
Create a Serverless Content
Syndication Pipeline with AWS
Step Functions
Technical Guide

Published March 11, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Before you begin ... 2

Cost .. 2

Architecture overview .. 3

Procedural sections ... 6

Ingest .. 6

Processing .. 7

Testing the workflow .. 15

Source code ... 15

Conclusion ... 16

Contributors ... 16

Document revisions ... 16

About this guide

The entertainment industry is undergoing a fundamental shift from traditional media

concepts to digital on-demand offerings. As a consequence, many of our customers in

the media and entertainment industry are looking for ways to increase the reach of their

digital content. In a business model typically referred to as “syndication”, content is

distributed to a large number of partners that integrate it into their own consumer

products. These syndication workflows are typically event driven and stateless in

nature. This guide outlines how customers can build a cost-efficient and scalable

reference architecture based on the Amazon Web Services (AWS) serverless platform.

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 1

Overview

An important goal for many of our customers in the media and entertainment industry is

to increase the reach of their digital content. In a business model typically referred to as

“syndication”, content is distributed to a large number of partners that integrate it into

their own consumer products. A typical example for such a business-to-business-to-

consumer (B2B2C) model is a video streaming service that extends its reach by being

integrated into cable provider set-top boxes.

While this is an effective way to reach a wider audience, it often requires customizations

to deliver content according to partner specifications. This adds complexity and requires

source modifications such as:

• Image transformation (orientation, overlay images, filtering)

• Video formats (codecs, resolutions, cut versions, ad stitching)

• Delivery protocols (Amazon Simple Storage Service [Amazon S3], FTP,

Signiant, Aspera)

• Metadata format (XML, JSON, XLS, CSV)

A characteristic of these syndication workflows is that they are event-driven and

stateless. The systems responsible for handling syndication workflows can take

advantage of these characteristics by using a serverless architecture. Instead of paying

for servers running idle for a significant portion of time, the AWS serverless platform

enables users to design an event-driven architecture that has a number of benefits

compared to a traditional approach. These benefits include:

• Cost-effectiveness — Syndication applications in a traditional server setup idle

a significant amount of time while they wait for a processing task to arrive.

Being able to consume only the required compute capacity when it is needed

improves the cost-effectiveness of the whole solution.

https://aws.amazon.com/s3/

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 2

• Scalability — Traffic patterns in syndication applications are typically spiky.

Ingest or update operations tend to concentrate on certain dates during which a

large amount of content becomes available. The spiky traffic patterns get

amplified by the nature of workload where one input leads to many different

outputs. An example of this spike in traffic is a new season of a popular TV

show on a video streaming service. With n episodes in the season and m

partners, this content item leads to n*m invocations of the same process at the

same time. The result is that systems are either over-provisioned to account for

hard-to-predict peak loads, or are incapable of keeping up with demand.

• Maintainability — With an increasing number of partners, system complexity

grows and becomes harder to maintain, because onboarding new partners

requires changes to the existing application. This dependency reduces the

velocity of onboarding new partners, as deployment of those new features must

be coordinated with the existing system.

This guide discusses an architecture that addresses these limitations by using

AWS serverless technologies to build an event-driven syndication workflow that

is cost-efficient, highly scalable, and easy to maintain.

Before you begin

While this guide includes detailed instructions and sample code, the intended audience

is already familiar with AWS. This guide assumes an understanding of core concepts

like service roles and does not explain these aspects in detail.

Other prerequisites for this guide include:

• An AWS account.

• Installed and authenticated AWS Command Line Interface (AWS CLI).

• Installed and set up AWS Cloud Development Kit (AWS CDK) for TypeScript.

Cost

One of the major advantages of the solution outlined in this document is its cost

effectiveness compared with traditional solutions, which typically run idle servers that

wait for new assets to process.

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fportal.aws.amazon.com%2Fbilling%2Fsignup%2Fresume&client_id=signup
https://docs.aws.amazon.com/en_pv/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 3

In contrast, with AWS Lambda, you pay only for the compute time you consume, so

you’re never paying for over-provisioned infrastructure. Three main consumption-driven

factors contribute to the cost of this solution:

1. Running business logic with AWS Lambda. You are charged for every

millisecond your code runs and the number of times your code is triggered.

AWS Lambda automatically scales your application by running code in

response to each event. See AWS Lambda Pricing to learn more.

2. Video transcoding with AWS Elemental MediaConvert. This workflow uses

AWS Elemental MediaConvert with on-demand pricing to transcode video files.

You pay only for what you use and there are no minimum fees. Charges are

based on per-minute usage in each output. See AWS Elemental MediaConvert

Pricing to learn more.

3. Storing files on Amazon Simple Storage Service (Amazon S3). This guide

uses Amazon S3 to store both input and output artifacts of our workflows. With

Amazon S3, you pay only for what you use. Amazon S3 enables you to scale

your storage resources up and down to meet fluctuating demands, without

upfront investments or resource procurement cycles. See Amazon S3 Pricing to

learn more.

To ensure that you are not billed for any accidental consumption of resources
you created as part of this guide, be sure to clean up the stack you created by
running cdk destroy.

S3 buckets that contain objects are not deleted when a stack is destroyed. If you
tested the workflow, this is likely the case. For those buckets you can run the
following destructive and irreversible AWS CLI command:

aws s3 rb s3://<bucket-name> --force

Architecture overview

This example implements a complete workflow for a fictitious media company called

Example Corp. Media (ECM) that syndicates video assets to their partner AnyCompany

Entertainment (ACE). The workflow starts with an upload of the source files to an S3

bucket. It ends with the video, image, and metadata of the video asset being processed

according to partner specs and stored in a second S3 bucket that serves as the delivery

destination.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/mediaconvert/
https://aws.amazon.com/mediaconvert/pricing/
https://aws.amazon.com/mediaconvert/pricing/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 4

This guide focuses on the workflow of ExampleCorp to AnyCompany, and also briefly

covers how additional partners can be integrated into the syndication process. The

AnyCompany branch is fully functional, while the OtherPartner is a stub implementation

that you can extend with your own business logic.

Syndication workflow

The preceding syndication diagram depicts the workflow built with AWS Step Functions,

a serverless function orchestrator that makes it easy to sequence AWS Lambda

functions and multiple AWS Services into business-critical applications.

With Step Functions, you can create and run a series of checkpointed and event-driven

workflows that maintain the application state. The output of one step acts as an input to

the next. Each step in your application runs in order, as defined by your business logic.

Step Functions automatically manages error handling, retry logic, and state. With its

built-in operational controls, Step Functions manages sequencing, error handling, retry

logic, and state, removing significant operational burdens from your team.

You will use the AWS Cloud Development Kit (CDK) with TypeScript to express the

following architecture as Infrastructure as Code, and employ further serverless

technologies like AWS Lambda or and AWS Elemental MediaConvert for our business

processes. Using the CDK enables you to apply software engineering best practices

(such as code reusability, Test Driven Development, and type safety) not only to your

application code, but extend them to the infrastructure definition as well.

The code snippets used in this guide are simplified to illustrate key concepts. The

complete and functional code is available on GitHub. After you deploy the CDK project,

the following architecture will be created in your AWS account:

https://aws.amazon.com/step-functions
https://aws.amazon.com/cdk/
https://github.com/aws-samples/serverless-content-syndication-with-aws-step-functions

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 5

Architecture of the content syndication workflow

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 6

Procedural sections

Ingest

In syndication workflows, the goal is to distribute media files from a single source to

multiple independent destinations. This process typically starts by source files being

made available for distribution in the ingest phase.

Here, the workflow is triggered by uploading files to Amazon S3. Amazon S3 is object

storage built to store and retrieve any amount of data from anywhere on the internet. It’s

a simple storage service that offers an extremely durable, highly available, and infinitely

scalable data storage infrastructure at low cost.

To upload your data to Amazon S3, you must first create an S3 bucket to store the

source files that go into your workflow as input. You then configure this source bucket to

call an AWS Lambda function for every created object. AWS Lambda lets you run code

without provisioning or managing servers, and you pay only for the compute time you

consume.

Amazon S3 has a native integration with Lambda that enables you to run code as a

response to events in S3. In this case, you use a Lambda function to evaluate if all

required files for the source asset are already uploaded to the bucket. Files uploaded to

the bucket must to adhere to the following structure:

s3://<bucketname>/<assetId>/*

In particular, the Lambda function expects a file

s3://<bucketname>/<assetId>/manifest.json that describes where to find video,

image, and metadata information for this asset.

{

 "Video": "video.mp4",

 "Image": "image.jpg",

 "Metadata": "metadata.json"

}

If Lambda determines that the bundle is complete, it starts the syndication workflow by

calling StepFunctions.startExecution via the AWS SDK for JavaScript.

StepFunctions.startExecution({

 input: JSON.stringify({..}),

 name: `S3UploadTriggeredExecution${Date.now()}`,

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 7

 stateMachineArn: "arn:aws:.."

}).promise();

The following CDK code defines an S3 bucket, Lambda function, and Step Function

state machine. It also defines permissions and describes relationships between the

components. S3 requires permission to invoke the Lambda function on your behalf for

new S3 events; the Lambda function requires permission to read from the S3 bucket

and start the state machine.

const stateMachine = .. // Defined elsewhere

const objectCreatedLambdaHandler = new lambda.Function(this,

`FileUploadLambda`, {

 runtime: lambda.Runtime.NODEJS_12_X,

 code: lambda.Code.fromAsset(..),

 // More config params

});

objectCreatedLambdaHandler.addToRolePolicy(new

iam.PolicyStatement({

 effect: iam.Effect.ALLOW,

 actions: ['states:StartExecution'],

 resources: [stateMachine.stateMachineArn]

}))

sourceBucket.addObjectCreatedNotification(new

s3notifications.LambdaDestination(objectCreatedLambdaHandler))

sourceBucket.grantRead(objectCreatedLambdaHandler)

Processing

Identify relevant partners

Typically, not every partner is entitled to receive every asset, so the first step in your

workflow is to determine which partner-specific processing steps are actually required.

In a real-world scenario, this information is typically retrieved from a license

management system, but for this sample, the Lambda function returns a static result:

function DetermineRelevantDestination(event: any) {

 event.Destinations = {

 ACE: true,

 OtherProvider: false

 };

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 8

 return event;

}

You then use a Step Functions Choice state to evaluate the output of this Lambda

function and determine which path to follow. In this case, the check for Provider A

passes, and the state machine enters the ProviderACEParallelProcessing flow.

For OtherProvider, the check fails, and the branch for Provider B ends with no action

required.

isProviderEnabled(providerName: string) {

 return

sfn.Condition.booleanEquals(`$.Destinations.${providerName}`,

true);

}

const noActionRequiredForACE = new sfn.Pass(this,

"NoActionRequiredACE", {

 result: Result.fromObject(..)

})

const noActionRequiredForOther = new sfn.Pass(this,

"NoActionRequiredOther", {

 result: Result.fromObject(..)

})

const ProviderACEParallelProcessing = // Processing steps for ACE

const ProviderOtherParallelProcessing = // Processing steps for

OtherProvider

const isProviderACE = new sfn.Choice(this, 'ProviderACE')

 .when(isProviderEnabled("ACE"), ProviderACEParallelProcessing)

 .otherwise(noActionRequiredForACE);

const isProviderOther = new sfn.Choice(this, 'ProviderOther')

 .when(isProviderEnabled("OtherProvider"),

ProviderOtherParallelProcessing)

 .otherwise(noActionRequiredForOther);

Parallel processing of video, image, and metadata

After determining the relevant partners for a video asset, the workflow now starts

processing those assets for each partner. ACE assumes the following specification:

• Video — must be transcoded to 720p using the H265 codec.

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 9

• Metadata — must be converted to XML.

• Image — must be black and white with an AWS logo in the bottom-left corner.

Transformation of the image

As a next step, create three Lambda functions that process video, image, and metadata

according to ACE specs. All of those functions require permissions to read from the

source bucket and write to the destination bucket.

const theFunction = new lambda.Function(this,

`CDKFunctionIdentifier`, {

 runtime: lambda.Runtime.NODEJS_12_X,

 code: lambda.Code.fromAsset(..),

 // ..

});

sourceBucket.grantRead(theFunction)

providerABucket.grantReadWrite(theFunction)

Images and metadata

Images and metadata are handled in a similar fashion, with a synchronous Lambda

function each. Each of these Lambda functions contains the business logic required to

transform the source data into the partner-specific formats. This sample code depends

on two external libraries to process the image and metadata:

• Jimp is an image processing library for Node written entirely in JavaScript, with

zero native dependencies.

https://github.com/oliver-moran/jimp

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 10

• xml-js is a convert utility that allows us to convert XML to JSON in a simple way.

The recommended way to manage those dependencies are Lambda Layers. AWS

released Lambda Layers to provide a mechanism to externally package dependencies

that can be shared across multiple Lambda functions. Lambda layers reduce lines of

code and size of application artifacts, and simplify dependency management.

With the CDK, creating a Lambda Layer and adding it to a Lambda function can be

done in just a few lines of code.

const dependencies = new lambda.LayerVersion(this, '..', {

 code: lambda.Code.fromAsset(path.join(__dirname, '..', '..',

'src', 'lib')),

 compatibleRuntimes: [lambda.Runtime.NODEJS_12_X]

 // ..

});

new lambda.Function(this, `..`, {

 runtime: lambda.Runtime.NODEJS_12_X,

 code: lambda.Code.fromAsset(..),

 layers: [dependencies],

 // ..

});

This snippet describes that the content of folder src/lib should be used for this

Lambda Layer. AWS Lambda searches for subfolders that match the compatible

runtimes, in this case src/lib/nodejs. All dependencies found (node_modules for

nodejs) for compatible runtimes are injected into the runtime environment of the

Lambda functions to which the Lambda Layer is attached.

For the Lambda function that transforms the image, it’s sensible to increase the function

timeout (timeout: cdk.Duration.minutes(2)) to avoid timeouts while processing

large images. You should also increase the allocated memory to 1024MB to speed up

the computation. To find the best parameters for your Lambda functions, consider tools

like AWS Lambda Power Tooling.

The code for metadata and image processing in this example is similar and follows the

same pattern:

1. Get input from the state machine via the event parameter.

2. Retrieve the file from the source bucket via the AWS SDK.

3. Create a new file by applying respective transformation.

https://github.com/nashwaan/xml-js
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html#configuration-layers-using
https://github.com/alexcasalboni/aws-lambda-power-tuning

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 11

4. Save the new file to the output bucket via AWS SDK.

5. Return the output to the state machine.

function ProcessFile(event: any) {

 const file = await S3.getObject({

 Bucket: event.bucketName,

 Key: event.objectKey

 }).promise();

 const transformedFile = // do required transformation

 await S3.putObject({

 Body: transformedFile,

 Bucket: OUTPUT_BUCKET_NAME,

 Key: event.objectKey

 }).promise();

 return {

 AssetId: event.assetId,

 Bucket: OUTPUT_BUCKET_NAME,

 Key: event.objectKey,

 Type: "Image" // respectively "Metadata"

 };

}

Video

In contrast to metadata and image, the transcoding of a video file is a long-running task

that is not well suited to be handled by a synchronous process for two reasons:

• Lambda functions have a maximum timeout of 15 minutes, and transcoding

jobs can (and most of the time will) run longer than that.

• Transcoding video files with AWS Elemental MediaConvert is an asynchronous

operation. While the acknowledgement for the retrieval of a transcoding job is

synchronous, the results of a transcoding job are communicated via events in

Amazon EventBridge.

Amazon EventBridge is a serverless event bus that makes it easy to connect

applications together. EventBridge delivers a stream of real-time data from event

sources and routes that data to targets like AWS Lambda.

To account for this asynchronicity, configure your state machine to halt until the results

of the associated transcoding job are retrieved. Do this by configuring the

ProcessVideo step in the state machine as a Callback Task.

https://aws.amazon.com/eventbridge/

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 12

const lambdaHandler = new lambda.Function(this, `..`, {..});

const videoLambdaTask = new tasks.LambdaInvoke(this,

`ProcessProviderAVideo`, {

 lambdaFunction: lambdaHandler,

 payload: sfn.TaskInput.fromObject({

 token: sfn.JsonPath.taskToken,

 // ..

 }),

 integrationPattern: sfn.IntegrationPattern.WAIT_FOR_TASK_TOKEN

});

This setting configures this task to be asynchronous:

integrationPattern: sfn.IntegrationPattern.WAIT_FOR_TASK_TOKEN

Step Functions then generates a unique Task Token and holds the execution. It

resumes after it either reaches a defined timeout, or the Task Token is used to submit

the results of the asynchronous process back to the waiting task. This is depicted in the

architectural diagram in the Architecture overview section of this document.

The Lambda function uses the AWS SDK to trigger a transcoding job in AWS Elemental

MediaConvert. MediaConvert enables you to add up to ten different key-value pairs of

user data to each transcoding job. This enables you to attach the task token to the

transcoding job and later link it back to your state machine.

const params = {

 JobTemplate: JOB_TEMPLATE_NAME,

 Queue: MEDIA_CONVERT_QUEUE_ARN,

 Role: MEDIA_CONVERT_ROLE_ARN,

 Settings: {

 // Transcoding settings

 },

 UserMetadata: {

 StepFunctionTaskToken: event.token

 }

};

await MediaConvert

 .createJob(params)

 .promise();

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 13

Once a MediaConvert job finishes, an EventBridge event is triggered, and you can

again react on this event by running code with AWS Lambda. The following snippet

defines the required Events Rule, wires it to the Lambda function, and grants

permissions that allow it to perform the states:SendTask* action on the state

machine.

const transcodingFinishedLambda = // The Lambda function

new events.Rule(this, 'TranscodingFinished', {

 ruleName: "MediaConvertForSyndicationFinished",

 eventPattern: {

 source: ["aws.mediaconvert"],

 detailType: ["MediaConvert Job State Change"]

 },

 targets: [new

eventtargets.LambdaFunction(transcodingFinishedLambda)]

});

transcodingFinishedLambda.addToRolePolicy(new iam.PolicyStatement({

 effect: iam.Effect.ALLOW,

 actions: ['states:SendTask*'],

 resources: [stateMachine.stateMachineArn]

}))

When a MediaConvert job finishes, transcodingFinishedLambda is called with the

details of the job. These details contain the user data that was submitted when creating

the job. This information can now be used to resume the state machine and

appropriately handle success or failure of the transcoding job.

const token = event.detail.userMetadata.StepFunctionTaskToken;

if (event.detail.status === "COMPLETE") {

 await StepFunctions.sendTaskSuccess({

 output: // JSON payload for the next step in the

statefunction, i.e. video path

 taskToken: token

 }).promise();

}

if (event.detail.status === "STATUS_UPDATE" || event.detail.status

=== "PROGRESSING") {

 await StepFunctions.sendTaskHeartbeat({

 taskToken: token

 }).promise();

}

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 14

if (event.detail.status === "ERROR" || event.detail.status ===

"CANCELED") {

 await StepFunctions.sendTaskFailure({

 error: event.detail.errorMessage,

 taskToken: token

 }).promise();

}

Post-processing

After all three parallel processing steps succeed, you will find three generated output

files in the destination bucket. The task after a parallel processing flow retrieves the

output of all preceding parallel tasks as its input. This enables you to collect the output

from the previous processing steps and proceed with post-processing the data. Typical

post-processing steps are encrypting files, packaging a zip bundle, or starting

distribution of the files.

In this implementation, the code calculates the checksums of the created files and ends

the partner-specific workflow with the following response:

{

 Output: {

 Bucket: // output bucket,

 Checksums: // checksums,

 Files: // files

 },

 Provider: "ACE",

 Status: "PROCESS_OK"

};

As discussed in the beginning of this document, not every partner has licenses for every

content. When the state machine determined that a certain partner is not entitled to

receive the content (OtherPartner in this case), the workflow ends at the Identify

relevant partners task and returns a similar response.

{

 Provider: "OtherProvider",

 Status: "IGNORED"

}

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 15

For this guide, you implemented a simple Lambda function that gathers these provider-

specific responses for the complete workflow. Typical use cases at this stage are to

keep track of the status of the syndication or notify content operators on changes in the

delivery.

Testing the workflow

In this guide, you learned the CDK code required to create the required resources, grant

required permissions, and wiring connect it together. After deploying the stack by

following the instructions in the GitHub repo, you now have a fully functioning workflow

that you can test by uploading files to the source bucket.

The GitHub repository contains a folder called fixtures that contains sample files and a

script to upload them to your source bucket. Run source upload.sh

<YOUR_BUCKET_NAME> to run the script and trigger your state machine. You can now

watch in the web console how the state machine runs each task and creates video,

image, and metadata files in the process.

Workflow diagram

Source code

The code snippets used in this guide are simplified to illustrate key concepts, but the

complete and functional code is available on GitHub. Follow the instructions in the

repository to set up a fully functioning syndication workflow.

https://github.com/aws-samples/serverless-content-syndication-with-aws-step-functions

Amazon Web Services Create a Serverless Content Syndication Pipeline with AWS Step Functions

 16

Conclusion

In this guide, you used AWS Step Functions to define a serverless workflow to

syndicate video content. The guide showed a lean solution that is cost-efficient and

requires zero upfront investment. It only incurs costs for the actual usage, with no idle

resources running, when no content is syndicated.

Horizontally scalability of the solution is virtually unlimited, as more content simply

triggers more parallel runs of the state machine.

Adding new content partners to the solution is a non-invasive change to the existing

workflows, and only requires adding another path in the provider selection step. Using

the CDK enables you to completely automate provisioning of the required AWS

resources, making the solution repeatable, maintainable, and resilient to human error.

Contributors

Contributors to this document include:

• Markus Ziller, Senior Solutions Architect, Amazon Web Services

Document revisions

Date Description

March 11, 2021 First publication

	Overview
	Before you begin
	Cost
	Architecture overview
	Procedural sections
	Ingest
	Processing
	Identify relevant partners
	Parallel processing of video, image, and metadata
	Images and metadata
	Video
	Post-processing

	Testing the workflow

	Source code
	Conclusion
	Contributors
	Document revisions

