "Type": "AWS::StepFunctions::StateMachine",
      "Properties": {

"StateMachineName": "SM-train-Step_Function",
"StateMachineType": "STANDARD",
"DefinitionSubstitutions": {
"TrainingImageURL": "<training image ECR URL>",
"RoleArn_CF": "<Cloudformation execution Role>",
"Train_data_S3Uri": "<Training dataset S3 URI>",
"Model_S3OutputPath": "<Model output path>"

},
"DefinitionS3Location": {
"Bucket": "<Shared Services account bucket name>",
"Key": "<Step Functions state machine definition json file name>"
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},
"RoleArn": "<Step Function execution role>"

      }
    }
  },
  "Outputs": {
    "StateMachineARN": {
      "Description": "ARN of state machine",
      "Value": {

"Ref": "MyStateMachine"
      }
    }
  }
}

Deployment scenarios
Depending on the deployment requirements, different pipelines need to be developed. Following are
some examples of scenarios for deployment considerations:

• End-to-end pipeline — This pipeline includes stages such as the Docker image build, data processing,
model training, approval, and model deployment. This pipeline builds everything from a source code
repository and input data and deploys a model to a production endpoint.

• Docker build pipeline — This pipeline builds Docker images using source code (a Docker file) from the
source code repository and pushes the images to a container registry such as Amazon ECR, along with
additional metadata.

• Model training pipeline — This pipeline trains/retrains a model with an existing Docker container
image and dataset, and optionally registers the model in the model registry after it is trained.

• Model registration pipeline — This pipeline registers an existing model saved in S3 and its associated
inference container in ECR in the SageMaker model registry.

• Model deployment pipeline — This pipeline deploys an existing model from the SageMaker model
registry to an endpoint.

There are several ways to trigger a pipeline run, including:

• A source code change

• A scheduled event

• On-demand via CLI / API

If source code change is used to trigger a pipeline run, you can either trigger the pipeline on any change
in the source code repository, or only when a specific condition is met. If you use CodeCommit as the
source, the following architecture pattern can be used to implement custom logic on whether to kick off
a pipeline execution.
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Architecture pattern for kicking off pipeline based on custom logic
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ML Platform Monitoring
ML Platform needs to be monitored for job status (such as training job failure/success), platform health
(such as CPU / memory usage), and various metrics (such as inference error rates, data drift, and training
loss). There are three main areas of an ML platform that require monitoring:

• Automation Pipeline
• Model training
• Production model serving

See the following figure for a sample monitoring architecture for the three monitoring areas:

Sample ML platform monitoring architecture

Automation pipeline monitoring
Sample ML platform monitoring architecture

You can configure your AWS environment to monitor automation pipelines for pipeline status, and
trigger notification when important events are detected. CodePipeline and CodeBuild provide event
status on pipeline and build runs such as “in-progress” or “succeeded.” They also integrate with
CloudWatch Events to log events to S3 for detailed analysis, or send out notifications via SNS service. For
more information, see Monitoring pipelines  and Monitoring AWS CodeBuild.

Model building monitoring
You can monitor the model building pipeline for training status and metric reporting. The various
services used in the pipeline can provide job status and integrate with other AWS services such as
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CloudWatch, EventBridge, and CloudTrail to support data collection, analysis, and real-time notification.
For example, Step Functions can report status such as Success, Failure, Canceled, or In-Progress during
its run. SageMaker emits status change events for SageMaker labeling, training, hyperparameter
tuning, process jobs, and inference endpoint. It also sends training metrics for built-in algorithms
such as mean absolute error (MAE) and accuracy, and custom-defined metrics for custom models to
CloudWatch Metrics and training logs to CloudWatch Logs. If real-time notification is needed, you can
use EventBridge to send out notification or trigger additional workflows. For more information, see
Monitor Amazon SageMaker and Monitoring Step Step Functions Using CloudWatch.

Production endpoint monitoring
You can monitor production endpoints for system health, data drift, model drift, data and model bias,
and explanation for each prediction. SageMaker endpoint reports a set of system metrics such as CPU
and memory utilization, model invocation metrics, model latency, and errors through CloudWatch.
SageMaker Model Monitor can detect data/concept drift of models hosted by the SageMaker hosting
service. For model drift detection, model metrics can be periodically evaluated using collected labeled
data running against the hosted model.
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Guardrails
Large enterprises with strict security and compliance requirements need to set up guardrails for
operating the ML environments. IAM policies can be used for enforcing guardrails, such as requiring
proper resource tagging or limiting type of resources used, for different users and roles. For enterprise
scale guardrail management, consider AWS Organizations. Its Service Control Policies (SCP) feature can
help with enterprise guardrail management, by attaching a SCP to an AWS Organizations entity (root,
organizational unit (OU), or account). You still need to attach identity-based or resource-based policies
to IAM users or roles, or to the resources in your organization's accounts to actually grant permissions.
When an IAM user or role belongs to an account that is a member of an organization, the SCPs can limit
the user's or role's effective permissions.

Managing guardrails with AWS Organizations and Service Control Policies
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Enforcing encryption
• Enforcing notebook encryption — SageMaker Notebook Instance EBS volume encryption can be

enforced using the sagemaker:VolumeKmsKey condition key.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerNoteBookEnforceEncryption",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateNotebookInstance",
"sagemaker:UpdateNotebookInstance"

      ],
      "Resource": "*",
      "Condition": {

"Null": {
"sagemaker:VolumeKmsKey": "true"

}
      }
    }
  ]
}

• Enforcing Studio Notebook EFS encryption — The EFS storage encryption can be enforced using the
sagemaker:VolumeKmsKey condition key.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerStudioEnforceEncryption",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateDomain"
      ],
      "Resource": "*",
      "Condition": {

"Null": {
"sagemaker:VolumeKmsKey": "true"

}
      }
    }
  ]
}

• Enforcing job encryption — Similarly, encryption for the SageMaker training job, processing job,
transform job, and hyperparameter tuning job can be enforced using the sagemaker:VolumeKmsKey
condition key.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerJobEnforceEncryption",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:CreateProcessingJob",
"sagemaker:CreateTrainingJob",
"sagemaker:CreateTransformJob"
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      ],
      "Resource": "*",
      "Condition": {

"Null": {
"sagemaker:VolumeKmsKey": "true"

}
      }
    }
  ]
}

• Enforcing inter-container traffic encryption — For extremely sensitive distributed model training job
and tuning job, the sagemaker:InterContainerTrafficEncryption condition key can be used
to encrypt inter-container traffic.

Note
The training speed will be negatively impacted when this is enabled.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerEnforceInterContainerTrafficEncryption",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:CreateTrainingJob"

      ],
      "Resource": "*",
      "Condition": {

"Bool": {
"sagemaker:InterContainerTrafficEncryption": "false"

}
      }
    }
  ]
}

Controlling data egress
• Enforcing deployment in VPC — To route traffic from SageMaker to access resources in a VPC,
sagemaker:VpcSubnets and sagemaker:VpcSecurityGroupIds can be used to configure VPC
and security group to manage the traffic.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerEnforceVPCDeployment",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:CreateModel",
"sagemaker:CreateNotebookInstance",
"sagemaker:CreateProcessingJob",
"sagemaker:CreateTrainingJob"

      ],
      "Resource": "*",
      "Condition": {

"Null": {
"sagemaker:VpcSubnets": "true",
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"sagemaker:VpcSecurityGroupIds": "true"
}

      }
    }
  ]
}

• Enforcing Network Isolation — Networking traffic can be blocked for the algorithm container by
using the sagemaker:NetworkIsolation condition key.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "NetworkIsolation",
    "Effect": "Deny",
    "Action": [
      "sagemaker:CreateHyperParameterTuningJob",
      "sagemaker:CreateTrainingJob"
    ],
    "Resource": "*",
    "Condition": {
      "Bool": {

"sagemaker:NetworkIsolation": "false"
}

      }
    }
  ]
}

• Restricting access to SageMaker API and runtime by IP address — You can restrict the IP address
ranges for invoking different SageMaker APIs by using the aws:SourceIp condition key.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerRestrictToIp",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateTrainingJob",
"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:CreateModel",
"sagemaker:CreateProcessingJob"

      ],
      "Resource": "*",
      "Condition": {

"ForAllValues:NotIpAddress": {
"aws:SourceIp": ["<public IP address>"]

}
      }
    }
  ]
}

• Restricting Studio and notebook pre-signed URLs to IPs — Launching SageMaker Studio or SageMaker
Notebook instance can be restricted by the aws:SourceIp.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerStudioRestrictToIp",
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      "Effect": "Deny",
      "Action": [

"sagemaker:CreatePresignedNotebookInstanceUrl",
"sagemaker:CreatePresignedDomainUrl"

      ],
      "Resource": "*",
      "Condition": {

"ForAllValues:NotIpAddress": {
"aws:SourceIp": ["<public IP address>"]

}
      }
    }
  ]
}

Disabling internet access
• Disabling SageMaker Notebook internet access — If you want to disable internet access when the

notebook is created, you can use sagemaker:DirectInternetAccess to achieve this.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerPreventDirectInternet",
      "Effect": "Deny",
      "Action": "sagemaker:CreateNotebookInstance",
      "Resource": "*",
      "Condition": {

"StringEquals": {
"sagemaker:DirectInternetAccess": [
"Enabled"

]
}

      }
    }
  ]
}

• Disabling Studio Domain internet access — For SageMaker Studio, the following condition key may
be used to disable internet access from the Studio domain:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerPreventDirectInternetforStudio",
      "Effect": "Deny",
      "Action": "sagemaker:CreateDomain",
      "Resource": "*",
      "Condition": {

"StringEquals": {
"sagemaker:AppNetworkAccessType": [
"PublicInternetOnly"

]
}

      }
    }
  ]
}
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Preventing privilege escalation
• Disabling SageMaker Notebook root access — AWS recommends disabling the root access to

SageMaker Notebooks for the data scientists and ML engineers. The following policy prevents a user
from launching a SageMaker Notebook if RootAccess is not disabled.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerDenyRootAccess",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateNotebookInstance",
"sagemaker:UpdateNotebookInstance"

      ],
      "Resource": "*",
      "Condition": {

"StringEquals": {
"sagemaker:RootAccess": [
"Enabled"

]
}

      }
    }
  ]
}

Enforcing tags
• Requiring tag for API call in dev environment - the following policy requires a “dev” environment tag

to be attached to the SageMaker endpoint.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerRequireEnvTag",
      "Effect": "Deny",
      "Action": "sagemaker:CreateEndpoint",
      "Resource": "arn:aws:sagemaker:*:*:endpoint/*",
      "Condition": {

"StringNotEquals": {
"aws:RequestTag/environment": "dev"

}
      }
    }
  ]
}

• Requiring tag for Studio domains in data science accounts - To ensure that administrators
appropriately tag Studio domains, kernels, and notebooks on creation, you can use the following
policy. For example, for developers in data science accounts inside an OU, a Studio created in these
accounts should be tagged as follows.

{
    "Version": "2012-10-17",
    "Statement": [

{
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"Sid": "RequireAppTag",
"Effect": "Deny",
"Action": [

"sagemaker:CreateDomain",
],
"Resource": "*",
"Condition": {

"StringNotLike": {
"aws:RequestTag/Project": "data_science"

}
}

}
    ]
}

Controlling cost
• Enforcing instance type for a SageMaker Notebook instance — The following policy ensures that

only the listed instances types can be used to create a notebook instance.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerLimitInstanceTypes",
      "Effect": "Deny",
      "Action": "sagemaker:CreateNotebookInstance",
      "Resource": "*",
      "Condition": {

"ForAnyValue:StringNotLike": {
"sagemaker:InstanceTypes": [
"ml.c5.xlarge",
"ml.m5.xlarge",
"ml.t3.medium"

]
}

      }
    }
  ]
}

• Enforcing instance type for Studio Notebook instance — The following policy helps enforce the type
of instances used for SageMaker Studio notebook.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "SageMakerAllowedInstanceTypes",
      "Effect": "Deny",
      "Action": [

"sagemaker:CreateApp"
      ],
      "Resource": "*",
      "Condition": {

"ForAnyValue:StringNotLike": {
"sagemaker:InstanceTypes": [
"ml.c5.large",
"ml.m5.large",
"ml.t3.medium"

]
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}
      }
    }
  ]
}

Model inventory management
Model inventory management is an important component of model risk management (MGM). All models
deployed in production need to be accurately registered and versioned to enable model lineage tracking
and auditing. SageMaker provides a model registry feature for cataloging models for production and
managing different model versions. With SageMaker model registry, you can also associate metadata
with a model, such as training metrics, model owner name, and approval status.

There are several approaches for managing the model inventory across different accounts and for
different environments. Following are two different approaches within the context of building a ML
platform.

• Distributed model management approach — With this approach, the model files are stored in the
account / environment in which it is generated, and the model is registered in the SageMaker model
registry belonging to each account. For example, each business unit can have its own ML UAT / Test
account, and the models generated by the automation pipelines are stored and registered in the
business unit’s own UAT / Test account.

• Central model management approach — With this approach, all models generated by the automated
pipelines are stored in the Shared Services account along with the associated inference Docker
container images, and a model package group is created to track different versions of a model. When
model deployment is required in the production account, create a model in the production account
using a versioned model Amazon Resource Name (ARN) from the central model package repository
and then deploy the model in the production environment.

Audit trail management
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Audit trail management
Operations against AWS services are logged by AWS CloudTrail, and log files are stored in S3. Access
details such as Event Name, User Identity, Event Time, Event Source, and Source IP are all captured in
CloudTrail.

Sample audit trail architecture

CloudTrail provides features for accessing and viewing CloudTrail events directly in the console.
CloudTrail can also integrate with log analysis tools such as Splunk to further processing and reporting.

SageMaker services such as notebook, processing job, or training job report the IAM roles assumed
by these individual services against the different API events. To associate these activities with each
individual user, consider creating a separate IAM role for each user for the different SageMaker services
to assume.

Data and artifacts lineage tracking
For regulated customers, tracking all the artifacts used for a production model is an essential
requirement for reproducing the model to meet regulatory and control requirements. The following
diagram shows the various artifacts that need to be tracked and versioned to recreate the data
processing, model training, and model deployment process.
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Artifacts needed for tracking

• Code versioning — Code repositories such as GitLab, Bitbucket, and CodeCommit support versioning
of the code artifacts. You can check-in / check-out code by commit ID. Commit ID uniquely identifies a
version of source code in a repository.

• Dataset versioning — Training data can be version controlled by using a proper S3 data partition
scheme. Every time there is a new training dataset, a unique S3 bucket / prefix can be created to
uniquely identify the training dataset.

DVC, an open-source data versioning system for machine learning, can track different versions of a
dataset. The DVC repository can be created with a code repository such as GitHub and CodeCommit,
and S3 can be used as the back-end store for data.

Metadata associated with the datasets can also be tracked along with the dataset using services such
as SageMaker Lineage Tracking.

• Container versioning — Amazon ECR uniquely identifies each image with an Image URI (repository
URI + image digest ID). Images can also be pulled with repository URI + tag (if a unique tag is properly
enforced for each image push). Additional tags can be added to track other metadata for source code
repo URI and commit ID for traceability.

• Training job versioning — Each SageMaker training job is uniquely identified with an ARN, and
other metadata such as hyperparameters, container URI, data set URI, and model output URI are
automatically tracked with the training job.

• Model versioning — A model package can be registered in SageMaker using the URL of the model
files in S3 and URI to the container image in ECR. An ARN is assigned to the model package to identify
the model package uniquely. Additional tags can be added to the SageMaker model package with the
model name and version ID to track different versions of the model.

• Endpoint versioning — Each SageMaker endpoint has a unique ARN, and other metadata, such as the
model used, are tracked as part of the endpoint configuration.
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Infrastructure configuration change management
As part of the ML platform operation, Cloud Engineering / MLOps team needs to monitor and track
resource configuration changes in core architecture components such as automation pipelines and model
hosting environment.

AWS Config is a service that enables you to assess, audit, and evaluate the configuration of AWS
resources. It tracks changes in CodePipeline pipeline definitions, CodeBuild projects, and CloudFormation
stacks, and it can report configuration changes across timelines.

AWS CloudTrail can track and log SageMaker API events for the create, delete, and update operations for
model registry, model hosting endpoint configuration, and model hosting endpoint to detect production
environment changes.
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Container repository management

Image Heirarchy Management
Image hierarchy Management

Most regulated customers have strict requirements around container patching, scanning, and hardening.
Management of all container images in a consistent fashion may be challenging. If this is your situation,
you will benefit from the following container image hierarchy:

• Public images are images for OS and/or a specific version of runtime environments such as Ubuntu or
TensorFlow Docker images. These images are stored in public repositories such as ECR Public Gallery,
Github, and Docker Hub.

• Base images are foundational images stored in the customer ECR instance. These images are typically
built from public images with additional custom patches and OS-level hardening procedures. Base
images are owned by the central team and used across an organization.

• Framework images are built on top of base images and should provide a stable version of the
environment with a specific version of frameworks. For instance, platform container with the latest
stable TensorFlow Serving framework configured. Framework images are typically also owned by the
central team and available across the organization. Framework can also support dynamic loading of
sources for flexibility.

• Application images are used by teams to create a specific environment such as copy sources or
compiled binaries or model artifacts for distribution. These images are owned by application teams
and should be based on vetted framework images where possible.

Organizing repositories — Amazon ECR provides a number of features to help organize images in the
repository.

• Namespaces — Amazon ECR supports namespaces, which allows the grouping of similar repositories
into a common name. For example, each team or department can have its own namespace. This avoids
potential conflicts with image naming, even if two departments use the exact same image names.
In such a case, department1/tensorflow-serving:latest and department2/tensorflow-
serving:latest are different images, as they are prefixed by a unique namespace.

• Image tagging — Container registries provide the functionality to mark any image with a particular
tag. There are several tagging schemes applicable for different use cases:

• Stable tags — These tags typically have a specific version of OS or environment. For example,
a “tf-serving:v2.3” image where “v2.3” is a stable tag to designate a specific version of
pre-installed TensorFlow framework. A stable version doesn’t mean that image will be frozen,
as TensorFlow framework can have minor releases and patches going on. For that reason, it’s
recommended to use stable tags for the base and/or platform images.

• Unique tags — This type of tag is typically used when tagging application images, and it includes a
reference to the GitHub repository branch and commit hash. This allows easily tracing images to the
source code if needed.

• Container security — It is important to scan images for vulnerabilities and establish a continuous
patching mechanism for all images. Consider incorporating these steps into the automated Docker
image-build pipelines.

Vulnerabilities in container software can be found on all levels: OS, packages, frameworks, or
application code. It’s important to have an automatic way to consistently scan all container images on
a recurrent basis.
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Amazon ECR image scanning helps in identifying software vulnerabilities in your container images.
Amazon ECR uses the Common Vulnerabilities and Exposures (CVEs) database from the open-source
Clair project and provides you with a list of scan findings. You can review the scan findings for
information about the security of the container images being deployed. For more information about
Clair, see Clair on GitHub.

A customer may choose to use other 3rd party solutions, such as Aqua Container Security Platform, to
scan for vulnerabilities before pushing containers to ECR.

With the proposed hierarchical approach for container images, it’s easy to ensure that all images are
patched regularly. It’s recommended to rebuild base images with the latest OS-level patches at least
every 30 days (or as soon as known vulnerabilities are fixed). All dependent platform images should
also be rebuilt automatically after the patch is applied to base images. Application containers will be
rebuilt on the next commit and will include patches from the upstream platform and base images.

• Access Control — Amazon ECR is fully integrated with the Identity and Access Management service to
provide you with granular authorization controls. It supports two types of policies:

• Resource-based policies grant usage permission to other accounts on a per-resource basis. You can
also use a resource-based policy to allow an AWS service to access your Amazon ECR repositories.

• Identity-based policies specify allowed or denied actions and resources as well as the conditions
under which actions are allowed or denied. These policies are applied to IAM roles.

• Cross-account access — The ECR repository, hosted in the Shared Services account, needs to provide
access to users or services from other AWS accounts. Amazon ECR supports granting such permissions
via IAM policies.

For example, the following policy establishes access to ECR repository by a principal in another
account.

{
  "Version": "2008-10-17",
  "Statement": [
    {
      "Sid": "SagemakerECRRepo",
      "Effect": "Allow",
      "Principal": {

"AWS": "<AWS_SageMaker_Principal_ARN in other account>"
      },
      "Action": [

"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage",
"ecr:BatchCheckLayerAvailability",
"ecr:PutImage",
"ecr:InitiateLayerUpload",
"ecr:UploadLayerPart",
"ecr:CompleteLayerUpload"

      ]
    }
  ]
}

Tag management for an ML platform
The tagging mechanism in AWS enables you to assign metadata information to virtually any AWS
resource. Each tag is represented by a key-value pair. Tagging provides a flexible mechanism to
categorize and manage cloud resources. Tags become especially crucial as AWS utilization grows.
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Tags can serve many purposes. Common use cases of using tags include:

• Business tags and cost allocation — In this scenario, you use tags such as cost center, business unit,
team, or project to track resource ownership and AWS spend, and create financial reports.

• Tags for automation — Tags are used to separate resources belonging to different projects and apply
different automation policies (for example, shut down all project 1 resources on the weekend, but keep
project 2 intact).

• Security and risk management — Apply different tags based on compliance or security policies. For
example, use tags to separate sensitive data and apply different policies for it.

In an ML platform, tagging should be considered for the following resources:

• Experimentation environment resources — The SageMaker Notebook provision should be automated
using CloudFormation script and tags such as owner name, owner id, dept, environment, and project
should be automatically populated by the CloudFormation script. For other resources (for example,
training job or end point) that are programmatically provisioned by data scientists through SDK / CLI,
preventive guardrails should be implemented to ensure that the required tags are populated.

• Pipeline automation resources — Resources automated by the automation pipeline should be
probably tagged. Pipeline should be automatically provisioned using CloudFormation scripts and
tags such as owner name/id, environment, and project should be automatically populated by the
CloudFormation script. These resources include CodePipeline pipeline run, CodeBuild job, Step
Functions run, SageMaker processing job / training job, SageMaker models, SageMaker endpoint,
Lambda function, and SageMaker.

• Production resources — Resources such as SageMaker endpoints, model artifacts, and inference
images should be tagged.

Tag example 1 — Enforce tags with a specific pattern when creating new AWS resources.

You may want to enforce specific tagging patterns. For example, the following policy defines that a new
SageMaker endpoint can be created if tag “team” is present with one of 3 possible values: “alpha”,
“bravo”, and “charlie”.

{
    "Version": "2012-10-17",
    "Statement": [

{
"Sid": "CreateSageMakerEndPoint",
"Effect": "Allow",
"Action": [

"sagemaker:CreateEndpointConfig",
"sagemaker:CreateEndpoint"

],
"Resource": [

"arn:aws:sagemaker:*:*:endpoint-config/*",
"arn:aws:sagemaker:*:*:endpoint/*"

],
"Condition": {

"StringEqualsIgnoreCase": {
"aws:RequestTag/team": [

"alpha",
"bravo",
"charlie"

]
}

}
}

    ]
}
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Tagging example 2 — Automatically delete any untagged resources.

Users typically mandate tagging of all AWS resources and consider untagged resources as non-
compliant. They may want to apply remediation actions, such as deletion of untagged resources or
placing it under quarantine. The simplest way to implement this automatic remediation of untagged
resources is via AWS Config, using the managed rule “required-tags”. This rule automatically applies
to customer-defined resource types and checks whether customer resources have the required tags.
For example, you can check whether your Amazon EC2 instances have the CostCenter tag. For more
information, see required-tags.

Tagging example 3 — Controlling access to AWS resources.

In many cases, tags provide a powerful and yet flexible way to manage access to various resources. This is
an example of identity policy, which blocks access to any S3 objects unless the object has a “security”
tag with the value “shared”.

{
    "Version": "2012-10-17",
    "Statement": [

{
"Sid": "S3ObjectAccess",
"Effect": "Allow",
"Action": "s3:GetObject",
"Resource": "*",
"Condition": {

"StringEquals": {
"s3:ExistingObjectTag/security": "shared"

}
}

}
    ]
}

For more information, see the Tagging Best Practices whitepaper.
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Conclusion
Enterprises often struggle getting started with their first enterprise-grade ML platform, because of the
many components of an ML platform architecture and the additional complexity around data science,
data management, and model and operational governance.

This whitepaper provides a comprehensive view of the various architecture components in a secure
ML platform. It also provides implementation guidance on building an enterprise ML platform, such as
experimentation environment, automation pipeline, and production model serving, from scratch, using
AWS services.

You can follow the architecture patterns, code samples, and best practices in this paper to help you plan
the architecture and build a secure ML platform.
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Notices
Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current AWS product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services
are provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,
and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.
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