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Abstract 

The scalable nature and variable demand of CFD workloads makes them well-

suited for a cloud computing environment. This whitepaper describes best 

practices for running computational fluid dynamics (CFD) workloads on AWS. 

Use this document to learn more about AWS services and the related quick 

start tools that simplify getting started with running CFD cases on AWS. 
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Introduction 

Fluid dynamics is the study of the motion of fluids, usually in the presence of an object. 

Typical fluid flows of interest to engineers and scientist include: flow in pipes, through 

engines, and around objects, such as buildings, automobiles, and airplanes. 

Computational fluid dynamics (CFD) is the study of these flows through computer 

simulation and modeling. CFD involves the solution of conservation equations (mass, 

momentum, energy, and others) in a finite domain. 

Many CFD tools are currently available, including specialized and “in-house” tools. This 

variety is the result of the broad domain of physical problems solved with CFD. There is 

not a universal code for all applications, although there are packages that offer great 

capabilities. Broad CFD capabilities are available in commercial packages, such as 

ANSYS Fluent, Siemens Simcenter STAR-CCM+, Metacomp Technologies CFD++, and 

open-source packages, such as OpenFOAM and SU2.  

A typical CFD simulation involves the following four steps.  

1. Define the Geometry: In some cases, this step is simple, such as modeling flow 

in a duct. In other cases, this step involves complex components and moving 

parts, such as modeling a gas turbine engine. For many cases, the geometry 

creation is extremely time-consuming. The geometry step is graphics intensive 

and requires a capable graphics workstation, preferably with a Graphics 

Processing Unit (GPU). Often, the geometry is provided by a designer, but the 

CFD engineer must “clean” the geometry for input into the flow solver.  

2. Generate the Mesh or Grid: Mesh generation is a critical step because 

computational accuracy is dependent on the size, cell location, and skewness of 

the cells. In Figure 1, a hybrid mesh is shown on a slice through an aircraft wing. 

Mesh generation can be iterative with the solution, where fixes to the mesh are 

driven by an understanding of flow features and gradients in the solution. 

Meshing is frequently an interactive process and its elliptical nature generally 

requires a substantial amount of memory. Like geometry definition, generating a 

single mesh can take hours, days, weeks, and sometimes months.  
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Figure 1: Mesh Generation 

3. Solve for the solution: This step is the primary focus of this whitepaper. For 

some solutions, tens of thousands of cores (processors) run over weeks to 

achieve a solution. Conversely, some jobs may run in just minutes when scaled 

out appropriately. There are choices for model equations depending on the 

desired solution fidelity. The Navier-Stokes equations form the basis of the 

solved equations for most fluid calculations. The addition of chemical reactions, 

liquid and gas multi-phase flows, and many other physical properties create 

increasing complexity. For example, increasing the fidelity of turbulence 

modeling is achieved with various approximate equation sets such as Reynolds 

Average Navier-Stokes (RANS), Large Eddy Simulation (LES), Delayed 

Detached Eddy Simulation (DDES), and Direct Numerical Simulation (DNS). 

These models typically do not change the fundamental computational 

characteristics or scaling of the simulation. 
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4. Post process through visualization: Examples of this step include the creation 

of images, video, and post processing of flow fields, such as creating total forces 

and moments. Similar to the geometry and mesh steps, this can be graphics and 

memory intensive. 

 

Figure 2: Post-processing Visualization 

Why CFD on AWS? 

AWS is a great place to run CFD cases. CFD workloads are typically MPI-based, tightly 

coupled workloads relying on a large number of cores across many nodes. Many of the 

AWS instance types, such as the compute family instance types, are designed to 

include support for this type of workload. AWS has network options that support 

extreme scalability and short turn-around time as necessary. Small CFD cases can be 

run on a single node, with a large number of cores, and do not require the use of 

multiple instances. 
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CFD workloads typically scale well on the cloud. Most codes rely on domain 

decomposition to distribute portions of the calculation to the compute nodes. A case can 

be run highly parallel to receive results in minutes, or large numbers of cases can run 

simultaneously as efficiently and cheaply as possible to allow the timely completion of 

all cases.  

The cloud offers a quick way to deploy and turn around CFD workloads at any scale 

without the need to own your own infrastructure. You can run jobs that once were in the 

realm of national labs or large industry. In just an hour or two, you can deploy CFD 

software, upload input files, launch compute nodes, and complete jobs on a large 

number of cores. When your job completes, results can be visualized and downloaded, 

and then all resources can be terminated – allowing you to only pay for what you use. If 

preferred, your results can be securely archived in cloud storage. Due to cloud 

scalability, you have the option to run multiple cases simultaneously with a dedicated 

cluster for each case. 

The cloud accommodates the variable demand of CFD. Often, there is a need to run a 

large number of cases as quickly as possible. Situations can require a sudden burst of 

tens, to hundreds, to thousands of calculations immediately, and then perhaps no runs 

until the next cycle. The need to run a large number of cases could be for a preliminary 

design review, or perhaps a sweep of cases for the creation of a solution database. On 

the cloud, the cost is the same to run many jobs simultaneously, in parallel, as it is to 

run them serially, so you can get your data more quickly and at no extra cost. The cost 

savings in engineering time is an often forgotten part of cost analysis. Running in 

parallel can be an ideal solution for design optimization. On AWS, you can launch the 

cases you need when your case is ready, without waiting in a queue for available 

cluster resources. 

Cloud computing is a strong choice for other CFD steps. You can easily launch a GPU 

instance, a high-memory instance, or a cluster of high-memory instances, to handle the 

geometry, meshing, and post-processing. With remote visualization software available 

to handle the display, you can manage the GPU instance running your post-processing 

visualization from any screen (laptop, desktop, web browser) as though you were 

working on a large workstation. 
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Getting Started with AWS 

To begin, you must create an AWS account and an AWS Identity and Access 

Management (IAM) user. An IAM user is a user within your AWS account. The IAM user 

allows authentication and authorization to AWS resources. Multiple IAM users can be 

created if multiple people need access to the same AWS account. 

During the first year after account activation, many AWS services are available for free 

with the AWS Free Tier. The free-tier program provides an opportunity to learn about 

AWS without incurring any significant charges. It provides an offset to charges incurred 

while training on AWS. However, the compute heavy nature of CFD means that charges 

are regularly not covered by the free tier. Training helps limit mistakes resulting in 

unnecessary charges. You can set up AWS Billing Alarms to alert you of estimated 

charges. 

After creating an AWS account, you are provided with what is referred to as your root 

user. It is recommended that you do not use this root user for anything other than 

billing. Instead, set up privileged users (through IAM) for day-to-day usage of AWS. IAM 

users are useful because they help you securely control access to AWS resources. Use 

IAM to control authentication and authorization for resources. Create IAM users for 

everyone, including yourself, and preserve the root user for the required account and 

service management tasks. 

By default, your account is limited on the number of instances that you can launch in a 

Region, which is a physical location around the world where AWS clusters data centers. 

These limits are initially set low to prevent unnecessary charges, but you can raise them 

to preferred values. CFD applications often require a large number of compute 

instances simultaneously. The ability and advantages of scaling horizontally are highly 

desirable for high-performance computing (HPC) workloads. However, you may need to 

request an increase to the Amazon EC2 Service Limits before deploying a large 

workload to either one large cluster, or to many smaller clusters at once. 

After your initial account is created and configured, a few foundational tutorials can be 

helpful to get started on AWS: 

• Amazon Elastic Compute Cloud (EC2) is the Amazon Web Service you use to 
create and run compute nodes in the cloud. AWS calls these compute nodes 
“instances”. This Amazon Elastic Compute Cloud tutorial will help you 

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-an-iam-user
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/getting-started/tutorials/launch-a-virtual-machine/?trk=gs_card&e=gs&p=gsrc
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successfully launch a Linux compute node on Amazon EC2 within our AWS Free 
Tier. 

• Amazon Simple Storage Service (S3) is a service that enables you to store your 
data (referred to as objects) at massive scale. This Amazon Simple Storage 
Service tutorial will help you store your files in the cloud using Amazon S3 by 
creating an Amazon S3 bucket, uploading a file, retrieving the file, and deleting 
the file. 

• AWS Command Line Interface (CLI) is a common programmatic tool for 
automating AWS resources. For example, you can use it to deploy AWS 
infrastructure or manage data in S3. In this AWS Command Line Interface 
tutorial, you learn how to use the AWS CLI to access Amazon S3. You can then 
easily build your own scripts for moving your files to the cloud and easily 
retrieving them as needed. 

• AWS Budgets gives you the ability to set custom budgets that alert you when 
your costs or usage exceed (or are forecasted to exceed) your budgeted amount. 
In this AWS Budgets tutorial, you learn how to control your costs while exploring 
AWS service offerings using the AWS Free Tier then using AWS Budgets to set 
up a cost budget to monitor any costs associated with your usage.  

Additionally, the AWS Well-Architected Framework High Performance Computing (HPC) 

Lens covers common HPC scenarios and identifies key elements to ensure that your 

workloads are architected according to best practices. It focuses on how to design, 

deploy, and architect your HPC workloads on the AWS Cloud. 

CFD Approaches on AWS 

Most CFD solvers have locality of data and use sparse matrix solvers. Once properly 

organized (application dependent), a well-configured job exhibits good strong and weak 

scaling on simple AWS cluster architectures. “Structured” and “Unstructured” codes are 

commonly run on AWS. Spectral and pseudo-spectral methods involve Fast Fourier 

Transforms (FFTs), and while less common than traditional CFD algorithms, they also 

scale well on AWS. Time-dependent simulations may require frequent I/O, which must 

be considered architecturally to achieve good scaling. Your architectural decisions have 

tradeoffs, and AWS makes it quick and easy to try different architectures to optimize for 

cost and performance. 

https://aws.amazon.com/s3/
https://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/?trk=gs_card&e=gs&p=gsrc
https://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/?trk=gs_card&e=gs&p=gsrc
https://aws.amazon.com/cli/
https://aws.amazon.com/getting-started/tutorials/backup-to-s3-cli/?trk=gs_card
https://aws.amazon.com/getting-started/tutorials/backup-to-s3-cli/?trk=gs_card
https://aws.amazon.com/aws-cost-management/aws-budgets/
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?trk=gs_card
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf
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Architectures 

There are two primary design patterns to consider when choosing an AWS architecture 

for CFD applications: the traditional cluster and the cloud native cluster. Customers 

choose their preferred architecture based on the use case and the CFD users’ needs. 

For example, use cases that require frequent involvement and monitoring, such as 

when you need to start and stop the CFD case several times on the way to 

convergence, often prefer a traditional style cluster. Conversely, cases that are easily 

automated often prefer a cloud native setup, which allows you to easily submit large 

numbers of cases simultaneously or automate your run for a complete end-to-end 

solution. Cloud native is useful when cases require special pre- or post-processing 

steps which benefit from automation. Whether choosing traditional or cloud native 

architectures, the cloud offers the advantage of elastic scalability — allowing you to only 

consume and pay for resources when you need them. 

Traditional Cluster Environments 

In the cloud, a traditional cluster is also referred to as a persistent cluster due to the 

persistence of minimal AWS infrastructure required for preserving the cluster 

environment. Examples of persistent infrastructure include a node running a scheduler 

and hosting data even after a completed run campaign. The persistent cluster mimics a 

traditional on-premises cluster or supercomputer experience. Clusters include a login 

instance with a scheduler that allows multiple users to submit jobs. The compute node 

fleet can be a fixed size or a dynamic group to increase and decrease the number of 

compute instances depending on the jobs submitted. 

AWS ParallelCluster is an example of a persistent cluster that simplifies the deployment 

and management of HPC clusters in the AWS Cloud. It enables you to quickly launch 

and terminate an HPC compute environment in AWS as needed. AWS ParallelCluster 

orchestrates the creation of the required resources (for example, compute nodes and 

shared filesystems) and provides an automatic scaling mechanism to adjust the size of 

the cluster to match the submitted workload. You can use AWS ParallelCluster with a 

variety of batch schedulers, including AWS Batch, SGE, Torque, and Slurm. 

https://docs.aws.amazon.com/parallelcluster/latest/ug/what-is-aws-parallelcluster.html
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Figure 3: Example AWS ParallelCluster Architecture 

Cloud Native Environments 

A cloud native cluster is also called an ephemeral cluster due to its relatively short 

lifetime. A cloud native approach to tightly coupled HPC ties each run, or sweep of runs, 

to its own cluster. For each case, resources are provisioned and launched, data is 

placed on the instances, jobs run across multiple instances, and case output is retrieved 

automatically or sent to Amazon S3. Upon job completion, the infrastructure is 

terminated. Clusters designed this way treat infrastructure as code and allow for 

complete version control of infrastructure changes. Login nodes and job schedulers are 

less critical and often not used at all with an ephemeral cluster. AWS Auto Scaling, a 

mainstay of the traditional cloud cluster, is not commonly used because clusters are 

stood up once, cases launched, and the clusters are then terminated. The following are 

a few frequently used methods to implement such a design: 

Scripted Approach 

A common quick-start approach for CFD users getting started with AWS is to combine a 

custom Amazon Machine Image (AMI) with the AWS CLI and a bash script. After 

launching an Amazon EC2 instance, software can be added to the instance and an AMI 

is created to be used as the starting point for all compute nodes. It is typical to set up 
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the SSH files and the bashrc file before creating the custom AMI or “golden image”. 

Although many CFD solvers do not require a shared file location, one can easily be 

created with an exported NFS volume, or with Amazon FSx for Lustre.  

API Based 

If preferred, an automated deployment can be developed with one of the Software 

Development Kits (SDK), such as Python, available for programming an end-to-end 

solution. 

CloudFormation Templates 

AWS CloudFormation is an AWS Cloud native approach to provisioning AWS resources 

based on a JSON or YAML template. AWS CloudFormation offers an easily version-

controlled cluster provisioning capability.  

AWS Batch 

AWS Batch is a cloud-native, container-based approach that enables CFD users to 

efficiently run hundreds of thousands of batch computing jobs in containers on AWS. 

AWS Batch dynamically provisions the optimal quantity and type of compute resources 

(for example, compute or memory-optimized instances) based on the volume and 

specific resource requirements of the batch jobs submitted. With AWS Batch, there is 

no need to install and manage batch computing software or server infrastructure that 

you use to run your jobs — allowing you to focus on analyzing results and solving 

problems. AWS Batch plans, schedules, and executes your batch computing workloads 

across the full range of AWS compute services and features, such as Amazon EC2 and 

Spot Instances. 

Software 

Installation 

CFD software can either be installed onto a base AMI, or it can be used from prebuilt 

AMIs from the AWS Marketplace. The AWS Marketplace offers a listing of software from 

individual software vendors, which offer software included with AWS Services. If you 

must install your own software, you can add the installation to the cluster deployment 

scripts and execute them at cluster creation. 

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/batch/
https://aws.amazon.com/marketplace
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Licensing 

Many commercial CFD solvers are licensed and may require access to a license server, 

such as FLEXlm. Licensing software in the cloud is much like licensing with any other 

cluster. If a license server is necessary, you can configure your networking to use an 

existing on-premises server, or you can host the license server on the cloud.  

If hosting the license server on AWS, the smallest EC2 instance type, such as the 

t2.micro (available for free on the free tier program) or the t3a.nano (the cheapest 

instance) can be used to host the license server. A Reserved Instance purchase for the 

license server provides further cost savings. 

The FLEXlm license relies on the network interface’s MAC address. The easiest way to 

retrieve the new MAC address for your license is to launch the instance and retrieve the 

MAC address before the license is issued. You can preserve the MAC address by 

changing the termination behavior to prevent deletion of the network interface if the 

instance is ever terminated. When hosting your own license server, confirm that the 

security group for the license-server instance allows connectivity on the appropriate 

ports required by the software package. 

If accessing an on-premises license server, create an AWS Site-to-Site VPN for your 

Virtual Private Cloud (VPC), or alternatively, if on-premises firewalls allow, you may be 

able to access the on-premises license server through SSH tunneling. 

Cloud-friendly licensing through power-on-demand licensing keys is also growing in 

popularity and relies on submitting a job with a key provided by the software provider. 

Setup 

There are multiple strategies for setting up software in clusters. The most widely used 

examples are below: 

Create a Custom AMI 

This method features the shortest application startup time and avoids potential 

bottlenecks when accessing a single shared resource. This is the preferred means of 

distribution for large-scale runs (10s of thousands of MPI ranks) or applications that 

must load a large number of shared libraries. A drawback is the larger AMI size, which 

incurs more cost for Amazon Elastic Block Store (Amazon EBS).  

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#change_term_behavior
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
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Share an Amazon EBS Volume via NFS 

This method installs the necessary software into a single Amazon EBS volume, creates 

an NFS export on a single instance, and mounts the NFS share on all of the compute 

instances. This approach reduces the Amazon EBS footprint because only one Amazon 

EBS volume must be created for the software. This method is useful for large software 

packages and moderate scale runs (up to thousands of MPI ranks). A tradeoff with this 

method is a small amount of added network traffic and a potential bottleneck with a 

single instance hosting the NFS share. Ensuring a larger NFS host instance with 

additional network capabilities mitigates these concerns. 

 

To make this approach repeatable, the exported NFS directory can be decoupled from 

the root volume, stored on a separate Amazon EBS volume, and created from an 

Amazon EBS snapshot. This approach is similar to the custom AMI method, but instead 

it isolates software from the root volume. An additional Amazon EBS volume is created 

from an Amazon EBS snapshot at instance launch and is mounted as an additional disk 

to the compute instance. The snapshot used to create the volume contains the software 

installation. Decoupling the user software from operating system updates that are 

necessary on the root volume reduces the complexity of maintenance. Furthermore, the 

user can rely on the latest AMI releases for the compute instances, which provide an 

up-to-date system without maintaining a custom AMI. 

Use a Managed Shared File System 

This approach installs the CFD software into an AWS managed file system service, 

such as Amazon FSx for Lustre or Amazon Elastic File System (EFS), and mounts the 

shared file system on all of the compute instances. Amazon FSx for Lustre provides a 

high-performance file system optimized for HPC workloads. Lustre is optimized for 

simultaneous access, and its performance can be scaled independently from any single 

instance size. FSx for Lustre works natively with Amazon S3 and can be automatically 

populated with data residing in Amazon S3, which allows users to have a Lustre file 

system running only while compute jobs are active and easily discard it afterwards.  

EFS provides a simple, scalable, fully managed elastic NFS file system that can be 

used as a location for home directories. However, EFS is not recommended for other 

aspects of a CFD cluster, such as hosting simulation data or compiling a solver, due to 

performance considerations.  
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Maintenance 

New feature releases and patches to existing software are a frequent need in the CFD 

application workflow. All distribution strategies can be fully automated. When using the 

AMI or Amazon EBS snapshot strategy, the software update cycle can be isolated from 

the application runs. Once a new AMI or snapshot has been created and tested, the 

cluster is reconfigured to pick up the latest version. Software updates cycles in the 

strategies using file sharing via NFS or FSx for Lustre must be coordinated with 

application runs because a live system is being altered. 

In general, automating CFD application installation with scripting tools is recommended 

and is usually referred to as a Continuous Integration/Continuous Deployment (CI/CD) 

pipeline on AWS. The automation process eliminates the manual processes required to 

build and deploy new software and security patches to HPC systems. This is useful if 

you want to use the latest features in software packages with fast update cycles. You 

can read more about CI/CD pipelines in the AWS Continuous Delivery documentation. 

Cluster Lifecycle 

AWS offers a variety of unique ways to design architectures that deploy HPC 

workloads. Your choice of deployment method for a particular workload depends on a 

number of factors, including your desired user experience, degree of automation, 

experience with AWS, preferred scripting languages, size and number of cases, and the 

lifecycle of your data. The Well-Architected HPC Lens whitepaper covers additional best 

practices for architectures beyond what is discussed in this paper. 

While the architecture for a cluster is typically unique and tailored for the workload, all 

HPC clusters benefit from lifecycle planning and management of the cluster and the 

data produced — allowing for optimized performance, reliability, and cost.  

It is not unusual for an on-premises cluster to run for many years, perhaps without 

significant OS update or modification, until the hardware is so obsolete it is rendered 

useless. In contrast, AWS regularly releases new services and updates to improve 

performance and lower costs. The easiest way to take advantage of new AWS 

capabilities, such as new instances, is by maintaining the cluster as a script or template. 

AWS refers to this as “Infrastructure as Code” because it allows for the creation of 

clusters quickly, provides repeatable automation, and maintains reliable version control. 

https://aws.amazon.com/devops/continuous-delivery/
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf
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Examples of “cluster as code” are the AWS ParallelCluster configuration file, 

deployment scripts, or CloudFormation templates. These text-based configurations are 

easy to modify for a new capability or workload. 

A view of the cluster lifecycle includes infrastructure as code that starts before the 

cluster is deployed with the maintenance of the deployment scripts. Elements of a 

cluster maintained as code include: 

• Base AMI to build your cluster 

• Automated software installation scripts 

• Configuration files, such as scheduler configs, MPI configurations, and bashrc 

• Text description of the infrastructure, such as a CloudFormation template, or an 
AWS ParallelCluster configuration file 

• Script to initiate cluster deployment and subsequent software installation 

While the nature of a cluster changes depending on the type of workload, the most cost-

effective clusters are those that are not deployed when they are not being used. 

The cluster lifecycle can have a significant impact on costs. For example, it is common 

with many traditional on-premises clusters to maintain a large storage volume. This is 

not necessary in the cloud because data can be easily moved to S3 where it is reliably 

and cheaply stored. Maintaining a cluster as code allows you to place a cluster under 

version control and repeatedly deploy replicas if needed. Each cluster maintained as 

code can be instantiated multiple times if multiple clusters are required for testing, 

onboarding new users, or running a large number of cases in parallel. If set up correctly, 

you avoid idle infrastructure when jobs are not running.  

CFD Case Scalability 

CFD cases that cross multiple nodes raise the question, “How will my application scale 

on AWS?” CFD solvers depend heavily on the solver algorithm’s ability to scale 

compute tasks efficiently in parallel across multiple compute resources. Parallel 

performance is often evaluated by determining an application’s scale-up. Scale-up is a 

function of the number of processors used and is defined as the time it takes to 

complete a run on one processor, divided by the time it takes to complete the same run 

on the number of processors used for the parallel run.  
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𝑆𝑐𝑎𝑙𝑒 − 𝑈𝑝 (𝑁) =
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑢𝑛 𝑜𝑛 1 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑁𝑜𝑑𝑒

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑢𝑛 𝑜𝑛 𝑁 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑁𝑜𝑑𝑒𝑠
 

Scaling is considered to be excellent when the scale-up is close to or equal to the 

number of processors on which the application is run. An example of scale up as a 

function of core count is shown in Figure 4. 

 

Figure 4: Strong Scaling Demonstrated for a 14M Cell External Aerodynamics Use Case 

The example case in Figure 4 is a 14 million cell external aerodynamics calculation 

using a cell-centered unstructured solver. The mesh is composed largely of hexahedra. 

The black line shows the ideal or perfect scalability. The blue diamonds show the actual 

scale-up for this case as a function of increasing processor count. Excellent scaling is 

seen to almost 1000 cores for this small sized case. This example was run on Amazon 

EC2 c5n.18xlarge instances, with Elastic Fabric Adapter (EFA), and using a fully loaded 
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compute node. For this calculation, all cores are fully utilized meaning that no core was 

left idle during the calculation. Most customers like to use the entire instance when 

running a calculation. Faster turn-around times can be achieved by reducing the 

number of processes on each instance. 

Fourteen million cells is a relatively small CFD case by today’s standards. A small case 

was purposely chosen for the discussion on scalability because small cases are more 

difficult to scale. The idea that small cases are harder than large cases to scale may 

seem counter intuitive, but smaller cases have less total compute to spread over a large 

number of cores. An understanding of strong scaling vs. weak scaling offers more 

insight. 

Strong Scaling vs. Weak Scaling 

Case scalability can be characterized two ways: strong scaling or weak scaling. Weak 

does not mean inadequate — it is a technical term facilitating the description of the type 

of scaling. 

Strong scaling, as demonstrated in Figure 4, is a traditional view of scaling, where a 

problem size is fixed and spread over an increasing number of processors. As more 

processors are added to the calculation, good strong scaling means that the time to 

complete the calculation decreases proportionally with increasing processor count.  

In comparison, weak scaling does not fix the problem size used in the evaluation, but 

purposely increases the problem size as the number of processors also increases. The 

ratio of the problem size to the number of processors on which the case is run is 

constant. For a CFD calculation, problem size most often refers to the number of cells 

or nodes in the mesh for a similar configuration. 

An application demonstrates good weak scaling when the time to complete the 

calculation remains constant as the ratio of compute effort to the number of processors 

is held constant. Weak scaling offers insight into how an application behaves with 

varying case size. Well-written CFD solvers offer excellent weak scaling capability 

allowing for more cores to be used when running bigger applications. The scalability of 

CFD cases can then be determined by looking at a normalized plot of scale-up based 

on the number of mesh cells per core (cells/core). An example plot is shown in Figure 5. 
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Figure 5: Scale-up and Efficiency as a Function of Cells per Processor 

Running Efficiency 

Efficiency is defined as the scale-up divided by the number of processors used in the 

calculation. Scale-up and efficiency as a function of cells/core is shown in Figure 5. In 

Figure 5, the cells per core are on the horizontal axis. The blue line in Figure 5 shows 

scale-up as a function of mesh cells per processor. The vertical axis for scale-up is on 

the left-hand side of the graph as indicated by the blue arrow. The orange line in Figure 

5 shows efficiency as a function of mesh cells per core. The vertical axis for efficiency is 

shown on the right side of the graph and is indicated by an orange arrow.  
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For similar case types, running with similar solver settings, a plot like the one in Figure 5 

can help you choose the desired efficiency and number of cores running for a given 

case. 

Efficiency remains at about 100% between approximately 200,000 mesh cells per core 

and 100,000 mesh cells per core. Efficiency starts to fall off at about 50,000 mesh cells 

per core. An efficiency of at least 80% is maintained until 20,000 mesh cells per core, 

for this case. Decreasing mesh cells per core leads to decreased efficiency because the 

total computational effort per core is reduced. The inefficiencies that show up at higher 

core counts come from a variety of sources and are caused by “serial” work. Serial work 

is the work that cannot be effectively parallelized. Serial work comes from solver 

inefficiencies, I/O inefficiencies, unequal domain decomposition, additional physical 

modeling such as radiative effects, and eventually, from the network as core count 

continues to increase.  
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Turn-Around Time and Cost 

Plots of scale-up and efficiency offer an understanding about how a case or application 

scales. However, what matters most HPC users is case turn-around time and cost. A 

plot of turn-around time versus CPU cost for this case is shown in Figure 6. As the 

number of cores increases, the inefficiency also increases, which leads to increased 

costs. 

 

Figure 6: Cost for per Run Based on On-Demand Pricing for the c5n.18xlarge instance as a 

function of Turn-around Time 

In Figure 6, the turn-around time is shown on the horizontal axis. The cost is shown on 

the vertical axis. The price is based on the “on-demand” price of a c5n.18xlarge for 

1000 iterations, and only includes the computational costs. Small costs are also 

incurred for data storage. Minimum cost was obtained at approximately 50,000 cells per 
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core or more. As the efficiency is 100% over a range of core counts, the price is the 

same regardless of the number of cores. Many users choose a cell count per core to 

achieve the lowest possible cost. 

As core count goes up, inefficiencies start to show up, but turn-around time continues to 

drop. When a fast turn-around is needed, users may choose a large number of cores to 

accelerate the time to solution. For this case, a turn-around time of about five minutes 

can be obtained by running on about 20,000 cells per core. When considering total cost, 

the inclusion of license costs may make the fastest run the cheapest run. 

Optimizing HPC Components 

The AWS Cloud provides a broad range of scalable, flexible infrastructure services that 

you select to match your workloads and tasks. This gives you the ability to choose the 

most appropriate mix of resources for your specific applications. Cloud computing 

makes it easy to experiment with infrastructure components and architecture design. 

The HPC solution components listed below are a great starting point to set up and 

manage your HPC cluster. Always test various solution configurations to find the best 

performance at the lowest cost. 

Compute 

The optimal compute solution for a particular HPC architecture depends on the 

workload deployment method, degree of automation, usage patterns, and configuration. 

Different compute solutions may be chosen for each step of a process. Selecting the 

wrong compute solutions for an architecture can lead to lower performance efficiency 

and higher cost. 

There are multiple compute options available on AWS, and at a high level, they are 

separated into three categories: instances, containers, and functions. Amazon EC2 

instances, or servers, are resizable compute capacity in the cloud. Containers provide 

operating system virtualization for applications that share an underlying operating 

system installed on a server. Functions are a serverless computing model that allows 

you to run code without thinking about provisioning and managing the underlying 

servers. For CFD workloads, EC2 instances are the primary compute choice. 
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Amazon EC2 lets you choose from a variety of compute instance types that can be 

configured to suit your needs. Instances come in different families and sizes to offer a 

wide variety of capabilities. Some instance families target specific workloads, for 

example, compute-, memory-, or GPU-intensive workloads, while others are general 

purpose. Both the targeted-workload and general-purpose instance families are useful 

for CFD applications based on the step in the CFD process. 

When considering CFD steps, different instance types can be targeted for pre-

processing, solving, and post-processing. In pre-processing, the geometry step can 

benefit from an instance with a GPU, while the mesh generation stage may require a 

higher memory-to-core ratio, such as general-purpose or memory-optimized instances. 

When solving CFD cases, evaluate your case size and cluster size. If the case is spread 

across multiple instances, the memory requirements are low per core, and compute-

optimized instances are recommended as the most cost-effective and performant 

choice. If a single-instance calculation is desired, it may require more memory per core 

and benefit from a general-purpose, or memory-optimized instance. Refer to the 

Instance Type Matrix for instance details. 

AWS enables simultaneous multithreading (SMT), or hyper-threading technology for 

Intel processors, commonly referred to as “hyperthreading” by default for supported 

processors. Hyperthreading improves performance for some systems by allowing 

multiple threads to be executed simultaneously on a single core. Most CFD applications 

do not benefit from hyperthreading, and therefore, disabling it tends to be the preferred 

environment. Hyperthreading is easily disabled in Amazon EC2. Unless an application 

has been tested with hyperthreading enabled, it is recommended that hyperthreading be 

disabled and that processes are launched and pinned to individual cores. 

There are many compute options available to optimize your compute environment. 

Cloud deployment allows for experimentation on every level from operating system to 

instance type to bare-metal deployments. Time spent experimenting with cloud-based 

clusters is vital to achieving the desired performance. 

Network 

Most CFD workloads exceed the capacity of a single compute node and require a 

cluster-based solution. A crucial factor in achieving application performance with a 

https://aws.amazon.com/ec2/instance-types/
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multi-node cluster is optimizing the performance of the network connecting the compute 

nodes. 

Worst-case latency is reduced by launching instances within a cluster placement group. 

Instances launched within a cluster placement group are also launched to the same 

Availability Zone. 

To further improve the network performance between EC2 instances, you can use an 

Elastic Fabric Adapter (EFA) on select instance types. EFA is designed for tightly 

coupled HPC workloads by providing an OS-bypass capability and hardware-designed 

reliability to take advantage of EC2’s network. It works well with CFD solvers. OS-

bypass is an access model that allows an application to bypass the operating system’s 

TCP/IP stack and communicate directly with the network device. This provides lower 

and more consistent latency and higher throughput than the TCP transport traditionally 

used. When using EFA, your normal IP traffic remains routable and can communicate 

with other network resources. 

CFD applications use EFA through an MPI implementation using the Libfabric API. To 

confirm that EFA is available, query the list of available fabric providers with the 

following command: 

$ fi_info -p efa 

provider: efa 

    fabric: EFA-fe80::94:3dff:fe89:1b70 

    domain: efa_0-rdm 

    version: 2.0 

    type: FI_EP_RDM 

    protocol: FI_PROTO_EFA 

provider: efa 

    fabric: EFA-fe80::94:3dff:fe89:1b70 

    domain: efa_0-dgrm 

    version: 2.0 

    type: FI_EP_DGRAM 

    protocol: FI_PROTO_EFA 

provider: efa;ofi_rxd 

    fabric: EFA-fe80::94:3dff:fe89:1b70 

    domain: efa_0-dgrm 

    version: 1.0 

    type: FI_EP_RDM 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html#efa-instance-types
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    protocol: FI_PROTO_RXD 

The command will return information about available EFA interfaces through Libfabric. If 

EFA is available, its usage can be confirmed with the MPI runtime debugging output. 

Each MPI implementation has environment variables or command line flags for verbose 

debugging output or explicitly setting the fabric provider. These options vary by MPI 

implementation, and access to these options vary by CFD application. Refer to the 

Getting Started with EFA and MPI documentation for additional details. 

Storage 

AWS provides many storage options for CFD, including object storage with Amazon 

Simple Storage Service (Amazon S3), block storage with Amazon Elastic Block Store 

(Amazon EBS), temporary block-level storage with Amazon EC2 Instance Store, and 

file storage with Amazon FSx for Lustre. You can utilize all these storage types for 

certain aspects of your CFD workload. 

A vital part of working with CFD solvers on AWS is the management of case data, which 

includes files such as CAD, meshes, input files, and output figures. In general, all CFD 

users want to maintain availability of the data when it is in use and to archive a subset 

of the data if it’s needed at some point in the future. 

An efficient data lifecycle uses a combination of storage types and tiers to minimize 

costs. Data is described as hot, warm, and cold depending on the immediate need of 

the data. Hot data is data that you need immediately, such as a case or sweep of cases 

about to be deployed. Warm data is your data, which is not needed at the moment, but 

it may be used sometime in the near future; perhaps within the next six months. Cold 

data is data that may not ever be used again, but it is stored for archival purposes. 

Your data lifecycle can occur only within AWS or it can be combined with an on-

premises workflow. For example, you may move case data, such as a case file, from 

your local computing facilities, to Amazon S3, and then to an EC2 cluster. Completed 

runs can traverse the same path in reverse back to your on-premises environment or to 

Amazon S3 where they can remain in the S3 Standard or S3 Infrequent Access storage 

class, or transitioned to S3 Glacier through a lifecycle rule for archiving. Amazon S3 

Glacier and S3 Glacier Deep Archive are S3 storage tiers that offer deep discounts on 

storage for archival data. Figure 7 is an example data lifecycle for CFD. 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/fsx/lustre/
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
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Figure 7: Data Lifecycle 

1. Transferring input data to AWS 

2. Running your simulation with input (hot) data 

3. Storing your output (warm) data 

4. Archiving inactive (cold) data 

Transferring Input Data 

Input data, such as a CAD file, may start on-premises and be transferred to AWS. Input 

data is often transferred to Amazon S3 and stored until you are ready to run your 

simulation. Amazon S3 offers highly scalable, reliable, durable, and secure storage. An 

S3 workflow decouples storage from your compute cluster and provides a cost-effective 

approach. Alternatively, you can transfer your input data to an existing file system at 

runtime. This approach is generally slower and less cost effective when compared to S3 

because it requires more expensive resources, such as compute instances or managed 

file systems, to be running for the duration of the transfer. 

For the data transfer, you can choose a manual, scripted, or managed approach. 

Manual and scripted approaches can use the AWS CLI for transferring data to S3, 

which helps optimize the data transfer to S3 by executing parallel uploads. A managed 



Amazon Web Services  Computational Fluid Dynamics on AWS 

 

 24 

 

approach can use a service, such as AWS DataSync, to move input data to AWS. AWS 

DataSync makes it simple and fast to move large amounts of data online between on-

premises storage and Amazon S3. 

Running your CFD Simulation 

Input data for your CFD simulation is considered “hot” data when you are ready to run 

your simulation. This data is often accessed in a shared file system or placed on the 

head node if the CFD application does not require a shared drive. 

If your CFD workload requires a high-performance file system, Amazon FSx for Lustre 

is highly recommended. FSx for Lustre works natively with Amazon S3, making it easy 

for you to access the input data that is already stored in S3. When linked to an S3 

bucket, an FSx for Lustre file system transparently presents S3 objects as files and 

allows you to write results back to S3. During the simulation, you can periodically 

checkpoint and write intermediate results to your S3 data repository. FSx for Lustre 

automatically transfers Portable Operating System Interface (POSIX) metadata for files, 

directories, and symbolic links (symlinks) when importing and exporting data to and 

from the linked data repository on S3. This allows you to maintain access controls and 

restart your workload at any time using the latest data stored in S3. When your 

workload is done, you can write final results from your file system to your S3 data 

repository and delete your file system. 

Storing Output Data 

Output data from your simulation is considered “warm” data after the simulation finishes. 

For a cost-effective workflow, transfer the output data off of your cluster and terminate 

the more expensive compute and storage resources. If you stored your data in an 

Amazon EBS volume, transfer your output data to S3 with the AWS CLI. If you used 

FSx for Lustre, create a data repository task to manage the transfer of output data and 

metadata to S3 or export your files with HSM commands. You can also periodically 

push the output data to S3 with a data repository task. 

Archiving Inactive Data 

After your output data is stored in S3 and is considered cold or inactive, transition it to a 

more cost-effective storage class, such as Amazon S3 Glacier and S3 Glacier Deep 

Archive. These storage classes allow you to archive older data more affordably than 

https://aws.amazon.com/datasync/
https://docs.aws.amazon.com/fsx/latest/LustreGuide/data-repository-tasks.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/exporting-files-hsm.html
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/
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with the S3 Standard storage class. Objects in S3 Glacier and S3 Glacier Deep Archive 

are not available for real-time access and must be restored if needed. Restoring objects 

incurs a cost, and to keep costs low yet suitable for varying needs, S3 Glacier and S3 

Glacier Deep Archive provide multiple retrieval options. 

Storage Summary 

Use the following table to select the best storage solution for your workload: 

Visualization 

A graphical interface is useful throughout the CFD solution process, from building 

meshes, debugging flow-solution errors, and visualizing the flow field. Many CFD 

solvers include visualization packages as part of their installation. As an example, 

ParaView is packaged with OpenFOAM. In addition to visualization tools within the CFD 

suites, there are third-party visualization tools, which can be more powerful, adaptable, 

and general.  

Visualization is often performed remotely with either an application that supports client-

server mode or with remote visualization of the server desktop. Client-server mode 

works well on AWS and can be implemented in the same way as other remote desktop 

set-ups. When using client-server mode for an application, it is important to connect to 

Type Description Use 

EBS 
Block 
Storage 

Block storage or export as a Network File System 
(NFS) share 

FSx for Lustre 
Managed 
Lustre 

Fast parallel high-performance file system 
optimized for HPC workloads 

S3 
Object 
Storage Store case files, input, and output data 

Glacier 
Archival 
Storage Long-term storage of archival data 

EFS 
Managed 
NFS 

Network File System (NFS) to share files across 
multiple instances. Occasionally used for home 
directories. Not generally recommended for CFD 
cases. 

https://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html
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the server using the public IP address and not the private IP address, unless you have 

private network connectivity configured, such as a Site-to-Site VPN. 

AWS offers NICE DCV for local display of remote desktops. NICE DCV is easy to 

implement and is free to use with EC2. There are a variety of ways to add NICE DCV to 

your HPC cluster. The simplest approach is to launch AWS ParallelCluster. If you are 

using AWS ParallelCluster, you can enable NICE DCV on the head node when 

launching the cluster. A graphics-intensive instance with the NICE DCV AMI pre-

installed can also be easily launched. Reference the NICE DCV Getting Start Guide for 

more information.  

In general, visualizing CFD results on AWS reduces the need to download large data 

back to on-premises storage, and it helps reduce cost and increase productivity. 

Costs 

AWS offers a pay-as-you-go approach for pricing for cloud services. You pay only for 

the individual services you need, for as long as you use them, without long-term 

contracts or complex licensing. Some services and tools come free of charge, such as 

AWS ParallelCluster, AWS Batch, and CloudFormation; however, the underlying AWS 

components used to run cases incur charges. AWS charges arise primarily from the 

compute resources required for the CFD solution. Storage and data transfer also incur 

charges. Depending on your implementation, you may use additional services in your 

architecture, such as AWS Lambda, Amazon SNS, or Amazon CloudWatch, but cost 

accumulated by usage of these services is rarely significant when compared to the 

compute costs for CFD. 

It is common to stand up a cluster for only the time period in which it is needed. In a 

simple scenario, costs are associated with EC2 instances and Amazon EBS volumes. 

Costs incurred after shut down of the cluster include any snapshots taken of Amazon 

EBS volumes and any data stored on Amazon S3. 

While data transfer into Amazon EC2 from the internet is free, data transfer out of AWS 

can incur modest charges. Many users choose to leave their data in S3 and only move 

the smaller post-processed data out of AWS. Data can also be transitioned to Amazon 

S3 Glacier for archival storage to reduce long-term storage costs. 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
https://aws.amazon.com/hpc/dcv/
https://docs.aws.amazon.com/parallelcluster/latest/ug/dcv-section.html
https://aws.amazon.com/hpc/dcv/#Getting_Started_with_NICE_DCV_on_Amazon_EC2
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When AWS ParallelCluster is maintained for an extended period of time, the login node 

and Amazon EBS volumes continue to incur costs. The compute nodes scale up and 

down as needed, which minimizes costs to only reflect the times when the cluster is 

being used. To further reduce costs, you can manually stop and start the login node 

only when the cluster is needed. Storage costs remain even when the login node is 

stopped. 

When developing an architecture, you must monitor your workload (automatically 

through monitoring solutions or manually through the console) and ensure that your 

resources scale up and down as expected. Occasionally, hung jobs or other factors can 

prevent your resources from scaling properly. Logging on to the compute node and 

checking processes with a tool, such as top or htop, can help debug issues. 

AWS provides four different ways to pay for EC2 instances: On-Demand Instances, 

Reserved Instances, Savings Plans, and Spot Instances. Amazon EC2 instance costs 

can be minimized by using Spot Instances, Savings Plans, and Reserved Instances. 

On-Demand Instances 

With On-Demand Instances, you pay for compute capacity by the hour or the second, 

depending on which you run. No long-term commitments or upfront payments are 

needed. You can increase or decrease your compute capacity depending on the 

demands of your application and only pay the specified per-hour rates for the instance 

you use. 

On-Demand Instances are the highest cost model for computing and requires no upfront 

commitment. Cost saving is gained because costs are only incurred while the instances 

are in a running state. For a dynamic workload, the savings can be large. Savings occur 

because you can select the newest processor types, which may speed up the 

computations significantly.  

Reserved Instances 

Reserved Instances (RIs) provide you with a significant discount (up to 75%) compared 

to On-Demand Instance pricing. For customers that have steady state or predictable 

usage and can commit to using EC2 over a 1- or 3-year term, Reserved Instances 

provide significant savings compared to using On-Demand Instances. 
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Savings Plans 

Savings Plans are a flexible pricing model that provides savings of up to 72% on your 

AWS compute usage. This pricing model offers lower prices on Amazon EC2 instances 

usage, regardless of instance family, size, OS, tenancy or AWS Region, and also 

applies to AWS Fargate usage. 

Savings Plans offer significant savings over On-Demand Instances, just like EC2 

Reserved Instances, in exchange for a commitment to use a specific amount of 

compute power (measured in $/hour) for a one or three year period. You can sign up for 

Savings Plans for a one or three year term and easily manage your plans by taking 

advantage of recommendations, performance reporting, and budget alerts in the AWS 

Cost Explorer. 

Spot Instances 

Amazon EC2 Spot Instances let you take advantage of unused EC2 capacity at up to a 

90% discount compared to On-Demand prices. However, Spot Instances can be 

interrupted when EC2 needs to reclaim the capacity. Spot Instances are frequently the 

most cost-effective resource for flexible or fault-tolerant workloads and can also be used 

for CFD cases. Spot availability varies by spot pool (for example, Region, Availability 

Zone, and instance type). Consider your deployment strategy and interruption impact 

when determining the most cost-effective resources for your case. 

When a Spot Instance is interrupted, your case is interrupted. The interruption impact to 

your case depends on how your CFD application handles the interruption, and you can 

minimize this impact by checkpointing your simulation if supported. In addition, you can 

minimize the risk of Spot Instance interruption by working with the Spot Advisor, being 

flexible on instance type and Availability Zone, and using advanced features, such as 

the capacity-optimized allocation strategy in EC2 Fleet, to launch your Spot Instances. 

Overall, the need to occasionally restart a workload can be offset by the cost savings of 

Spot Instances. 

Combined Approach 

You can easily combine Spot Instances with On-Demand and RIs to further optimize 

workload cost with performance. For instance, in Figure 8, you could use Reserved 

Instances for your daily workloads, Spot Instances for component exploration, and On-

Demand Instances for design review. 
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Figure 8: EC2 cost optimization for CFD cases 

Conclusion 

This whitepaper describes best practices for using AWS for computational fluid 

dynamics (CFD). The paper presents the advantages of using AWS for CFD workloads, 

covers the getting started process, discusses AWS approaches for CFD, and addresses 

the options for optimizing the HPC components for CFD workloads. Following the best 

practices presented in this paper allows you to architect and optimize your environment 

for CFD workloads. 
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Further Reading 

For additional information, see the following: 

• HPC on AWS 

• AWS Well-Architected Framework 

• Introduction to HPC on AWS 

Document Revisions 

Date Description 

March 2020 Original publication 

 

 

https://aws.amazon.com/hpc
https://aws.amazon.com/well-architected
https://d1.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf

	Introduction
	Why CFD on AWS?
	Getting Started with AWS
	CFD Approaches on AWS
	Architectures
	Traditional Cluster Environments
	Cloud Native Environments
	Scripted Approach
	API Based
	CloudFormation Templates
	AWS Batch


	Software
	Installation
	Licensing
	Setup
	Create a Custom AMI
	Share an Amazon EBS Volume via NFS
	Use a Managed Shared File System

	Maintenance

	Cluster Lifecycle
	CFD Case Scalability
	Strong Scaling vs. Weak Scaling
	Running Efficiency
	Turn-Around Time and Cost


	Optimizing HPC Components
	Compute
	Network
	Storage
	Transferring Input Data
	Running your CFD Simulation
	Storing Output Data
	Archiving Inactive Data
	Storage Summary

	Visualization

	Costs
	On-Demand Instances
	Reserved Instances
	Savings Plans
	Spot Instances
	Combined Approach

	Conclusion
	Contributors
	Further Reading
	Document Revisions

