

ii

Computational Fluid Dynamics
on AWS

March 2020

iii

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any

agreement between AWS and its customers.

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

iv

Contents

Introduction .. 1

Why CFD on AWS? ... 3

Getting Started with AWS .. 5

CFD Approaches on AWS ... 6

Architectures ... 7

Software .. 9

Cluster Lifecycle ... 12

CFD Case Scalability .. 13

Optimizing HPC Components.. 19

Compute ... 19

Network ... 20

Storage.. 22

Visualization .. 25

Costs .. 26

Conclusion.. 29

Contributors .. 29

Further Reading ... 30

Document Revisions .. 30

v

Abstract

The scalable nature and variable demand of CFD workloads makes them well-

suited for a cloud computing environment. This whitepaper describes best

practices for running computational fluid dynamics (CFD) workloads on AWS.

Use this document to learn more about AWS services and the related quick

start tools that simplify getting started with running CFD cases on AWS.

Amazon Web Services Computational Fluid Dynamics on AWS

 1

Introduction

Fluid dynamics is the study of the motion of fluids, usually in the presence of an object.

Typical fluid flows of interest to engineers and scientist include: flow in pipes, through

engines, and around objects, such as buildings, automobiles, and airplanes.

Computational fluid dynamics (CFD) is the study of these flows through computer

simulation and modeling. CFD involves the solution of conservation equations (mass,

momentum, energy, and others) in a finite domain.

Many CFD tools are currently available, including specialized and “in-house” tools. This

variety is the result of the broad domain of physical problems solved with CFD. There is

not a universal code for all applications, although there are packages that offer great

capabilities. Broad CFD capabilities are available in commercial packages, such as

ANSYS Fluent, Siemens Simcenter STAR-CCM+, Metacomp Technologies CFD++, and

open-source packages, such as OpenFOAM and SU2.

A typical CFD simulation involves the following four steps.

1. Define the Geometry: In some cases, this step is simple, such as modeling flow

in a duct. In other cases, this step involves complex components and moving

parts, such as modeling a gas turbine engine. For many cases, the geometry

creation is extremely time-consuming. The geometry step is graphics intensive

and requires a capable graphics workstation, preferably with a Graphics

Processing Unit (GPU). Often, the geometry is provided by a designer, but the

CFD engineer must “clean” the geometry for input into the flow solver.

2. Generate the Mesh or Grid: Mesh generation is a critical step because

computational accuracy is dependent on the size, cell location, and skewness of

the cells. In Figure 1, a hybrid mesh is shown on a slice through an aircraft wing.

Mesh generation can be iterative with the solution, where fixes to the mesh are

driven by an understanding of flow features and gradients in the solution.

Meshing is frequently an interactive process and its elliptical nature generally

requires a substantial amount of memory. Like geometry definition, generating a

single mesh can take hours, days, weeks, and sometimes months.

Amazon Web Services Computational Fluid Dynamics on AWS

 2

Figure 1: Mesh Generation

3. Solve for the solution: This step is the primary focus of this whitepaper. For

some solutions, tens of thousands of cores (processors) run over weeks to

achieve a solution. Conversely, some jobs may run in just minutes when scaled

out appropriately. There are choices for model equations depending on the

desired solution fidelity. The Navier-Stokes equations form the basis of the

solved equations for most fluid calculations. The addition of chemical reactions,

liquid and gas multi-phase flows, and many other physical properties create

increasing complexity. For example, increasing the fidelity of turbulence

modeling is achieved with various approximate equation sets such as Reynolds

Average Navier-Stokes (RANS), Large Eddy Simulation (LES), Delayed

Detached Eddy Simulation (DDES), and Direct Numerical Simulation (DNS).

These models typically do not change the fundamental computational

characteristics or scaling of the simulation.

Amazon Web Services Computational Fluid Dynamics on AWS

 3

4. Post process through visualization: Examples of this step include the creation

of images, video, and post processing of flow fields, such as creating total forces

and moments. Similar to the geometry and mesh steps, this can be graphics and

memory intensive.

Figure 2: Post-processing Visualization

Why CFD on AWS?

AWS is a great place to run CFD cases. CFD workloads are typically MPI-based, tightly

coupled workloads relying on a large number of cores across many nodes. Many of the

AWS instance types, such as the compute family instance types, are designed to

include support for this type of workload. AWS has network options that support

extreme scalability and short turn-around time as necessary. Small CFD cases can be

run on a single node, with a large number of cores, and do not require the use of

multiple instances.

Amazon Web Services Computational Fluid Dynamics on AWS

 4

CFD workloads typically scale well on the cloud. Most codes rely on domain

decomposition to distribute portions of the calculation to the compute nodes. A case can

be run highly parallel to receive results in minutes, or large numbers of cases can run

simultaneously as efficiently and cheaply as possible to allow the timely completion of

all cases.

The cloud offers a quick way to deploy and turn around CFD workloads at any scale

without the need to own your own infrastructure. You can run jobs that once were in the

realm of national labs or large industry. In just an hour or two, you can deploy CFD

software, upload input files, launch compute nodes, and complete jobs on a large

number of cores. When your job completes, results can be visualized and downloaded,

and then all resources can be terminated – allowing you to only pay for what you use. If

preferred, your results can be securely archived in cloud storage. Due to cloud

scalability, you have the option to run multiple cases simultaneously with a dedicated

cluster for each case.

The cloud accommodates the variable demand of CFD. Often, there is a need to run a

large number of cases as quickly as possible. Situations can require a sudden burst of

tens, to hundreds, to thousands of calculations immediately, and then perhaps no runs

until the next cycle. The need to run a large number of cases could be for a preliminary

design review, or perhaps a sweep of cases for the creation of a solution database. On

the cloud, the cost is the same to run many jobs simultaneously, in parallel, as it is to

run them serially, so you can get your data more quickly and at no extra cost. The cost

savings in engineering time is an often forgotten part of cost analysis. Running in

parallel can be an ideal solution for design optimization. On AWS, you can launch the

cases you need when your case is ready, without waiting in a queue for available

cluster resources.

Cloud computing is a strong choice for other CFD steps. You can easily launch a GPU

instance, a high-memory instance, or a cluster of high-memory instances, to handle the

geometry, meshing, and post-processing. With remote visualization software available

to handle the display, you can manage the GPU instance running your post-processing

visualization from any screen (laptop, desktop, web browser) as though you were

working on a large workstation.

Amazon Web Services Computational Fluid Dynamics on AWS

 5

Getting Started with AWS

To begin, you must create an AWS account and an AWS Identity and Access

Management (IAM) user. An IAM user is a user within your AWS account. The IAM user

allows authentication and authorization to AWS resources. Multiple IAM users can be

created if multiple people need access to the same AWS account.

During the first year after account activation, many AWS services are available for free

with the AWS Free Tier. The free-tier program provides an opportunity to learn about

AWS without incurring any significant charges. It provides an offset to charges incurred

while training on AWS. However, the compute heavy nature of CFD means that charges

are regularly not covered by the free tier. Training helps limit mistakes resulting in

unnecessary charges. You can set up AWS Billing Alarms to alert you of estimated

charges.

After creating an AWS account, you are provided with what is referred to as your root

user. It is recommended that you do not use this root user for anything other than

billing. Instead, set up privileged users (through IAM) for day-to-day usage of AWS. IAM

users are useful because they help you securely control access to AWS resources. Use

IAM to control authentication and authorization for resources. Create IAM users for

everyone, including yourself, and preserve the root user for the required account and

service management tasks.

By default, your account is limited on the number of instances that you can launch in a

Region, which is a physical location around the world where AWS clusters data centers.

These limits are initially set low to prevent unnecessary charges, but you can raise them

to preferred values. CFD applications often require a large number of compute

instances simultaneously. The ability and advantages of scaling horizontally are highly

desirable for high-performance computing (HPC) workloads. However, you may need to

request an increase to the Amazon EC2 Service Limits before deploying a large

workload to either one large cluster, or to many smaller clusters at once.

After your initial account is created and configured, a few foundational tutorials can be

helpful to get started on AWS:

• Amazon Elastic Compute Cloud (EC2) is the Amazon Web Service you use to
create and run compute nodes in the cloud. AWS calls these compute nodes
“instances”. This Amazon Elastic Compute Cloud tutorial will help you

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-an-iam-user
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/getting-started/tutorials/launch-a-virtual-machine/?trk=gs_card&e=gs&p=gsrc

Amazon Web Services Computational Fluid Dynamics on AWS

 6

successfully launch a Linux compute node on Amazon EC2 within our AWS Free
Tier.

• Amazon Simple Storage Service (S3) is a service that enables you to store your
data (referred to as objects) at massive scale. This Amazon Simple Storage
Service tutorial will help you store your files in the cloud using Amazon S3 by
creating an Amazon S3 bucket, uploading a file, retrieving the file, and deleting
the file.

• AWS Command Line Interface (CLI) is a common programmatic tool for
automating AWS resources. For example, you can use it to deploy AWS
infrastructure or manage data in S3. In this AWS Command Line Interface
tutorial, you learn how to use the AWS CLI to access Amazon S3. You can then
easily build your own scripts for moving your files to the cloud and easily
retrieving them as needed.

• AWS Budgets gives you the ability to set custom budgets that alert you when
your costs or usage exceed (or are forecasted to exceed) your budgeted amount.
In this AWS Budgets tutorial, you learn how to control your costs while exploring
AWS service offerings using the AWS Free Tier then using AWS Budgets to set
up a cost budget to monitor any costs associated with your usage.

Additionally, the AWS Well-Architected Framework High Performance Computing (HPC)

Lens covers common HPC scenarios and identifies key elements to ensure that your

workloads are architected according to best practices. It focuses on how to design,

deploy, and architect your HPC workloads on the AWS Cloud.

CFD Approaches on AWS

Most CFD solvers have locality of data and use sparse matrix solvers. Once properly

organized (application dependent), a well-configured job exhibits good strong and weak

scaling on simple AWS cluster architectures. “Structured” and “Unstructured” codes are

commonly run on AWS. Spectral and pseudo-spectral methods involve Fast Fourier

Transforms (FFTs), and while less common than traditional CFD algorithms, they also

scale well on AWS. Time-dependent simulations may require frequent I/O, which must

be considered architecturally to achieve good scaling. Your architectural decisions have

tradeoffs, and AWS makes it quick and easy to try different architectures to optimize for

cost and performance.

https://aws.amazon.com/s3/
https://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/?trk=gs_card&e=gs&p=gsrc
https://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/?trk=gs_card&e=gs&p=gsrc
https://aws.amazon.com/cli/
https://aws.amazon.com/getting-started/tutorials/backup-to-s3-cli/?trk=gs_card
https://aws.amazon.com/getting-started/tutorials/backup-to-s3-cli/?trk=gs_card
https://aws.amazon.com/aws-cost-management/aws-budgets/
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?trk=gs_card
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf

Amazon Web Services Computational Fluid Dynamics on AWS

 7

Architectures

There are two primary design patterns to consider when choosing an AWS architecture

for CFD applications: the traditional cluster and the cloud native cluster. Customers

choose their preferred architecture based on the use case and the CFD users’ needs.

For example, use cases that require frequent involvement and monitoring, such as

when you need to start and stop the CFD case several times on the way to

convergence, often prefer a traditional style cluster. Conversely, cases that are easily

automated often prefer a cloud native setup, which allows you to easily submit large

numbers of cases simultaneously or automate your run for a complete end-to-end

solution. Cloud native is useful when cases require special pre- or post-processing

steps which benefit from automation. Whether choosing traditional or cloud native

architectures, the cloud offers the advantage of elastic scalability — allowing you to only

consume and pay for resources when you need them.

Traditional Cluster Environments

In the cloud, a traditional cluster is also referred to as a persistent cluster due to the

persistence of minimal AWS infrastructure required for preserving the cluster

environment. Examples of persistent infrastructure include a node running a scheduler

and hosting data even after a completed run campaign. The persistent cluster mimics a

traditional on-premises cluster or supercomputer experience. Clusters include a login

instance with a scheduler that allows multiple users to submit jobs. The compute node

fleet can be a fixed size or a dynamic group to increase and decrease the number of

compute instances depending on the jobs submitted.

AWS ParallelCluster is an example of a persistent cluster that simplifies the deployment

and management of HPC clusters in the AWS Cloud. It enables you to quickly launch

and terminate an HPC compute environment in AWS as needed. AWS ParallelCluster

orchestrates the creation of the required resources (for example, compute nodes and

shared filesystems) and provides an automatic scaling mechanism to adjust the size of

the cluster to match the submitted workload. You can use AWS ParallelCluster with a

variety of batch schedulers, including AWS Batch, SGE, Torque, and Slurm.

https://docs.aws.amazon.com/parallelcluster/latest/ug/what-is-aws-parallelcluster.html

Amazon Web Services Computational Fluid Dynamics on AWS

 8

Figure 3: Example AWS ParallelCluster Architecture

Cloud Native Environments

A cloud native cluster is also called an ephemeral cluster due to its relatively short

lifetime. A cloud native approach to tightly coupled HPC ties each run, or sweep of runs,

to its own cluster. For each case, resources are provisioned and launched, data is

placed on the instances, jobs run across multiple instances, and case output is retrieved

automatically or sent to Amazon S3. Upon job completion, the infrastructure is

terminated. Clusters designed this way treat infrastructure as code and allow for

complete version control of infrastructure changes. Login nodes and job schedulers are

less critical and often not used at all with an ephemeral cluster. AWS Auto Scaling, a

mainstay of the traditional cloud cluster, is not commonly used because clusters are

stood up once, cases launched, and the clusters are then terminated. The following are

a few frequently used methods to implement such a design:

Scripted Approach

A common quick-start approach for CFD users getting started with AWS is to combine a

custom Amazon Machine Image (AMI) with the AWS CLI and a bash script. After

launching an Amazon EC2 instance, software can be added to the instance and an AMI

is created to be used as the starting point for all compute nodes. It is typical to set up

Amazon Web Services Computational Fluid Dynamics on AWS

 9

the SSH files and the bashrc file before creating the custom AMI or “golden image”.

Although many CFD solvers do not require a shared file location, one can easily be

created with an exported NFS volume, or with Amazon FSx for Lustre.

API Based

If preferred, an automated deployment can be developed with one of the Software

Development Kits (SDK), such as Python, available for programming an end-to-end

solution.

CloudFormation Templates

AWS CloudFormation is an AWS Cloud native approach to provisioning AWS resources

based on a JSON or YAML template. AWS CloudFormation offers an easily version-

controlled cluster provisioning capability.

AWS Batch

AWS Batch is a cloud-native, container-based approach that enables CFD users to

efficiently run hundreds of thousands of batch computing jobs in containers on AWS.

AWS Batch dynamically provisions the optimal quantity and type of compute resources

(for example, compute or memory-optimized instances) based on the volume and

specific resource requirements of the batch jobs submitted. With AWS Batch, there is

no need to install and manage batch computing software or server infrastructure that

you use to run your jobs — allowing you to focus on analyzing results and solving

problems. AWS Batch plans, schedules, and executes your batch computing workloads

across the full range of AWS compute services and features, such as Amazon EC2 and

Spot Instances.

Software

Installation

CFD software can either be installed onto a base AMI, or it can be used from prebuilt

AMIs from the AWS Marketplace. The AWS Marketplace offers a listing of software from

individual software vendors, which offer software included with AWS Services. If you

must install your own software, you can add the installation to the cluster deployment

scripts and execute them at cluster creation.

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/batch/
https://aws.amazon.com/marketplace

Amazon Web Services Computational Fluid Dynamics on AWS

 10

Licensing

Many commercial CFD solvers are licensed and may require access to a license server,

such as FLEXlm. Licensing software in the cloud is much like licensing with any other

cluster. If a license server is necessary, you can configure your networking to use an

existing on-premises server, or you can host the license server on the cloud.

If hosting the license server on AWS, the smallest EC2 instance type, such as the

t2.micro (available for free on the free tier program) or the t3a.nano (the cheapest

instance) can be used to host the license server. A Reserved Instance purchase for the

license server provides further cost savings.

The FLEXlm license relies on the network interface’s MAC address. The easiest way to

retrieve the new MAC address for your license is to launch the instance and retrieve the

MAC address before the license is issued. You can preserve the MAC address by

changing the termination behavior to prevent deletion of the network interface if the

instance is ever terminated. When hosting your own license server, confirm that the

security group for the license-server instance allows connectivity on the appropriate

ports required by the software package.

If accessing an on-premises license server, create an AWS Site-to-Site VPN for your

Virtual Private Cloud (VPC), or alternatively, if on-premises firewalls allow, you may be

able to access the on-premises license server through SSH tunneling.

Cloud-friendly licensing through power-on-demand licensing keys is also growing in

popularity and relies on submitting a job with a key provided by the software provider.

Setup

There are multiple strategies for setting up software in clusters. The most widely used

examples are below:

Create a Custom AMI

This method features the shortest application startup time and avoids potential

bottlenecks when accessing a single shared resource. This is the preferred means of

distribution for large-scale runs (10s of thousands of MPI ranks) or applications that

must load a large number of shared libraries. A drawback is the larger AMI size, which

incurs more cost for Amazon Elastic Block Store (Amazon EBS).

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#change_term_behavior
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html

Amazon Web Services Computational Fluid Dynamics on AWS

 11

Share an Amazon EBS Volume via NFS

This method installs the necessary software into a single Amazon EBS volume, creates

an NFS export on a single instance, and mounts the NFS share on all of the compute

instances. This approach reduces the Amazon EBS footprint because only one Amazon

EBS volume must be created for the software. This method is useful for large software

packages and moderate scale runs (up to thousands of MPI ranks). A tradeoff with this

method is a small amount of added network traffic and a potential bottleneck with a

single instance hosting the NFS share. Ensuring a larger NFS host instance with

additional network capabilities mitigates these concerns.

To make this approach repeatable, the exported NFS directory can be decoupled from

the root volume, stored on a separate Amazon EBS volume, and created from an

Amazon EBS snapshot. This approach is similar to the custom AMI method, but instead

it isolates software from the root volume. An additional Amazon EBS volume is created

from an Amazon EBS snapshot at instance launch and is mounted as an additional disk

to the compute instance. The snapshot used to create the volume contains the software

installation. Decoupling the user software from operating system updates that are

necessary on the root volume reduces the complexity of maintenance. Furthermore, the

user can rely on the latest AMI releases for the compute instances, which provide an

up-to-date system without maintaining a custom AMI.

Use a Managed Shared File System

This approach installs the CFD software into an AWS managed file system service,

such as Amazon FSx for Lustre or Amazon Elastic File System (EFS), and mounts the

shared file system on all of the compute instances. Amazon FSx for Lustre provides a

high-performance file system optimized for HPC workloads. Lustre is optimized for

simultaneous access, and its performance can be scaled independently from any single

instance size. FSx for Lustre works natively with Amazon S3 and can be automatically

populated with data residing in Amazon S3, which allows users to have a Lustre file

system running only while compute jobs are active and easily discard it afterwards.

EFS provides a simple, scalable, fully managed elastic NFS file system that can be

used as a location for home directories. However, EFS is not recommended for other

aspects of a CFD cluster, such as hosting simulation data or compiling a solver, due to

performance considerations.

Amazon Web Services Computational Fluid Dynamics on AWS

 12

Maintenance

New feature releases and patches to existing software are a frequent need in the CFD

application workflow. All distribution strategies can be fully automated. When using the

AMI or Amazon EBS snapshot strategy, the software update cycle can be isolated from

the application runs. Once a new AMI or snapshot has been created and tested, the

cluster is reconfigured to pick up the latest version. Software updates cycles in the

strategies using file sharing via NFS or FSx for Lustre must be coordinated with

application runs because a live system is being altered.

In general, automating CFD application installation with scripting tools is recommended

and is usually referred to as a Continuous Integration/Continuous Deployment (CI/CD)

pipeline on AWS. The automation process eliminates the manual processes required to

build and deploy new software and security patches to HPC systems. This is useful if

you want to use the latest features in software packages with fast update cycles. You

can read more about CI/CD pipelines in the AWS Continuous Delivery documentation.

Cluster Lifecycle

AWS offers a variety of unique ways to design architectures that deploy HPC

workloads. Your choice of deployment method for a particular workload depends on a

number of factors, including your desired user experience, degree of automation,

experience with AWS, preferred scripting languages, size and number of cases, and the

lifecycle of your data. The Well-Architected HPC Lens whitepaper covers additional best

practices for architectures beyond what is discussed in this paper.

While the architecture for a cluster is typically unique and tailored for the workload, all

HPC clusters benefit from lifecycle planning and management of the cluster and the

data produced — allowing for optimized performance, reliability, and cost.

It is not unusual for an on-premises cluster to run for many years, perhaps without

significant OS update or modification, until the hardware is so obsolete it is rendered

useless. In contrast, AWS regularly releases new services and updates to improve

performance and lower costs. The easiest way to take advantage of new AWS

capabilities, such as new instances, is by maintaining the cluster as a script or template.

AWS refers to this as “Infrastructure as Code” because it allows for the creation of

clusters quickly, provides repeatable automation, and maintains reliable version control.

https://aws.amazon.com/devops/continuous-delivery/
https://d1.awsstatic.com/whitepapers/architecture/AWS-HPC-Lens.pdf

Amazon Web Services Computational Fluid Dynamics on AWS

 13

Examples of “cluster as code” are the AWS ParallelCluster configuration file,

deployment scripts, or CloudFormation templates. These text-based configurations are

easy to modify for a new capability or workload.

A view of the cluster lifecycle includes infrastructure as code that starts before the

cluster is deployed with the maintenance of the deployment scripts. Elements of a

cluster maintained as code include:

• Base AMI to build your cluster

• Automated software installation scripts

• Configuration files, such as scheduler configs, MPI configurations, and bashrc

• Text description of the infrastructure, such as a CloudFormation template, or an
AWS ParallelCluster configuration file

• Script to initiate cluster deployment and subsequent software installation

While the nature of a cluster changes depending on the type of workload, the most cost-

effective clusters are those that are not deployed when they are not being used.

The cluster lifecycle can have a significant impact on costs. For example, it is common

with many traditional on-premises clusters to maintain a large storage volume. This is

not necessary in the cloud because data can be easily moved to S3 where it is reliably

and cheaply stored. Maintaining a cluster as code allows you to place a cluster under

version control and repeatedly deploy replicas if needed. Each cluster maintained as

code can be instantiated multiple times if multiple clusters are required for testing,

onboarding new users, or running a large number of cases in parallel. If set up correctly,

you avoid idle infrastructure when jobs are not running.

CFD Case Scalability

CFD cases that cross multiple nodes raise the question, “How will my application scale

on AWS?” CFD solvers depend heavily on the solver algorithm’s ability to scale

compute tasks efficiently in parallel across multiple compute resources. Parallel

performance is often evaluated by determining an application’s scale-up. Scale-up is a

function of the number of processors used and is defined as the time it takes to

complete a run on one processor, divided by the time it takes to complete the same run

on the number of processors used for the parallel run.

Amazon Web Services Computational Fluid Dynamics on AWS

 14

𝑆𝑐𝑎𝑙𝑒 − 𝑈𝑝 (𝑁) =
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑢𝑛 𝑜𝑛 1 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑁𝑜𝑑𝑒

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑢𝑛 𝑜𝑛 𝑁 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑁𝑜𝑑𝑒𝑠

Scaling is considered to be excellent when the scale-up is close to or equal to the

number of processors on which the application is run. An example of scale up as a

function of core count is shown in Figure 4.

Figure 4: Strong Scaling Demonstrated for a 14M Cell External Aerodynamics Use Case

The example case in Figure 4 is a 14 million cell external aerodynamics calculation

using a cell-centered unstructured solver. The mesh is composed largely of hexahedra.

The black line shows the ideal or perfect scalability. The blue diamonds show the actual

scale-up for this case as a function of increasing processor count. Excellent scaling is

seen to almost 1000 cores for this small sized case. This example was run on Amazon

EC2 c5n.18xlarge instances, with Elastic Fabric Adapter (EFA), and using a fully loaded

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

Sc
al

e
-U

p

Cores

Ideal

c5n

Amazon Web Services Computational Fluid Dynamics on AWS

 15

compute node. For this calculation, all cores are fully utilized meaning that no core was

left idle during the calculation. Most customers like to use the entire instance when

running a calculation. Faster turn-around times can be achieved by reducing the

number of processes on each instance.

Fourteen million cells is a relatively small CFD case by today’s standards. A small case

was purposely chosen for the discussion on scalability because small cases are more

difficult to scale. The idea that small cases are harder than large cases to scale may

seem counter intuitive, but smaller cases have less total compute to spread over a large

number of cores. An understanding of strong scaling vs. weak scaling offers more

insight.

Strong Scaling vs. Weak Scaling

Case scalability can be characterized two ways: strong scaling or weak scaling. Weak

does not mean inadequate — it is a technical term facilitating the description of the type

of scaling.

Strong scaling, as demonstrated in Figure 4, is a traditional view of scaling, where a

problem size is fixed and spread over an increasing number of processors. As more

processors are added to the calculation, good strong scaling means that the time to

complete the calculation decreases proportionally with increasing processor count.

In comparison, weak scaling does not fix the problem size used in the evaluation, but

purposely increases the problem size as the number of processors also increases. The

ratio of the problem size to the number of processors on which the case is run is

constant. For a CFD calculation, problem size most often refers to the number of cells

or nodes in the mesh for a similar configuration.

An application demonstrates good weak scaling when the time to complete the

calculation remains constant as the ratio of compute effort to the number of processors

is held constant. Weak scaling offers insight into how an application behaves with

varying case size. Well-written CFD solvers offer excellent weak scaling capability

allowing for more cores to be used when running bigger applications. The scalability of

CFD cases can then be determined by looking at a normalized plot of scale-up based

on the number of mesh cells per core (cells/core). An example plot is shown in Figure 5.

Amazon Web Services Computational Fluid Dynamics on AWS

 16

Figure 5: Scale-up and Efficiency as a Function of Cells per Processor

Running Efficiency

Efficiency is defined as the scale-up divided by the number of processors used in the

calculation. Scale-up and efficiency as a function of cells/core is shown in Figure 5. In

Figure 5, the cells per core are on the horizontal axis. The blue line in Figure 5 shows

scale-up as a function of mesh cells per processor. The vertical axis for scale-up is on

the left-hand side of the graph as indicated by the blue arrow. The orange line in Figure

5 shows efficiency as a function of mesh cells per core. The vertical axis for efficiency is

shown on the right side of the graph and is indicated by an orange arrow.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑁) =
𝑆𝑐𝑎𝑙𝑒 − 𝑈𝑝

𝑁
∗ 100

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

700

800

900

1000

050,000100,000150,000200,000

Ef
fi

ci
en

cy

Sc
al

e-
u

p

Cells/Core

Scale-Up

Efficiency

Amazon Web Services Computational Fluid Dynamics on AWS

 17

For similar case types, running with similar solver settings, a plot like the one in Figure 5

can help you choose the desired efficiency and number of cores running for a given

case.

Efficiency remains at about 100% between approximately 200,000 mesh cells per core

and 100,000 mesh cells per core. Efficiency starts to fall off at about 50,000 mesh cells

per core. An efficiency of at least 80% is maintained until 20,000 mesh cells per core,

for this case. Decreasing mesh cells per core leads to decreased efficiency because the

total computational effort per core is reduced. The inefficiencies that show up at higher

core counts come from a variety of sources and are caused by “serial” work. Serial work

is the work that cannot be effectively parallelized. Serial work comes from solver

inefficiencies, I/O inefficiencies, unequal domain decomposition, additional physical

modeling such as radiative effects, and eventually, from the network as core count

continues to increase.

Amazon Web Services Computational Fluid Dynamics on AWS

 18

Turn-Around Time and Cost

Plots of scale-up and efficiency offer an understanding about how a case or application

scales. However, what matters most HPC users is case turn-around time and cost. A

plot of turn-around time versus CPU cost for this case is shown in Figure 6. As the

number of cores increases, the inefficiency also increases, which leads to increased

costs.

Figure 6: Cost for per Run Based on On-Demand Pricing for the c5n.18xlarge instance as a

function of Turn-around Time

In Figure 6, the turn-around time is shown on the horizontal axis. The cost is shown on

the vertical axis. The price is based on the “on-demand” price of a c5n.18xlarge for

1000 iterations, and only includes the computational costs. Small costs are also

incurred for data storage. Minimum cost was obtained at approximately 50,000 cells per

$4.00

$5.00

$6.00

$7.00

$8.00

0 10 20 30 40 50

C
o

st
 f

o
r

1
0

0
0

 It
er

at
io

n
s

Turn-Around Time (Minutes)

50,000 Cells/Core
200,000 Cells/Core

20,000 Cells/Core

Amazon Web Services Computational Fluid Dynamics on AWS

 19

core or more. As the efficiency is 100% over a range of core counts, the price is the

same regardless of the number of cores. Many users choose a cell count per core to

achieve the lowest possible cost.

As core count goes up, inefficiencies start to show up, but turn-around time continues to

drop. When a fast turn-around is needed, users may choose a large number of cores to

accelerate the time to solution. For this case, a turn-around time of about five minutes

can be obtained by running on about 20,000 cells per core. When considering total cost,

the inclusion of license costs may make the fastest run the cheapest run.

Optimizing HPC Components

The AWS Cloud provides a broad range of scalable, flexible infrastructure services that

you select to match your workloads and tasks. This gives you the ability to choose the

most appropriate mix of resources for your specific applications. Cloud computing

makes it easy to experiment with infrastructure components and architecture design.

The HPC solution components listed below are a great starting point to set up and

manage your HPC cluster. Always test various solution configurations to find the best

performance at the lowest cost.

Compute

The optimal compute solution for a particular HPC architecture depends on the

workload deployment method, degree of automation, usage patterns, and configuration.

Different compute solutions may be chosen for each step of a process. Selecting the

wrong compute solutions for an architecture can lead to lower performance efficiency

and higher cost.

There are multiple compute options available on AWS, and at a high level, they are

separated into three categories: instances, containers, and functions. Amazon EC2

instances, or servers, are resizable compute capacity in the cloud. Containers provide

operating system virtualization for applications that share an underlying operating

system installed on a server. Functions are a serverless computing model that allows

you to run code without thinking about provisioning and managing the underlying

servers. For CFD workloads, EC2 instances are the primary compute choice.

Amazon Web Services Computational Fluid Dynamics on AWS

 20

Amazon EC2 lets you choose from a variety of compute instance types that can be

configured to suit your needs. Instances come in different families and sizes to offer a

wide variety of capabilities. Some instance families target specific workloads, for

example, compute-, memory-, or GPU-intensive workloads, while others are general

purpose. Both the targeted-workload and general-purpose instance families are useful

for CFD applications based on the step in the CFD process.

When considering CFD steps, different instance types can be targeted for pre-

processing, solving, and post-processing. In pre-processing, the geometry step can

benefit from an instance with a GPU, while the mesh generation stage may require a

higher memory-to-core ratio, such as general-purpose or memory-optimized instances.

When solving CFD cases, evaluate your case size and cluster size. If the case is spread

across multiple instances, the memory requirements are low per core, and compute-

optimized instances are recommended as the most cost-effective and performant

choice. If a single-instance calculation is desired, it may require more memory per core

and benefit from a general-purpose, or memory-optimized instance. Refer to the

Instance Type Matrix for instance details.

AWS enables simultaneous multithreading (SMT), or hyper-threading technology for

Intel processors, commonly referred to as “hyperthreading” by default for supported

processors. Hyperthreading improves performance for some systems by allowing

multiple threads to be executed simultaneously on a single core. Most CFD applications

do not benefit from hyperthreading, and therefore, disabling it tends to be the preferred

environment. Hyperthreading is easily disabled in Amazon EC2. Unless an application

has been tested with hyperthreading enabled, it is recommended that hyperthreading be

disabled and that processes are launched and pinned to individual cores.

There are many compute options available to optimize your compute environment.

Cloud deployment allows for experimentation on every level from operating system to

instance type to bare-metal deployments. Time spent experimenting with cloud-based

clusters is vital to achieving the desired performance.

Network

Most CFD workloads exceed the capacity of a single compute node and require a

cluster-based solution. A crucial factor in achieving application performance with a

https://aws.amazon.com/ec2/instance-types/

Amazon Web Services Computational Fluid Dynamics on AWS

 21

multi-node cluster is optimizing the performance of the network connecting the compute

nodes.

Worst-case latency is reduced by launching instances within a cluster placement group.

Instances launched within a cluster placement group are also launched to the same

Availability Zone.

To further improve the network performance between EC2 instances, you can use an

Elastic Fabric Adapter (EFA) on select instance types. EFA is designed for tightly

coupled HPC workloads by providing an OS-bypass capability and hardware-designed

reliability to take advantage of EC2’s network. It works well with CFD solvers. OS-

bypass is an access model that allows an application to bypass the operating system’s

TCP/IP stack and communicate directly with the network device. This provides lower

and more consistent latency and higher throughput than the TCP transport traditionally

used. When using EFA, your normal IP traffic remains routable and can communicate

with other network resources.

CFD applications use EFA through an MPI implementation using the Libfabric API. To

confirm that EFA is available, query the list of available fabric providers with the

following command:

$ fi_info -p efa

provider: efa

 fabric: EFA-fe80::94:3dff:fe89:1b70

 domain: efa_0-rdm

 version: 2.0

 type: FI_EP_RDM

 protocol: FI_PROTO_EFA

provider: efa

 fabric: EFA-fe80::94:3dff:fe89:1b70

 domain: efa_0-dgrm

 version: 2.0

 type: FI_EP_DGRAM

 protocol: FI_PROTO_EFA

provider: efa;ofi_rxd

 fabric: EFA-fe80::94:3dff:fe89:1b70

 domain: efa_0-dgrm

 version: 1.0

 type: FI_EP_RDM

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html#efa-instance-types

Amazon Web Services Computational Fluid Dynamics on AWS

 22

 protocol: FI_PROTO_RXD

The command will return information about available EFA interfaces through Libfabric. If

EFA is available, its usage can be confirmed with the MPI runtime debugging output.

Each MPI implementation has environment variables or command line flags for verbose

debugging output or explicitly setting the fabric provider. These options vary by MPI

implementation, and access to these options vary by CFD application. Refer to the

Getting Started with EFA and MPI documentation for additional details.

Storage

AWS provides many storage options for CFD, including object storage with Amazon

Simple Storage Service (Amazon S3), block storage with Amazon Elastic Block Store

(Amazon EBS), temporary block-level storage with Amazon EC2 Instance Store, and

file storage with Amazon FSx for Lustre. You can utilize all these storage types for

certain aspects of your CFD workload.

A vital part of working with CFD solvers on AWS is the management of case data, which

includes files such as CAD, meshes, input files, and output figures. In general, all CFD

users want to maintain availability of the data when it is in use and to archive a subset

of the data if it’s needed at some point in the future.

An efficient data lifecycle uses a combination of storage types and tiers to minimize

costs. Data is described as hot, warm, and cold depending on the immediate need of

the data. Hot data is data that you need immediately, such as a case or sweep of cases

about to be deployed. Warm data is your data, which is not needed at the moment, but

it may be used sometime in the near future; perhaps within the next six months. Cold

data is data that may not ever be used again, but it is stored for archival purposes.

Your data lifecycle can occur only within AWS or it can be combined with an on-

premises workflow. For example, you may move case data, such as a case file, from

your local computing facilities, to Amazon S3, and then to an EC2 cluster. Completed

runs can traverse the same path in reverse back to your on-premises environment or to

Amazon S3 where they can remain in the S3 Standard or S3 Infrequent Access storage

class, or transitioned to S3 Glacier through a lifecycle rule for archiving. Amazon S3

Glacier and S3 Glacier Deep Archive are S3 storage tiers that offer deep discounts on

storage for archival data. Figure 7 is an example data lifecycle for CFD.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/fsx/lustre/
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon Web Services Computational Fluid Dynamics on AWS

 23

Figure 7: Data Lifecycle

1. Transferring input data to AWS

2. Running your simulation with input (hot) data

3. Storing your output (warm) data

4. Archiving inactive (cold) data

Transferring Input Data

Input data, such as a CAD file, may start on-premises and be transferred to AWS. Input

data is often transferred to Amazon S3 and stored until you are ready to run your

simulation. Amazon S3 offers highly scalable, reliable, durable, and secure storage. An

S3 workflow decouples storage from your compute cluster and provides a cost-effective

approach. Alternatively, you can transfer your input data to an existing file system at

runtime. This approach is generally slower and less cost effective when compared to S3

because it requires more expensive resources, such as compute instances or managed

file systems, to be running for the duration of the transfer.

For the data transfer, you can choose a manual, scripted, or managed approach.

Manual and scripted approaches can use the AWS CLI for transferring data to S3,

which helps optimize the data transfer to S3 by executing parallel uploads. A managed

Amazon Web Services Computational Fluid Dynamics on AWS

 24

approach can use a service, such as AWS DataSync, to move input data to AWS. AWS

DataSync makes it simple and fast to move large amounts of data online between on-

premises storage and Amazon S3.

Running your CFD Simulation

Input data for your CFD simulation is considered “hot” data when you are ready to run

your simulation. This data is often accessed in a shared file system or placed on the

head node if the CFD application does not require a shared drive.

If your CFD workload requires a high-performance file system, Amazon FSx for Lustre

is highly recommended. FSx for Lustre works natively with Amazon S3, making it easy

for you to access the input data that is already stored in S3. When linked to an S3

bucket, an FSx for Lustre file system transparently presents S3 objects as files and

allows you to write results back to S3. During the simulation, you can periodically

checkpoint and write intermediate results to your S3 data repository. FSx for Lustre

automatically transfers Portable Operating System Interface (POSIX) metadata for files,

directories, and symbolic links (symlinks) when importing and exporting data to and

from the linked data repository on S3. This allows you to maintain access controls and

restart your workload at any time using the latest data stored in S3. When your

workload is done, you can write final results from your file system to your S3 data

repository and delete your file system.

Storing Output Data

Output data from your simulation is considered “warm” data after the simulation finishes.

For a cost-effective workflow, transfer the output data off of your cluster and terminate

the more expensive compute and storage resources. If you stored your data in an

Amazon EBS volume, transfer your output data to S3 with the AWS CLI. If you used

FSx for Lustre, create a data repository task to manage the transfer of output data and

metadata to S3 or export your files with HSM commands. You can also periodically

push the output data to S3 with a data repository task.

Archiving Inactive Data

After your output data is stored in S3 and is considered cold or inactive, transition it to a

more cost-effective storage class, such as Amazon S3 Glacier and S3 Glacier Deep

Archive. These storage classes allow you to archive older data more affordably than

https://aws.amazon.com/datasync/
https://docs.aws.amazon.com/fsx/latest/LustreGuide/data-repository-tasks.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/exporting-files-hsm.html
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/

Amazon Web Services Computational Fluid Dynamics on AWS

 25

with the S3 Standard storage class. Objects in S3 Glacier and S3 Glacier Deep Archive

are not available for real-time access and must be restored if needed. Restoring objects

incurs a cost, and to keep costs low yet suitable for varying needs, S3 Glacier and S3

Glacier Deep Archive provide multiple retrieval options.

Storage Summary

Use the following table to select the best storage solution for your workload:

Visualization

A graphical interface is useful throughout the CFD solution process, from building

meshes, debugging flow-solution errors, and visualizing the flow field. Many CFD

solvers include visualization packages as part of their installation. As an example,

ParaView is packaged with OpenFOAM. In addition to visualization tools within the CFD

suites, there are third-party visualization tools, which can be more powerful, adaptable,

and general.

Visualization is often performed remotely with either an application that supports client-

server mode or with remote visualization of the server desktop. Client-server mode

works well on AWS and can be implemented in the same way as other remote desktop

set-ups. When using client-server mode for an application, it is important to connect to

Type Description Use

EBS
Block
Storage

Block storage or export as a Network File System
(NFS) share

FSx for Lustre
Managed
Lustre

Fast parallel high-performance file system
optimized for HPC workloads

S3
Object
Storage Store case files, input, and output data

Glacier
Archival
Storage Long-term storage of archival data

EFS
Managed
NFS

Network File System (NFS) to share files across
multiple instances. Occasionally used for home
directories. Not generally recommended for CFD
cases.

https://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html

Amazon Web Services Computational Fluid Dynamics on AWS

 26

the server using the public IP address and not the private IP address, unless you have

private network connectivity configured, such as a Site-to-Site VPN.

AWS offers NICE DCV for local display of remote desktops. NICE DCV is easy to

implement and is free to use with EC2. There are a variety of ways to add NICE DCV to

your HPC cluster. The simplest approach is to launch AWS ParallelCluster. If you are

using AWS ParallelCluster, you can enable NICE DCV on the head node when

launching the cluster. A graphics-intensive instance with the NICE DCV AMI pre-

installed can also be easily launched. Reference the NICE DCV Getting Start Guide for

more information.

In general, visualizing CFD results on AWS reduces the need to download large data

back to on-premises storage, and it helps reduce cost and increase productivity.

Costs

AWS offers a pay-as-you-go approach for pricing for cloud services. You pay only for

the individual services you need, for as long as you use them, without long-term

contracts or complex licensing. Some services and tools come free of charge, such as

AWS ParallelCluster, AWS Batch, and CloudFormation; however, the underlying AWS

components used to run cases incur charges. AWS charges arise primarily from the

compute resources required for the CFD solution. Storage and data transfer also incur

charges. Depending on your implementation, you may use additional services in your

architecture, such as AWS Lambda, Amazon SNS, or Amazon CloudWatch, but cost

accumulated by usage of these services is rarely significant when compared to the

compute costs for CFD.

It is common to stand up a cluster for only the time period in which it is needed. In a

simple scenario, costs are associated with EC2 instances and Amazon EBS volumes.

Costs incurred after shut down of the cluster include any snapshots taken of Amazon

EBS volumes and any data stored on Amazon S3.

While data transfer into Amazon EC2 from the internet is free, data transfer out of AWS

can incur modest charges. Many users choose to leave their data in S3 and only move

the smaller post-processed data out of AWS. Data can also be transitioned to Amazon

S3 Glacier for archival storage to reduce long-term storage costs.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
https://aws.amazon.com/hpc/dcv/
https://docs.aws.amazon.com/parallelcluster/latest/ug/dcv-section.html
https://aws.amazon.com/hpc/dcv/#Getting_Started_with_NICE_DCV_on_Amazon_EC2

Amazon Web Services Computational Fluid Dynamics on AWS

 27

When AWS ParallelCluster is maintained for an extended period of time, the login node

and Amazon EBS volumes continue to incur costs. The compute nodes scale up and

down as needed, which minimizes costs to only reflect the times when the cluster is

being used. To further reduce costs, you can manually stop and start the login node

only when the cluster is needed. Storage costs remain even when the login node is

stopped.

When developing an architecture, you must monitor your workload (automatically

through monitoring solutions or manually through the console) and ensure that your

resources scale up and down as expected. Occasionally, hung jobs or other factors can

prevent your resources from scaling properly. Logging on to the compute node and

checking processes with a tool, such as top or htop, can help debug issues.

AWS provides four different ways to pay for EC2 instances: On-Demand Instances,

Reserved Instances, Savings Plans, and Spot Instances. Amazon EC2 instance costs

can be minimized by using Spot Instances, Savings Plans, and Reserved Instances.

On-Demand Instances

With On-Demand Instances, you pay for compute capacity by the hour or the second,

depending on which you run. No long-term commitments or upfront payments are

needed. You can increase or decrease your compute capacity depending on the

demands of your application and only pay the specified per-hour rates for the instance

you use.

On-Demand Instances are the highest cost model for computing and requires no upfront

commitment. Cost saving is gained because costs are only incurred while the instances

are in a running state. For a dynamic workload, the savings can be large. Savings occur

because you can select the newest processor types, which may speed up the

computations significantly.

Reserved Instances

Reserved Instances (RIs) provide you with a significant discount (up to 75%) compared

to On-Demand Instance pricing. For customers that have steady state or predictable

usage and can commit to using EC2 over a 1- or 3-year term, Reserved Instances

provide significant savings compared to using On-Demand Instances.

Amazon Web Services Computational Fluid Dynamics on AWS

 28

Savings Plans

Savings Plans are a flexible pricing model that provides savings of up to 72% on your

AWS compute usage. This pricing model offers lower prices on Amazon EC2 instances

usage, regardless of instance family, size, OS, tenancy or AWS Region, and also

applies to AWS Fargate usage.

Savings Plans offer significant savings over On-Demand Instances, just like EC2

Reserved Instances, in exchange for a commitment to use a specific amount of

compute power (measured in $/hour) for a one or three year period. You can sign up for

Savings Plans for a one or three year term and easily manage your plans by taking

advantage of recommendations, performance reporting, and budget alerts in the AWS

Cost Explorer.

Spot Instances

Amazon EC2 Spot Instances let you take advantage of unused EC2 capacity at up to a

90% discount compared to On-Demand prices. However, Spot Instances can be

interrupted when EC2 needs to reclaim the capacity. Spot Instances are frequently the

most cost-effective resource for flexible or fault-tolerant workloads and can also be used

for CFD cases. Spot availability varies by spot pool (for example, Region, Availability

Zone, and instance type). Consider your deployment strategy and interruption impact

when determining the most cost-effective resources for your case.

When a Spot Instance is interrupted, your case is interrupted. The interruption impact to

your case depends on how your CFD application handles the interruption, and you can

minimize this impact by checkpointing your simulation if supported. In addition, you can

minimize the risk of Spot Instance interruption by working with the Spot Advisor, being

flexible on instance type and Availability Zone, and using advanced features, such as

the capacity-optimized allocation strategy in EC2 Fleet, to launch your Spot Instances.

Overall, the need to occasionally restart a workload can be offset by the cost savings of

Spot Instances.

Combined Approach

You can easily combine Spot Instances with On-Demand and RIs to further optimize

workload cost with performance. For instance, in Figure 8, you could use Reserved

Instances for your daily workloads, Spot Instances for component exploration, and On-

Demand Instances for design review.

Amazon Web Services Computational Fluid Dynamics on AWS

 29

Figure 8: EC2 cost optimization for CFD cases

Conclusion

This whitepaper describes best practices for using AWS for computational fluid

dynamics (CFD). The paper presents the advantages of using AWS for CFD workloads,

covers the getting started process, discusses AWS approaches for CFD, and addresses

the options for optimizing the HPC components for CFD workloads. Following the best

practices presented in this paper allows you to architect and optimize your environment

for CFD workloads.

Contributors

The following individuals and organizations contributed to this document:

• Aaron Bucher, HPC Specialist Solutions Architect, AWS

• Scott Eberhardt, Tech Lead for Aerospace, AWS

• Lewis Foti, HPC Specialist Solutions Architect, AWS

• Linda Hedges, HPC Application Engineer, AWS

• Stephen Sachs, HPC Application Engineer, AWS

• Anh Tran, HPC Specialist Solutions Architect, AWS

Amazon Web Services Computational Fluid Dynamics on AWS

 30

Further Reading

For additional information, see the following:

• HPC on AWS

• AWS Well-Architected Framework

• Introduction to HPC on AWS

Document Revisions

Date Description

March 2020 Original publication

https://aws.amazon.com/hpc
https://aws.amazon.com/well-architected
https://d1.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf

	Introduction
	Why CFD on AWS?
	Getting Started with AWS
	CFD Approaches on AWS
	Architectures
	Traditional Cluster Environments
	Cloud Native Environments
	Scripted Approach
	API Based
	CloudFormation Templates
	AWS Batch

	Software
	Installation
	Licensing
	Setup
	Create a Custom AMI
	Share an Amazon EBS Volume via NFS
	Use a Managed Shared File System

	Maintenance

	Cluster Lifecycle
	CFD Case Scalability
	Strong Scaling vs. Weak Scaling
	Running Efficiency
	Turn-Around Time and Cost

	Optimizing HPC Components
	Compute
	Network
	Storage
	Transferring Input Data
	Running your CFD Simulation
	Storing Output Data
	Archiving Inactive Data
	Storage Summary

	Visualization

	Costs
	On-Demand Instances
	Reserved Instances
	Savings Plans
	Spot Instances
	Combined Approach

	Conclusion
	Contributors
	Further Reading
	Document Revisions

