
Archived
Developing and Deploying .NET

Applications on AWS
July 2020

This version has been archived. For the most recent version, see
https://docs.aws.amazon.com/whitepapers/latest/develop-deploy-dotnet-

apps-on-aws/develop-deploy-dotnet-apps-on-aws.html

https://docs.aws.amazon.com/whitepapers/latest/develop-deploy-dotnet-apps-on-aws/develop-deploy-dotnet-apps-on-aws.html

Archived

2

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

3

Contents

Abstract .. 5

Introduction .. 6

Working with Different Variants of .NET .. 6

Running .NET Applications in the AWS Cloud ... 10

Choosing a Host Operating System .. 11

Building Monoliths or Microservices .. 11

Migrating and Rehosting .NET Applications .. 13

Modernizing and Replatforming .NET Applications .. 17

Storage Solutions for .NET Applications on AWS ... 21

Artificial Intelligence and Machine Learning with .NET ... 22

Developing .NET Applications... 23

AWS .NET SDKs .. 23

AWS Toolkit for Visual Studio .. 24

AWS Toolkit for Visual Studio Code .. 24

AWS Tools for PowerShell... 25

Test Tools ... 25

Continuous Integration and Continuous Delivery ... 25

Infrastructure as Code.. 26

Using AWS Developer Tools ... 27

Seamless Integration with Azure DevOps ... 30

Security and Operations .. 32

Application Security .. 32

Monitoring ... 37

Conclusion ... 42

Contributors ... 43

Document Revisions.. 43

Archived

4

Archived

5

Abstract

As the standard application development framework for Microsoft Windows, developing

and deploying .NET applications on Amazon Web Services (AWS) is a key activity to

help organizations achieve the scale and agility offered by cloud computing.

Whether it’s migrating legacy .NET Framework applications or creating modern

microservices using .NET Core, AWS offers a wide range of end-to-end services, tools

and solutions for application development, deployment and maintenance, and continues

to be a preferred platform to run traditional and modern .NET applications.

This paper focuses on introducing the AWS tools and services that are directly suited

for .NET development and deployment. It serves as a starting point for .NET architects

and developers who wish to develop, build, deploy and maintain their applications on

AWS. It describes the approaches that can be used to deploy .NET applications on

AWS, and details the options, choices, and services that can help readers get the most

business value from their cloud-based .NET workloads.

Archived

 Page 6

Introduction

Developing and deploying applications are critical aspects of providing modern

organizations with new and innovative services while helping them maintain and

operate their existing capabilities. Although there are an increasingly diverse set of

application development technologies, .NET has been the de facto standard for

Windows since it was first released by Microsoft, and with a growing ecosystem of

alternative .NET implementations, it is increasingly being chosen for a variety of cross-

platform workloads.

Nonetheless, no application is an island, and .NET applications not only depend on

environments to execute in, but also require a plethora of additional services, including,

but not limited to, relational databases, queuing middleware, authentication and

authorization services, file storage, networking, caching, and a variety of operational

monitoring and logging services.

AWS provides a reliable, scalable and global infrastructure platform with a broad set of

global cloud-based services. With over 200 services that can be provisioned quickly

without upfront capital expenses, AWS provides the ideal environment to not only

deploy existing .NET applications, but also to create new, modern and innovative .NET

applications.

This paper focuses on the key AWS services for developing and deploying .NET

applications. For information on the full range of services, refer to the homepage on the

AWS website.

Working with Different Variants of .NET

Given the wide variety of .NET implementations, each of which provides slightly

different capabilities and packaging tools, it’s useful to understand the key differences

between the implementations to understand the full set of options and how best to run

.NET applications on AWS.

https://dotnet.microsoft.com/
https://aws.amazon.com/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 7

Figure 1: Common variants of .NET

.NET Framework

The .NET Framework is the original implementation of .NET and exclusively runs on

Windows. Although it is closed-source there are many open-source projects developed

on top of it, including the ASP.NET MVC, Entity Framework, and Enterprise Library.

Since it has been around for a long time, most legacy and existing .NET applications

are developed for the .NET Framework, and it also has the richest set of libraries,

assemblies, and an ecosystem of packages.

One of the key challenges for .NET Framework applications is that backward-

compatibility can be broken by changes in the framework and programming techniques

across different versions. There are a number of different versions, some of which are

in-place updates for previous versions and cannot be installed side-by-side. Therefore,

a server hosting an application running on an earlier version of .NET Framework, may

or may not be able to host applications that need newer versions at the same time.

.NET Framework is primarily used for monolithic applications, and with .NET Core set to

officially replace the .NET Framework when .NET 5 is released1, it is no longer

recommended for new applications.

You can run .NET Framework server applications in two ways:

1. Directly deployed on a Windows server

2. Running inside a Windows container

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 8

Both methods are supported on AWS, and in later sections of this paper, we discuss the

various deployment methods and tools suitable for running .NET Framework

applications.

Mono

The Mono project was launched shortly after the .NET Framework, and provides an

open-source, cross-platform implementation of the .NET Framework. Supporting both

32- and 64-bit systems on various architectures, Mono runs on a wide variety of

operating systems, including: Android, BSD, Linux, macOS, Solaris, Sony PlayStation 4,

and Windows.

With Mono version 6.4 supporting C# 8 and many features from the .NET Framework

4.7, it is increasingly used in niche use cases when cross-platform applications require

specific capabilities not available in .NET Core.

You can run Mono applications on AWS using Amazon Elastic Compute Cloud

(Amazon EC2), and containers, and it can run on Windows and the Linux operating

system.

Xamarin

Spawned as an offshoot from Mono for mobile development, Xamarin provides a

number of tools and libraries for developing GUI applications for a variety of operating

systems, including Android, iOS, macOS, tvOS, watchOS, and Windows.

Given its use for developing mobile applications, one of the key AWS services that

supports Xamarin development is AWS Device Farm, a service for testing Android and

iOS applications on a variety of physical devices, including phones and tablets.

Xamarin also implements the .NET Standard. Although it predominately runs on end-

user devices, you can run Xamarin applications on AWS using Windows running on

Amazon EC2, or within Amazon Elastic Container Service (Amazon ECS) or Amazon

Elastic Kubernetes Service (Amazon EKS) containers.

Unity

Unity is a cross-platform game engine supporting a wide range of platforms, and can be

used to create 2D and 3D games. It uses Mono as a scripting engine, and supports

.NET Standard 2.0.

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/device-farm/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 9

Although Unity client applications, by their very nature, run on end-user devices, you

can run Unity applications on Windows and Linux hosted on EC2. Additionally, since

many modern games provide multiplayer options and rely on various online services—

for example, for storing scores—you can also use Unity with the Amazon GameLift

game server hosting, or other tools described on the AWS Game Tech webpage.

Although it’s predominately used for games, Unity’s growing popularity for creating XR

content—including Virtual Reality, Augmented Reality, and Mixed Reality—means its

increasingly finding use for architecture, design, and engineering applications.

.NET Core

.NET Core is a modern, open-source, cross-platform implementation of .NET, and runs

on Windows, Linux and macOS. However, although .NET Core provides many of the

same interfaces and method signatures as the .NET Framework, there are a variety of

differences, making it potentially difficult to migrate applications from the .NET

Framework to .NET Core.

Although there are some limitations for migrating existing .NET Framework applications

to .NET Core, this can be simplified by checking compatibility using the .NET Portability

Analyzer, and by using the Windows Compatibility Pack.

.NET Core is the recommended platform for modern scalable and high-performance

applications, and, unlike .NET Framework, its design makes it ideal for targeting

microservices architectures. You can run .NET Core applications on AWS as direct

deployments on Windows or Linux EC2 instances, on Windows or Linux containers

running on EC2 instances, serverless Linux containers running on AWS Fargate, or

serverless AWS Lambda functions. These services are discussed in more detail in later

sections of this paper.

.NET Standard

Microsoft initially created Portable Class Libraries (PCL) to allow libraries to be shared

across different implementations of .NET. However, since .NET Core introduced some

additional cross-platform constraints, a new way was needed to share libraries across

different .NET implementations so Microsoft created the .NET Standard which defines a

common subset of libraries available in all compliant .NET implementations.

Although the .NET Standard is constantly evolving and now has multiple versions, by

developing libraries against a specific version of .NET Standard you can ensure DLLs

https://aws.amazon.com/gamelift/
https://aws.amazon.com/gametech/
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 10

can be reused in all flavors of .NET that support that version of .NET Standard, with no

need to change the code or recompile.

Running .NET Applications in the AWS Cloud

The AWS Cloud provides a number of benefits, including elasticity, scalability, and

flexibility, but many legacy applications were designed with the server hardware and

infrastructure being critical aspects of the application’s design.

Architects and software engineers had little choice but to shape .NET applications into

existing deployment environments, which generally involved a fixed set of resources

that often needed to be shared across a number of applications or services.

For the many legacy .NET applications, the most suitable compute choice for running

applications in AWS is using virtual machines, using either AWS Elastic Beanstalk or

Amazon EC2. In some cases, it’s also possible to run .NET applications in Windows

containers, and you can also run .NET applications on Amazon EC2 bare metal

instances, either by running directly on the Windows OS of the host instance or

alternatively by running Hyper-V on the instance.

In contrast, modern .NET applications can be designed to take advantage of all the

cloud benefits by using Infrastructure as Code (IaC) and DevOps practices. Not only

can modern applications use the traditional set of compute choices, but they can also

target various types of serverless environment, including AWS Fargate or AWS

Lambda.

Figure 2: AWS deployment targets for compute workloads

https://aws.amazon.com/blogs/compute/running-hyper-v-on-amazon-ec2-bare-metal-instances/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 11

Although the variety of compute choices can be daunting for new applications, a good

rule of thumb is to consider serverless options for innovative and highly-elastic

workloads, and then consider the various container options or virtual machines when

there are specific dependencies on the environment or when more precise control is

needed.

For legacy .NET applications, virtual machines are often considered the natural choice,

although the integration of Docker with Windows means the use of containers is

growing increasingly common, since they bring with them a number of benefits,

including immutable deployment and improved resource utilization.

Subsequent sections cover each of these compute choices in more detail. However,

prior to choosing a compute environment, you must choose an operating system for

hosting an application and choose a suitable architectural style.

Choosing a Host Operating System

Although Windows remains the natural choice for legacy applications using the .NET

Framework, the rise of .NET Core means Linux is now an equally viable choice for new

and future .NET applications. One of the challenges in choosing an OS is they have

broadly reached a state of commoditization, with the current focus on OS evolution

being largely about increased efficiency of resource use, as shown by the growing

popularity of containers, and the future lure of library operating systems.

Another factor driving the choice of OS is the current architectural wisdom to explicitly

declare and isolate dependencies, as promoted by the 12-factor app approach, which

also aligns to the single process model of containers. Given the rich set of services built

into Windows, it is common for legacy .NET Framework applications to implicitly depend

on a variety of services—such as Active Directory for authentication and authorization,

COM+ for distributed transaction processing, or DFS for file sharing—but with the move

towards explicitly declaring and isolating such dependencies, relying on Windows’

intrinsic features no longer holds the lure for .NET applications that it once did.

Building Monoliths or Microservices

One of the most common ways to build enterprise applications is as a single, unified

application, in which all components are tightly coupled, and working from a shared

database. When the .NET Framework was released such monolithic applications were

widespread, and even today, it’s not uncommon to see ASP.NET applications with over

a hundred thousand lines of code, that have to be deployed to a single IIS instance.

https://aws.amazon.com/blogs/compute/applying-the-twelve-factor-app-methodology-to-serverless-applications/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 12

As enterprise applications grew bigger, new challenges began to emerge out of this

approach. The first problem is managing the resources available to an application. As

monolithic applications grow bigger, they invariably require more resources, from

compute and memory requirements, through to storage and network bandwidth.

Although these issues can be solved by scaling the application servers vertically up or

horizontally out, this approach naturally scales the whole application, even if a single

module needs the additional resources.

The second problem is complexity. Monolithic applications with tightly coupled modules

grow increasingly complex over time, which can make maintenance so complicated that

even the smallest changes require significant effort for development, testing, and

deployment. Although there’s an inherent simplicity in the design of monolithic

applications, the increasing complexity adds friction to the business need for agility.

Because of the challenges inherent in monolithic applications, many modern

applications have shifted to a new paradigm, commonly known as a microservices

architecture. Microservices are small services providing a bounded context of

functionality, each using their own data store, and predominantly integrating with other

services by using event-driven communication.

Although microservices introduce their own complexities, such as how to separate data

or how to distribute services, breaking monolithic applications into loosely coupled

microservices can help overcome many of the problems with monolithic applications.

Aside from the architectural benefits of microservices, the loose coupling in

microservices means each service can be deployed and scaled independently. By

ensuring each microservice has its own development lifecycle, DevOps teams are no

longer tied to other team’s release cycles, and can therefore increase their deployment

frequency, improving their agility, and increasing the business’s ability to respond to

change.

Although .NET Core can be used for a variety of application architectures, its lightweight

and cross-platform nature makes it ideal for microservices, and it’s also highly suitable

for deploying to modern execution environments, including containers and serverless

functions.

The following sections of this paper include several ways you can deploy both

monolithic and distributed applications in the AWS Cloud. Monolithic deployment

patterns are mostly applicable for legacy enterprise applications, or for developing new

applications with limited complexity or scaling requirements, whereas microservices are

commonly chosen for building optimized modern applications.

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 13

For more information on how to design and develop microservices, see the

Implementing Microservices on AWS whitepaper.

Migrating and Rehosting .NET Applications

When migrating any type of application to AWS, including legacy .NET Framework

applications, there are a number of different approaches. These approaches are known

as the six Rs of migration.

Figure 3: Six Rs of migration

Although there’s a number of reasons to modernize applications by re-platforming or

refactoring—including optimizing or adding new features—the simplest way to migrate

.NET applications to AWS is to rehost the applications using either AWS Elastic

Beanstalk or Amazon EC2.

AWS Elastic Beanstalk

In many cases, you may not require full control over the underlying infrastructure used

for hosting an application and may prefer a managed environment, allowing you to

focus on the application and simply deploy application updates when needed.

AWS Elastic Beanstalk is the fastest and simplest way to deploy .NET applications on

AWS. Developers find AWS Elastic Beanstalk convenient, because, for the most part,

you do not have to change the way you have always worked. As a .NET developer, you

can continue using your favorite programming languages with .NET Framework or .NET

Core, and once you’ve completed developing your application on your computer, your

https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
https://aws.amazon.com/elasticbeanstalk/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 14

application will be ready within minutes to use without any infrastructure or resource

configuration work.

The key advantage to this model is that it is not too different from the way most existing

and legacy applications work. Therefore, it can be an excellent option to maximize the

benefits of deploying legacy applications in the cloud, without a significant migration

overhead.

For example, you can take an existing ASP.NET web application that uses Internet

Information Services (IIS) and move it into AWS Elastic Beanstalk. You can simply use

Windows Web Application Migration Assistant to quickly select the application and allow

the tool to handle the rest of migration process, including packaging, creating the Elastic

Beanstalk environment, and uploading the application package into it.

AWS Elastic Beanstalk provisions, operates, maintains, scales, monitors, heals,

updates, and patches Windows and IIS for you, enabling you to focus on your

application code rather than its operating environment. While providing all these

benefits, AWS Elastic Beanstalk also allows you to retain complete control over your

application resources, allowing you to seamlessly make changes to the way your

applications run inside AWS Elastic Beanstalk environment.

To get started with AWS Elastic Beanstalk you create Environments for your

application, such as Dev, Test, or Production. Every time you make an application

change, you compile and package your new build and upload it as a new Application

Version in your AWS Elastic Beanstalk Application. This allows you to deploy any

application versions across your application environments with a few clicks.

You can also choose to deploy one or more applications in each of your AWS Elastic

Beanstalk environments, using deployment manifests to configure multiple applications

to run in each IIS web-server. It also allows you to control Application Pools associated

with your web applications in IIS, therefore making it possible to host multiple

applications with a shared application pool, or assigning dedicated application pools to

each application.

You can further customize and configure your web-server in AWS Elastic Beanstalk

using configuration files, which let you install additional software packages, files,

windows services, or other dependencies your application needs to run.

AWS Elastic Beanstalk also supports several deployment options, including All at once,

Rolling, Rolling with additional batch, and Immutable. Furthermore, through integration

with Amazon Route 53, AWS Elastic Beanstalk supports environment URL swapping,

therefore making it easy to implement a blue-green deployment model.

https://aws.amazon.com/blogs/devops/migrating-asp-net-applications-to-elastic-beanstalk-with-windows-web-application-migration-assistant/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/dotnet-manifest.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 15

There are no additional costs associated with using AWS Elastic Beanstalk, and you

only pay for the underlying resources used to run your application, such as the EC2

instances, load balancers, and Amazon RDS database instances.

Although AWS Elastic Beanstalk can help you quickly move your .NET applications to

AWS with minimal changes, if you need more control of the underlying infrastructure,

then directly using Amazon EC2 virtual machines allows you to fine tune your

infrastructure configuration.

Amazon EC2 Instances

Amazon Elastic Compute Cloud provides a flexible compute service with a wide variety

of virtual machines and bare metal instance types.

AWS is responsible for operating everything up to host OS and hypervisor level, giving

you full access and control over the guest operating system. AWS also provides tools,

features and services that enable you to create a fully automated and self-managing

infrastructure, such as AWS Auto-scaling and AWS Systems Manager. However, you

are responsible for patching, updating, securing, and maintaining the Windows or Linux

OS, application server, web server, and any application code, either using AWS-

provided tools or features, or any other custom methods. However, since you have full

control of your environment, you also have complete flexibility to configure your

environment as you need. For example, you may want to use Nginx or Apache HTTP

Server instead of IIS as your web server.

Amazon EC2 instances provide the highest level of flexibility and control in the cloud.

This flexibility often proves essential for legacy applications, but can also be useful for

many modern applications. You have the choice of both x86 (32-bit), as well as x64 (64-

bit) platforms in Amazon EC2. Furthermore, you have access to most popular Linux

versions and all Windows Server versions from Windows Server 2008 to Windows

Server 2019. For modern Windows applications, you can also use Semi-Annual

Channel Windows releases, including 1709, 1803, 1809 and 1903.

For any of these, you can choose from Amazon Machine Images (AMIs) provided by

AWS, numerous community and AWS Partner AMIs available in the AWS Marketplace,

or you can create or import your own images.

In addition to these choices, you can also benefit from various features, such as

automatic scaling, self-healing, and deep integration with other services, such as AWS

Identity and Access Management (IAM), AWS Key Management Service (AWS KMS),

or Amazon Elastic Block Storage (Amazon EBS).

https://aws.amazon.com/marketplace

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 16

There are a variety of ways you can deploy your .NET applications on Amazon EC2

instances, from manual deployments to using Infrastructure as Code with AWS

CloudFormation templates and Continuous Integration/Continuous Deployment

pipelines.

AWS Systems Manager

AWS Systems Manager is a service for hybrid and cross-platform infrastructure

management. Although it is designed to help system-administrators maintain their

infrastructure resources, some of its capabilities are also extremely useful for

developers and DevOps engineers.

One of the most basic application requirements is the need for configuration variables,

for example, an external service’s URL, or a database connection string. A common

practice is to store these variables in an app.config or web.config configuration file, or to

store them in environment variables. However, this requires updating the configuration

on all the application servers, which requires a significant effort when working with a

multi-server environment. The AWS Systems Manager Parameter Store provides an

alternative of a centralized location for storing configuration variables, allowing

configuration values to be updated in a single place and retrieved by all application

instances.

Another common use case handled by Systems Manager is the ability to run a particular

command on multiple servers. For example, you may have a PowerShell cmdlet to

delete files from a local application cache. One way to run the command is to open a

Remote Desktop Protocol (RDP) session to the target servers and manually run the

command. However, if the command must run on dozens, hundreds, or even thousands

of servers, this approach becomes increasingly impractical. Fortunately, you can use

AWS Systems Manager Run Command to securely run the command at any scale.

You can also use AWS Systems Manager State Manager for handling drift-

management and ensuring compliance of your target server configurations. State

Manager supports PowerShell Desired State Configuration (DSC) and enables you to

use DSC Managed Object Format files to define your desired state using declarative

language. For example, you can specify the installed state of Windows Communication

Foundation (WCF) as the desired state on a server, and DSC will ensure WCF is

installed. AWS Systems Manager augments PowerShell DSC through integration with

Parameter Store, Amazon Simple Storage Service (Amazon S3) and Amazon

CloudWatch.

https://aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-state.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 17

For more details, see Run compliance enforcement and view compliant and non-

compliant instances using AWS Systems Manager and PowerShell DSC on the AWS

Management Tools Blog.

Finally, you can use AWS Systems Manager Automation to simplify complex operations

and define dynamic workflows that orchestrate invocation of AWS Systems Manager or

any other AWS APIs in fully automated runbooks.

For example, you can define these steps in a document to update EC2 instances:

• Provision a new EC2 instance using an updated AMI

• Bootstrap the new instance and deploy the application in offline mode

• Shutdown the old instance

• Switch the new instance into online mode

By specifying these steps in a Systems Manager Automation document, the steps can

be saved as a reusable runbook, ensuring updates can be carried out consistently and

shared between members of the development and operations teams.

Modernizing and Replatforming .NET Applications

With the push to unlock business agility by using modern development and operations

practices known as DevOps, modern applications are increasingly designed for

flexibility using the principles of evolutionary design and a variety of best practices.

From the use of immutable infrastructure to increase deployment consistency, to the

use of automation, Continuous Integration (CI), and Continuous Deployment (CD) to

speed up delivery, there are a growing number of practices that help deliver business

value.

Although many of these approaches can be partially applied to traditional architectures,

modern application architectures are evolving to best take advantage of these modern

development practices. With the AWS Cloud increasing the speed of evolution, now is

the perfect time to design or replatform .NET applications to align with modern

practices.

Running Applications in Containers

Containers allow applications to be bundled with their own libraries and configuration

files, and then executed in isolation on a single OS kernel, bringing a number of

benefits, including:

https://aws.amazon.com/blogs/mt/run-compliance-enforcement-and-view-compliant-and-non-compliant-instances-using-aws-systems-manager-and-powershell-dsc/
https://aws.amazon.com/blogs/mt/run-compliance-enforcement-and-view-compliant-and-non-compliant-instances-using-aws-systems-manager-and-powershell-dsc/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 18

• Isolation and high-density: Containerization ensures application isolation both
in terms of security and data access, as well as resource allocation. It is
therefore a reliable solution to run multiple tasks or applications on the same
host. This approach allows you to maximize overall resource utilization and
minimize idle capacity, also known as a “high-density” deployment.

• Runtime packaging and seamless deployment: Containers include
application code or binaries along with all the dependencies needed to keep the
application running. This approach ensures the application behaves consistently
in all environments, from a developer laptop to a production environment. It also
greatly simplifies migrating applications from one host to another.

• High availability (HA): Container orchestrators provide an abstraction layer on
top of conventional hosting environments and keep track of running containers.
You no longer have to run applications, but rather tell the orchestrator which
applications are expected to run. The orchestration engine keeps track of the
existing state and evaluates it against the expected state and corrects as
needed. Consequently, if an application goes down the orchestrator immediately
spins up another container to run your application in the next available host.

• Resource management for distributed systems: Containerization is an
effective approach to run microservices and other types of distributed systems.
The deployment abstraction provided by containers allows you to focus on your
applications rather than their dependencies with underlying hosts and
infrastructure.

The following sections discuss the four container services available in AWS.

Amazon Elastic Container Service

Amazon ECS is a highly scalable and high-performance container orchestration service.

It has been natively developed in AWS and offers deep integration with AWS services

such as Elastic Load Balancing, Amazon Virtual Private Cloud (Amazon VPC), IAM,

AWS Batch, and Amazon CloudWatch.

Amazon ECS is suitable for a broad range of containerized applications, from long-

running applications and microservices, to batch jobs and High-Performance Computing

workloads, and supports both Linux and Windows containers. Linux containers are

available in Amazon Linux and other Linux distributions, and Windows containers are

available in Windows 2016 and later.

To use Amazon ECS, you can either use one of the prebuilt Amazon ECS optimized

AMIs to spin up a cluster of host instances, or you can build your own AMIs by adding

the Amazon ECS container agent to an existing or custom-built EC2 host.

For more information on running Windows containers on ECS, see Migrating .NET

Classic Applications to Amazon ECS on the AWS Compute Blog.

https://aws.amazon.com/blogs/compute/migrating-net-classic-applications-to-amazon-ecs-using-windows-containers/
https://aws.amazon.com/blogs/compute/migrating-net-classic-applications-to-amazon-ecs-using-windows-containers/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 19

Amazon Elastic Kubernetes Service

Kubernetes is one of the most popular open source orchestration engines for

containerized workloads, and allows you to run containerized applications using the

same toolset on-premises and in the cloud.

Amazon EKS makes it easy to deploy, manage and scale containerized applications

using Kubernetes on AWS by managing clusters of Amazon EC2 instances and running

containers on those instances. Amazon EKS provides a management plane for a highly

available Multi-AZ Kubernetes cluster, and you can join to it your additional worker

nodes as EC2 instances.

Since Linux containers are available in all versions of Kubernetes, you can run .NET

Core applications on any version of it. In contrast, Windows containers are only

available starting with Kubernetes 1.14, but they are only supported in Windows 2019

and later.

Amazon Elastic Container Registry

Amazon Elastic Container Registry (ECR) is a fully-managed, highly-available and

secure Docker container registry that helps developers store, manage, and deploy

Docker container images.

Amazon ECR is integrated with other AWS services, such as AWS IAM, and provides a

repository to store container images which you can then easily use from Amazon ECS,

AWS Fargate, and Amazon EKS.

AWS Fargate

AWS Fargate is a serverless compute engine for Amazon ECS and Amazon Elastic

Kubernetes Service (Amazon EKS) that abstracts away details of the underlying host

infrastructure such as the instance types, instance sizes, and host OS version.

By letting you focus on designing and building your applications and removing the need

to manage the underlying infrastructure, AWS Fargate can help and reduce the

operational overheads of using containers.

AWS Fargate supports Linux containers and is a powerful option for running .NET Core

applications. For more details, see Hosting ASP.NET Core applications using AWS

Fargate on the AWS Compute Blog.

https://aws.amazon.com/blogs/compute/hosting-asp-net-core-applications-in-amazon-ecs-using-aws-fargate/
https://aws.amazon.com/blogs/compute/hosting-asp-net-core-applications-in-amazon-ecs-using-aws-fargate/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 20

AWS App2Container (A2C)

AWS App2Container is a tool provided by AWS to help you modernize .NET and Java

applications into containerized applications. Containerizing existing applications

requires you to identify application dependencies, network port configurations, and

software delivery process. These tasks can be manual and time consuming as well as

error prone. Using App2Container, you simply select the applications you want to

containerize, and A2C analyzes your applications and automatically generates a

container image that is configured with the correct dependencies, network

configurations, and deployment instructions for ECS or Kubernetes. A2C provisions,

through CloudFormation, the cloud infrastructure and CI/CD pipelines required to deploy the

containerized .NET or Java application into production.

Porting Assistant for .NET

Porting Assistant for .NET is an analysis tool provided by AWS that scans .NET

Framework applications and generates a .NET Core compatibility assessment. .NET

Core is the future of .NET and new features and contributions are going to be

exclusively available in .NET Core. Furthermore, .NET Core applications are cross

platform and porting existing .NET Framework applications to .NET Core gives you

extra versatility and ability to run those applications on Linux to save cost and improve

performance. In most cases porting an application with the same code from .NET

Framework to .NET Core immediately yields significant performance gains.

However, porting applications to .NET Core can be a significant manual effort.

Application owners need to spend valuable time identifying the dependencies and APIs

that are incompatible with .NET Core, and estimating the level of effort involved. Porting

Assistant for .NET quickly scans .NET Framework applications to identify

incompatibilities with .NET Core, finds known replacements, and generates a detailed

compatibility assessment. This reduces the manual effort involved in modernizing your

applications to Linux.

Creating Serverless Applications with AWS Lambda

Containers provide a high level of flexibility; however, you still need to manage your

container images, including the guest OS and any application dependencies.

For example, suppose you need to deploy an ASP.NET Core application. In addition to

the application, the container image also must include a choice of guest OS, the .NET

Core runtime library, the ASP.NET Kestrel engine, and a web server such as Nginx or

Apache. Although this gives you more control over your runtime environment, it also

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 21

means additional undifferentiated efforts, and in most cases this level of control is not

required.

AWS Lambda solves this problem by providing a serverless Function-as-a-Service

(FaaS) model, which automatically manages the underlying compute resources for you.

C# code can be uploaded into a Lambda function, and everything else is handled by

AWS Lambda.

AWS Lambda provides the highest level of abstraction, simplicity, efficiency and

scalability for running .NET code in the cloud. It is simple because it allows developers

to run their code without having to worry about the infrastructure that runs it; efficient

because there is no charge when the code is not running; and scalable because it

seamlessly handles load fluctuations. AWS Lambda supports many of popular

programming languages, including .NET Core and PowerShell.

Lambda functions are often deployed behind API instances in Amazon API Gateway,

which provide managed endpoints that act as front doors for consuming applications to

access data or backend functionality. API Gateway handles all the tasks involved in

accepting and processing up to hundreds of thousands of concurrent API calls,

including traffic management, authorization and access control, monitoring, and API

version management. API Gateway can also be used with workloads running on EC2

instances or ECS tasks.

Although API Gateway helps manage well-defined APIs, when you don’t need the

governance features it offers, you can deploy Lambda functions behind an Application

Load Balancer (ALB), which allows load to scale elastically without having to maintain a

set of managed APIs.

For more information on how to create applications using AWS Lambda, see the

Serverless Architectures with AWS Lambda whitepaper.

Storage Solutions for .NET Applications on AWS

Most applications need various storage requirements, such as relational or NoSQL

databases, flat files, object storage, block storage, or various types of in-memory cache

tiers. .NET applications are no exception and depending on their functionalities, may

require one or more of these solutions.

AWS includes a number of purpose-built relational database services, such as Amazon

Relational Database Service (Amazon RDS), Amazon Aurora, and Amazon Redshift,

the fastest growing cloud data warehouse service,

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/redshift/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 22

There are also a number of specialized databases, including Amazon DynamoDB for

key-value and document storage, Amazon Neptune for graph data, Amazon Quantum

Ledger Database, and Amazon Managed Blockchain.

.NET applications can use Amazon Simple Storage Service (Amazon S3) for object

storage, and Amazon Elastic File Storage (Amazon EFS) for Linux-based shared file

systems, or Amazon FSx for Windows file shares.

Finally, Amazon Elastic Block Storage is an easy to use, high performance block

storage service designed for use with Amazon EC2 for both throughput and transaction

intensive workloads at any scale.

You can build extremely high-performance .NET applications using elasticity and

flexibility of managed AWS services for in-memory caching, such as Amazon

ElastiCache for Redis and Memcached, or Amazon Elasticseach Service.

Artificial Intelligence and Machine Learning with .NET

Artificial Intelligence (AI) and Machine Learning (ML) are increasingly being used to

solve new types of problems, and are becoming fundamental parts of many modern

applications.

AWS provides a rich set of services that aim to put AI and ML in the hands of every

developer. You can either choose from a set of pre-trained AI services—including

computer vision, language, recommendations, and forecasting—or you can build, train

and deploy custom models with support for all the popular open-source frameworks.

Amazon Rekognition allows you to add image and video analysis to your applications,

and can identify objects, text, and activities, and can also be used for facial recognition.

There are a number of services for working with language, allowing you to easily add

intelligence and process natural language in your .NET applications. Amazon

Transcribe automatically converts speech to text, making it simple to enable speech in

your applications. Amazon Textract extracts text from scanned documents, after which

you can use Amazon Comprehend to find insights or relationships in text, helping you to

extract key phrases, classify text, or analyze sentiment. Amazon Translate allows you to

translate text between over 25 languages, and helps you build .NET applications that

can localize content.

Amazon Polly turns text into lifelike speech, and Amazon Lex allows you to build

conversational interfaces and chatbots into any application using voice and text.

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/ebs/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/textract/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/translate/
https://aws.amazon.com/polly/
https://aws.amazon.com/lex/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 23

Amazon Lex can recognize the intent from a piece of text, enabling you to orchestrate a

conversation and build applications with highly engaging user experiences.

Amazon Personalize allows you to enhance your applications with real-time

personalization and recommendations, by working with an activity stream from your

application, identify what is meaningful, and helping you serve personalized content to

users.

Finally, Amazon Forecast is an accurate time-series forecasting service, allowing your

application to process historical time-series data and to produce meaningful forecasts

based on trends in the data.

Although the pre-trained AI services allow you to enhance your .NET applications with a

rich set of capabilities, you can also build your own machine learning models. Amazon

SageMaker is a managed service that enables developers and data scientists to quickly

build, train, and deploy machine learning models. Using the AWS .NET SDK, you can

set up, configure, and execute Amazon SageMaker jobs, allowing you to push new ML

boundaries.

Access from .NET applications to all the pre-trained services and to Amazon

SageMaker is available through the AWS SDK for .NET.

Developing .NET Applications

One of the fundamental requirements when developing .NET applications to run or

integrate with AWS services is having easy-to-use tools to help access the services,

integrate with the development workflow and tooling, and enable higher levels of

developer productivity.

Although choosing the right tools depends on numerous factors—including development

approach, team composition, and organizational standards—AWS provides a rich set of

tools that can be used together or alone to help .NET developers make the most of the

services.

AWS .NET SDKs

One of the great advantages AWS offers over traditional, on-premises resources is that

its services can be accessed through REST APIs, enabling integration from any

programming or scripting environment capable of stringing together HTTPS requests

and sending them over the internet.

https://aws.amazon.com/personalize/
https://aws.amazon.com/forecast/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sdk-for-net/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 24

However, although REST APIs are flexible, it’s easier for developers to work in their

native language than it is to work with REST APIs, and the AWS SDK for .NET helps

developers get started quickly by providing native .NET APIs to the AWS services.

The AWS SDK for .NET is distributed as multiple NuGet packages, or as a single MSI

installer, and contains assemblies for .NET Standard 2.0, and also .NET Framework 3.5

and .NET Framework 4.5.

As the standard for .NET package management, NuGet is the preferred option for

installing the SDK, and provides a number of service-specific packages, such as

AWSSDK.EC2 or AWSSDK.S3, each of which depends on the AWSSDK.Core

package, which is automatically installed when you reference a service package in the

NuGet Package Manager.

Alternatively, you can install all of the packages using a single MSI installer, which also

includes the AWS Toolkit for Visual Studio, and the AWS Tools for Windows

PowerShell.

If you’re working with older versions of .NET that don’t support .NET Standard 2.0, then

the versions of the SDK prior to v3.5 also contain Portable Class Library assemblies,

and the AWS Mobile SDK for Unity and AWS Mobile SDK for .NET and Xamarin are

available for older versions of Unity and Xamarin.

AWS Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is a plugin for Visual Studio that makes it easier to

develop, debug, and deploy .NET applications that use Amazon Web Services.

The toolkit supports Visual Studio versions 2008 and later for Windows. The latest

versions are distributed in the Visual Studio Marketplace, and but all versions can be

downloaded from the AWS Toolkit for Visual Studio web page.

The toolkit contains a rich set of features that help configure and deploy new solutions,

and can be broken down into a number of core features, most of which are available

from the AWS Explorer in Visual Studio’s View menu.

AWS Toolkit for Visual Studio Code

Software development teams working on codebases written in multiple programming

languages and for multiple platforms increasingly choose Visual Studio Code as their

Integrated Development Environment (IDE), due to its flexibility and low resource

requirements.

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/mobile/sdkforunity/developerguide/what-is-unity-plugin.html
https://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/Welcome.html
https://aws.amazon.com/visualstudio/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 25

The AWS Toolkit for Visual Studio Code is an open source plug-in for Visual Studio

Code that helps developers get started faster and provides an integrated experience for

developing, deploying, and testing serverless applications.

AWS Tools for PowerShell

PowerShell is a scripting environment built on .NET, and is widely used as the standard

scripting tool on Windows, but is also available for MacOS, and Linux. Although

primarily used for executing OS-level management scripts, it’s frequently used by .NET

developers as part of their build and deployment pipelines.

AWS Tools for PowerShell lets developers directly access AWS services from within

PowerShell scripts, allowing them to manage and interact with AWS services with their

standard toolset, and removing the need to call the AWS SDK for .NET directly from

within scripts.

Test Tools

Test automation plays a critical part in DevOps, and is the fundamental development

practice that enables continuous integration and continuous delivery.

Many developers opt to run their integration tests in environments hosted in AWS.

However, if you prefer to execute some tests locally, AWS SAM Local and the AWS

.NET Mock Lambda Test Tool can help when developing AWS Lambda functions. In

addition, the Localstack project is an open source tool that runs AWS APIs locally and

can be called directly from your test suites.

Finally, when creating mobile applications using Xamarin, the AWS Device Farm gives

access to a wide variety of physical phones and devices, providing an effective

environment for testing Android and iOS applications.

Continuous Integration and Continuous Delivery

Software development has always included a number of delivery activities, such as

building and packaging new releases, testing release integration with other systems,

and finally deploying new application releases in a production environment.

In the traditional delivery approach, when projects took months to deliver a functioning

application, these activities were mostly manual. However, as the frequency of software

delivery grows to multiple versions per week or per day, these undifferentiated activities

become delivery bottlenecks.

https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/powershell/
https://github.com/thoeni/aws-sam-local
https://aws.amazon.com/blogs/developer/debugging-net-core-aws-lambda-functions-using-the-aws-net-mock-lambda-test-tool/
https://aws.amazon.com/blogs/developer/debugging-net-core-aws-lambda-functions-using-the-aws-net-mock-lambda-test-tool/
https://github.com/localstack/localstack

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 26

Continuous Integration and Continuous Delivery are the combination of tools and

techniques to help overcome these bottlenecks by automating the integration and

delivery of applications.

Infrastructure as Code

Modern deployment patterns require that applications—and the services and

infrastructure and those applications depend on—can be provisioned and deployed

reliably and consistently.

Given the complexity of deploying modern applications and infrastructure, doing so in a

repeatable manner requires the deployment to be automated, and the practice and

processes of automating infrastructure deployment are commonly known as

Infrastructure as Code.

AWS CloudFormation

AWS CloudFormation provides a declarative language that lets you describe and

provision all the infrastructure resources in your AWS cloud environment.

Using a simple text file called an AWS CloudFormation template, you can model

resources across all regions and accounts, with the file serving as the single source of

truth for your cloud environment. By keeping CloudFormation templates along with your

application code in the same code repository, you can ensure code changes are

bundled together with infrastructure changes, ensuring integrity and enabling reliable

deployment.

Templates can be written using JavaScript Object Notation (JSON) or YAML. There are

many predeveloped templates you can use as starting point, or you can create your

templates from scratch.

You can use a variety of methods to deploy templates and provision resources,

including the AWS Management Console, AWS Command Line Interface (AWS CLI),

PowerShell or the AWS SDK for .NET.

A deployed version of a CloudFormation template is called a CloudFormation Stack.

You can instantiate one or multiple stacks based on each CloudFormation template, as

well as delete already deployed stacks and all resources associated with them.

Therefore, AWS CloudFormation is also a powerful way to quickly deploy, duplicate,

provision or deprovision resources of your applications.

https://aws.amazon.com/cloudformation/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 27

CloudFormation Stacks are always deployed in a single AWS account and Region, but

you can use CloudFormation StackSets to deploy your templates across multiple AWS

accounts and regions.

AWS Cloud Development Kit

Although CloudFormation provides a flexible mechanism to define cloud infrastructure

as code, its use of declarative syntax is not well suited in all situations.

For infrastructure requiring a high number of inter-related services, or that is best

defined using iteration, the resulting CloudFormation template can easily grow to

hundreds or thousands of lines, which raises its own complications.

The AWS Cloud Development Kit (AWS CDK) allows you to define cloud resources in

various programming languages, including TypeScript, JavaScript, Python, C#, and

Java. Developers use one of the supported languages to write code that defines

reusable cloud components known as Constructs, which can then be composed into

Stacks and Apps.

Once you’ve defined an AWS CDK App, you can use the AWS CDK toolkit to

synthesize a CloudFormation template, and then to deploy the defined resources to

AWS.

Although using the AWS CDK adds an additional level of complexity to your

Infrastructure as Code, by using an imperative language it allows you to work with high-

level abstractions, rich logic, and enables the sharing of infrastructure definitions as

reusable libraries of components.

Using AWS Developer Tools

There are a number of services collectively known as the AWS Developer Tools, which

are designed to solve common DevOps requirements and provide development agility

and continuous innovation.

You may already be using a CI/CD pipeline. Although you can continue using your

favorite tools and easily integrate them with AWS services, you can also use AWS

developer tools to create a complete pipeline, or complement, or extend the other tools

you are using. Using AWS Developer Tools relieves you from managing infrastructure

of your CI/CD pipeline tools and helps you further increase efficiency and productivity of

your infrastructure and developers.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/cdk/
https://aws.amazon.com/products/developer-tools/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 28

Version Control

Most .NET developers are familiar with Git repositories and are well versed in using

them to collaborate on software development projects.

Maintaining a Git repository for a single project may not be a big challenge, but as the

number of projects grows, managing a Git repository can become burdensome. You

have to make sure your source control server is available all the time, its performance

does not degrade and its storage is scaled to cater for increasing demand.

AWS CodeCommit is a fully managed source control service that makes it easy to

securely host private Git repositories in a highly scalable way. You can use AWS

CodeCommit to store anything from your source code to other binaries and

dependencies that go with your code.

For example, you might be developing an ASP.NET web application that also includes

external DLL dependency files and several gigabytes of graphics and other multimedia

files. Separating source code from binary files increases the risk of inconsistencies and

bugs that have nothing to do with the code. Using AWS CodeCommit, you can store all

of these in one repository and avoid such problems.

As an alternative to AWS CodeCommit, both AWS CodeBuild and AWS CodePipeline

integrate with GitHub, and AWS CodeBuild also integrates with Bitbucket.

Build and Package Applications

Building the source code is one of the key steps in any CI/CD pipeline. Once a new

version is committed in your source control system, you need a build service to pull the

latest version, build and package it so the new version can be deployed in a target

environment.

One way to do this is using build servers that you dedicate for this purpose. However,

as the number of concurrent projects and number of builds in each project grows, these

build servers have to be scaled out to provide more build capacity. Otherwise, your

builds wait in a queue, which can result in decreased productivity of your developers.

AWS CodeBuild is a fully managed build service that compiles source code, runs tests,

and produces software packages that are ready to deploy. It seamlessly scales and

concurrently processes multiple builds, therefore eliminating waiting time, increasing

developer productivity, and you only pay for time the build container is running.

AWS CodeBuild includes a pre-packaged build environment for .NET Core on Linux and

Windows, or you can use pre-built Docker images, such as official Microsoft images for

https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 29

the .NET Framework, or create your own custom build environment by creating a

Docker image.

For more details on creating a custom build environment for .NET Framework, see

Extending AWS CodeBuild with Custom Build Environments for the .NET Framework on

the AWS DevOps Blog.

Additionally, development teams often rely on both open-source software packages and

packages built within their organization. IT leaders need to be able to control access to

and validate the safety of these software packages. Teams need a way to find up-to-

date packages that have been approved for use by their IT leaders. To address these

challenges, IT leaders turn to central artifact repository services to store and share

packages. However, existing solutions often require teams to purchase licenses for

software solutions that are complex to setup, scale, and operate. You can use AWS

Code Artifact to overcome these challenged.

AWS CodeArtifact is a pay-as-you go artifact repository service that scales based on

the needs of the organization. With CodeArtifact there is no software to update or

servers to manage. In just a few clicks, IT leaders can set-up central repositories that

make it easy for development teams to find and use the software packages they need.

IT leaders can also approve packages and control distribution across the organization,

ensuring development teams consume software packages that are safe for use.

AWS CodeArtifact is a fully managed artifact repository service that makes it easy for

organizations of any size to securely store, publish, and share software packages used

in their software development process. CodeArtifact can be configured to automatically

fetch software packages and dependencies from public artifact repositories so

developers have access to the latest versions. CodeArtifact works with commonly used

package managers and build tools like Maven, Gradle, npm, yarn, twine, and pip,

making it easy to integrate into existing development workflows.

Application Deployment

Once a new application version is built and packaged, it must be deployed in a target

environment for end users to access it. There are a couple of deployment strategies

commonly employed, including mutable in-place deployment, or immutable

deployments when the entire infrastructure stack is replaced.

There are also a variety of ways to deploy .NET applications, and AWS CodeDeploy is

a deployment service that integrates with AWS CodePipeline and helps automate

application deployments to Amazon EC2 instances, Amazon ECS services, on-

https://aws.amazon.com/blogs/devops/extending-aws-codebuild-with-custom-build-environments-for-the-net-framework/
https://aws.amazon.com/codedeploy/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 30

premises instances, and serverless Lambda functions. It supports both in-place mutable

deployment, as well as immutable deployment using the blue-green deployment model.

The AWS CodePipeline service can also be used for deployment and integrates with a

number of deployment providers, including AWS CloudFormation, AWS Elastic

Beanstalk, Amazon ECS, AWS Service Catalog, and also AWS CodeDeploy.

Building a CI/CD Pipeline

Each of the previously discussed developer tools can be used individually or in

combination with your existing tools, but you can also integrate them together to form a

complete end-to-end CI/CD pipeline.

AWS CodePipeline is an orchestration service that allows you to model the different

stages of your software release process. It can be integrated with other AWS developer

tools for building, testing and deploying your software versions. It can also easily be

extended to adapt to your specific needs. You can use its pre-built plugins or your own

custom plugins in any step of your release process.

For example, you can pull your source code from GitHub, use your on-premises Jenkins

build server, run load tests using a third-party service, or pass on deployment

information to your custom operations dashboard.

Seamless Integration with Azure DevOps

The main integration point for Azure DevOps with AWS is through Azure DevOps

pipelines. You can configure Azure DevOps pipeline to build, test, package and release

software to different AWS environments. You can use the following methods for this

integration.

AWS Tools for Visual Studio Team Services

AWS Tools for Visual Studio Team Services is available on Azure DevOps extension

market place. These extensions can be installed by navigating to the Extensions

Marketplace through Azure DevOps.

Once installed, you can choose from a set of pipeline tasks that can be included in your

pipeline to integrate with AWS.

https://aws.amazon.com/codepipeline/
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.aws-vsts-tools
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.aws-vsts-tools

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 31

Figure 4: Various tasks for AWS Tools for Visual Studio Team Services

These building blocks can then be used to construct complex deployment pipelines.

Figure 5 shows an example pipeline designed to build, test and publish an ASP.NET

core web application to an AWS Elastic Beanstalk environment. See Table 1 for a

description of steps.

Figure 5: Pipeline for building, testing, and deploying an ASP.NET Core application to

AWS Elastic Beanstalk

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 32

Table 1: Pipeline step descriptions

Step Description

1 Executes .NET Core build task, such as Git pull.

2 Executes .NET Core build task.

3 Executes .NET Core test task.

4 Executes .NET Core publish task.

5 Copies an AWS Elastic Beanstalk manifest file into the bundle

6 Creates a zip archive from newly published website content.

7 Uploads the zip archive to an S3 bucket.

8 Deploys the application in an AWS Elastic Beanstalk environment.

Custom Scripts

If you need functionalities beyond those provided through extensions published by

AWS, or if you need more fine-grained control over your pipeline, you can use AWS CLI

or AWS Tools for PowerShell to create a custom task or step in Azure DevOps pipeline.

Security and Operations

Application Security

Application security posture and requirements vary based on the type of application,

scale of deployment, and choice of environment, but there are common principles and

practices that serve as solid foundations across all types of applications, and .NET

applications running on AWS are no exception.

At the most basic level, the key principle for developing secure .NET applications is

ensuring requests from upstream users and systems are trusted, and ensuring requests

sent to downstream systems are also trusted. Applications therefore need to safeguard

any credentials or sensitive information they require to operate, control the exposure of

the data they process, and integrate with security providers in a protected and

maintainable way.

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 33

Running applications in a secure manner starts with developing secure applications, but

also requires operating them in a secure environment. Security is the highest priority at

AWS, and there are various AWS services that can help meet the requirements of the

most security-sensitive organizations.

The following sections focus on developing secure applications. For more information

on security, including auditing, data governance, network security, encryption in transit

and at rest, see AWS Cloud Security or read the AWS Security Best Practices

whitepaper.

Programmatic Authentication and Authorization

AWS Identity and Access Management service provides a comprehensive set of

authentication and authorization features. IAM allows granular permissions to be

granted to AWS services. Permissions can then be assigned to users, groups of users,

and users or services running with a particular role.

Developer Access Control

Users can be assigned access keys consisting of an access key ID and a secret access

key, which can be used to cryptographically sign requests to the AWS API or the AWS

CLI. Since access keys grant the same access rights as the associated IAM user, it is

important they’re stored securely and not stored in code, configuration files, or plain text

files.

When developing applications with Microsoft Visual Studio, we recommend that you use

the AWS Toolkit for Microsoft Visual Studio, which contains an Account Profile feature

for storing access keys. The Account Profile stores keys in an encrypted form on the

developer’s machine, and the developer can refer to keys in code by using the Account

Profile name. This stops the keys from being exposed in code or a configuration file.

For more details on working with Account Profiles in Microsoft Visual Studio, see

Providing AWS Credentials.

There are many other best practices for using the access keys—such as key rotation,

and using least privilege. To learn more, see Best Practices for Managing AWS Access

Keys.

Runtime Access Control

Although access keys are well-suited for developers, when deploying .NET applications

to an AWS environment, we recommend that you use IAM role-based access in place of

access keys.

https://aws.amazon.com/security/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 34

You can create an IAM role with permissions based on the principle of least privilege.

The role is then assigned to the compute environment hosting the .NET application,

whether it requires EC2 virtual machines, ECS containers, or Lambda serverless

functions. This way, you no longer need to manually create and rotate programming

keys to authenticate your applications. Instead, IAM generates temporary keys and

automatically rotates them on your behalf, allowing your applications running on AWS to

get authenticated and authorizes to use AWS resources securely and seamlessly.

To learn more about role-based access, see Granting Access Using an IAM Role.

Runtime Access Control with Temporary Credentials

Although IAM role-based access works well for .NET applications running in AWS, for

applications hosted outside of AWS—such as desktop or mobile applications—or for

applications that execute with multiple roles, or across multiple AWS accounts, it’s

better to provide an additional level of access control by using temporary credentials.

The AWS Security Token Service (AWS STS) can be used to generate temporary

credentials, and can either be accessed through a single, global endpoint or from a

series of regional endpoints.

Temporary credentials are generated dynamically when requested, and can last from a

few minutes to several hours. Once credentials expire, they can no longer be used to

make API requests. However, the user can request new credentials, as long as they still

have permissions to do so.

To learn about how to program with AWS STS using .NET, see: Making Requests

Using IAM User Temporary Credentials - AWS SDK for .NET.

Active Directory

Active Directory is Microsoft’s directory service and provides a wide set of capabilities to

authenticate and authorize users, services and computers in Windows domains.

Although there are a number of reasons why .NET applications may need to interact

with Active Directory, the most common use case is that .NET applications running on

Windows are more likely to be running under a process whose permissions have been

authorized by Active Directory.

Since Linux doesn’t natively use Active Directory, .NET applications are more likely to

need Active Directory on AWS when they’re being run on Windows hosts. However,

Active Directory integration is also possible for Linux-based applications. In any of these

cases, you can either use AWS Managed Microsoft AD, which runs an actual Active

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-hosm.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 35

Directory instance on AWS managed infrastructure, or you can use Active Directory

Connector (AD Connector), a directory gateway which redirects requests to your on-

premises Active Directory servers. Many businesses also choose to self-manage their

Active Directory infrastructure to maintain full control over it, while running it on AWS

and leveraging the flexibility, scalability and efficiency of the AWS Cloud.

More information on Microsoft Active Directory on AWS is covered in the Active

Directory Domain Services on AWS whitepaper, and additional details can be found in

the Securing the Microsoft Platform on Amazon Web Services whitepaper.

User Identity Management

Successful web or mobile applications can reach millions of users, and it’s critical such

applications have a robust and scalable approach for user and identity management.

Applications can have specific requirements, such as using their own identity store, or

leveraging an existing identity provider such as Facebook, Google, or Amazon, and

some need to use a combination of their own identity store with existing identity

providers. This is often coupled with requirements for a user interface that handles user

registration, login, user verification, and forgotten passwords.

Amazon Cognito lets you add user sign-up, sign-in, and access control to your web and

mobile apps quickly and easily. Amazon Cognito scales to millions of users and

supports sign-in with social identity providers, including Facebook, Google, and

Amazon, and enterprise identity providers via SAML 2.0.

Amazon Cognito can also be used to control access to REST APIS through integration

with the Amazon API Gateway service, and can reduce the work to authenticate web

application users by integrating with the Application Load Balancer.

Security features include multi-factor authentication, checks for compromised

credentials, account takeover protection, and phone and email verification. Amazon

Cognito also supports application specific identity stores, user profiles, and customized

workflows and user migration through AWS Lambda triggers.

For more information, see Getting Started with Amazon Cognito. To learn how you can

authenticate .NET application using Amazon Cognito, see Authenticating Users with

Amazon Cognito.

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_ad_connector.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_ad_connector.html
https://d1.awsstatic.com/whitepapers/adds-on-aws.pdf
https://d1.awsstatic.com/whitepapers/adds-on-aws.pdf
https://d1.awsstatic.com/whitepapers/aws-microsoft-platform-security.pdf
https://aws.amazon.com/cognito
https://aws.amazon.com/blogs/aws/built-in-authentication-in-alb/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-getting-started.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/cognito-apis-intro.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/cognito-apis-intro.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 36

Storing and Retrieving Secrets

Your .NET application likely connects to one or more external systems, from database

servers, through to cache servers, message queues, or even other applications.

Connections to external systems are secured using some form of secret information,

including connection strings and a variety of system credentials. Storing and retrieving

secret information in a secure manner is vital to the security of the overall application.

Although .NET applications frequently use configuration files to store secrets, they come

with an inherent risk of being stolen, as frequently seen when a developer mistakenly

checks a configuration file into a public repository along with the source code.

A better approach is to store secrets in a secure repository, and AWS Secrets Manager

can help by storing and retrieving secret information in an encrypted format. Secrets

can be stored as a JSON string, allowing the application to store secrets in a variety of

formats. When a .NET application needs the secret, it makes an API call to AWS

Secrets Manager to fetch the secret using the secret name.

Access to AWS Secrets Manager APIs is granted through IAM policies. Applications

need explicit permissions to access these secrets. The best practice is to have these

IAM policies attached to an IAM role, which is then assigned to the runtime environment

of your application (that is, the EC2 instance, ECS task, or Lambda function that hosts

your application). This approach ensures, not only that those secrets do not leave the

boundaries of AWS services, but also credentials that authorize access to those secrets

are also confined within your AWS account and never leave it.

For ASP.NET Core applications, there is also a NuGet package available called the

AWS .NET Configuration Extension for Systems Manager, which automatically loads

and refreshes secrets from Parameter Store and AWS Secrets Manager into the

configuration object for easy consumption by application code.

Another best practice is to periodically rotate secrets to palliate risk of their potential

compromise. AWS Secrets Manager provides features that help automatically rotate

secrets.

You can also use AWS Secrets Manager local cache library for .NET to improve

availability, reduce latency and lower costs. For more information, see How to use AWS

Secrets Manager client-side caching in .NET on the AWS Security Blog.

AWS Secrets Manager provides additional benefits, such as centralized secret

management, allowing secrets to be shared by multiple users or applications.

https://aws.amazon.com/secrets-manager/
https://github.com/aws/aws-dotnet-extensions-configuration/
https://aws.amazon.com/blogs/security/how-to-use-aws-secrets-manager-client-side-caching-in-dotnet/
https://aws.amazon.com/blogs/security/how-to-use-aws-secrets-manager-client-side-caching-in-dotnet/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 37

For more information on managing secrets with AWS Secret Manager, see Tutorial:

Storing and Retrieving a Secret.

Monitoring

Successful DevOps requires excellent communication between the development of new

application capabilities and their subsequent operation. One of the key benefits over

other approaches is that it shortens the feedback loop between development and

operations.

Although structuring teams to include development and operations improves human

communication, running modern and distributed systems is complicated, and it is critical

that the team has a good understanding of the current state and the performance of the

system components, the interactivity between components, as well as the historic view

of the system’s behavior.

Designing a suitable approach to monitor .NET application behavior is relatively simple

but requires a combination of approaches—from logging events and errors from your

application and AWS resources, through recording metrics, showing current status

dashboards, sending and automating responses to alerts, and providing tracing to help

isolate problems.

While the traditional .NET monitoring approaches and third-party libraries still work in

AWS, implementing a modern, approach generally requires introducing one or more

additional AWS services or third-party tools. Although it’s not necessary to use all these

tools, mature DevOps teams invariably use a multi-layered approach to carefully

monitor the system, track performance, and provide alerts when notable or exceptional

events occur.

Amazon CloudWatch

The cornerstone for monitoring applications running on AWS is Amazon CloudWatch, a

group of services that can store log files, track metrics, send alarms, and execute

automated actions when specific events are triggered.

Sending data to CloudWatch from Windows applications can be handled automatically

using the Amazon CloudWatch agent, which runs as a Windows service, making it easy

to integrate with CloudWatch from .NET applications hosted on Amazon EC2, Amazon

ECS, or Amazon EKS.

Amazon CloudWatch provides a number of key features. CloudWatch dashboards are

customizable home pages in the CloudWatch console that can be used to monitor

https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://aws.amazon.com/cloudwatch/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 38

resources and view the metrics and alarms for your AWS resources. CloudWatch

Metrics stores data about the performance of your systems, and allows publishing your

own application metrics. CloudWatch Alarms can monitor one or more metrics, and can

trigger a variety of actions, including automatic scaling, or sending a notification to an

Amazon Simple Notification Service (Amazon SNS) topic.

Amazon CloudWatch Logs stores and monitors log files, and can be used for

centralized access to log files from a variety of applications, systems, and AWS

services. Although Logs can be sent from Windows using the CloudWatch agent, you

can configure many .NET logging libraries—including log4net, NLog, and Serilog—to

send log entries to CloudWatch, and call CloudWatch directly using the AWS SDK for

.NET. For .NET serverless functions running in AWS Lambda, you can send messages

to CloudWatch Logs by either writing output to stdout or stderr using the Console

class, or by using the ILambdaContext object.

Once logs are stored, you can view the logs from multiple sources as a time-ordered

flow of events, search the logs, and display them in custom dashboards. Although

CloudWatch Logs provides a number of common logging features, sometimes there are

use cases that fit more closely with other logging tools. Common tools used alongside

or instead of CloudWatch Logs include Amazon Elasticsearch Service, Splunk, or

Loggly.

Amazon CloudWatch Events receives system events from AWS resources, and can be

used to send notifications or run automated scripts when specific conditions are met.

Rules are defined to match particular sets of events and conditions, and, once triggered,

events can be routed to target actions, allowing notifications to be sent, or custom

actions to execute. CloudWatch Events can also be run on a schedule, and provides a

flexible tool to trigger various types of system automation.

Amazon CloudWatch Application Insights for .NET and SQL Server

Whereas CloudWatch gives you a rich set of tools to customize your approach to

monitoring, Amazon CloudWatch Application Insights for .NET and SQL Server enables

application owners to easily monitor their application stack. It automatically sets up and

analyses important metrics and logs from across their application resources in real time,

and uses machine learning techniques to discover anomalies and errors. CloudWatch

Application Insights for .NET and SQL Server creates automated dashboards for

detected problems, helping application owners troubleshoot faster and reduce the mean

time to resolution (MTTR) for their application issues and improve Service Level

Agreements (SLAs).

https://aws.amazon.com/elasticsearch-service/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-application-insights.html

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 39

• Automatically recognized application metrics and logs: CloudWatch
Application Insights for .NET and SQL Server scans your application resources
and provides a list of recommended metrics and logs to monitor, and sets them
up automatically, reducing your effort spent in setting up monitoring for your
applications.

• Intelligent problem detection: CloudWatch Application Insights for .NET and
SQL Server uses prebuilt rules and machine learning algorithms to dynamically
monitor and analyze symptoms of a problem across your application stack and
detect application problems. It helps you reduce the overhead of dealing with
individual metric spikes, or events, or log exceptions, and instead get notified on
real problems, along with contextual information about these problems.

• Faster troubleshooting: CloudWatch Application Insights for .NET and SQL
Server assesses the detected problems to give you insights on them, such as
the possible root cause of the detected problem and list of metrics and logs
impacted because of the problem. You can provide feedback on generated
insights to make the problem detection engine specific to your use case.

For example, consider you have an ASP .NET application backed by a SQL Server

database, and your database starts malfunctioning due to high memory pressure,

leading to HTTP 500 errors in your application server. Previously, to identify the

problem and triage, you would have to go through your metrics dashboards, sift through

server, application error and database logs, and possibly use third-party tools.

With CloudWatch Application Insights for .NET and SQL Server and its intelligent

analytics, you can find the layer (SQL database, in this case) in your application stack

causing the problem just by looking at the dynamically created dashboard of the related

metrics anomalies, and log file snippets. This significantly reduces alert fatigue and the

time and effort required to troubleshoot and return your application to a healthy state.

Auditability and Change Tracking

Effective DevOps requires that teams have a transparent view of changes made to the

services and infrastructure running their applications. AWS CloudTrail helps provide this

transparency by monitoring and logging AWS API calls, effectively recording actions

taken by users, roles, or AWS services as CloudTrail events. These events include

actions in the AWS Management Console, AWS Command Line Interface, and AWS

SDKs and APIs, allowing changes to be audited.

You can view and monitor CloudTrail events in the CloudTrail console, and you can

store log files in Amazon S3 or send them to CloudWatch Logs. You can use CloudTrail

events sent to CloudWatch to trigger alarms based on metrics, and to trigger

CloudWatch events, allowing automated actions to be executed when specific API calls

are logged. This combination of using CloudTrail and CloudWatch can be a highly

https://aws.amazon.com/cloudtrail/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 40

effective approach for creating auto-healing scripts for your environment, or can form

part of an advanced infrastructure automation strategy.

In addition to using CloudTrail to monitor changes, AWS Config is a service that

evaluates the configuration of your AWS resources, monitors configuration changes and

compares them against desired configurations. Config can send notifications of changes

using Amazon SNS, or you can create automated responses using CloudWatch Events,

and automated remediation using AWS Systems Manager Automation.

AWS X-Ray

One of the challenges of modern applications is they are built from a number of

distributed components and services, making it difficult to determine the cause of issues

and isolate the underlying responsible service or component. For example, a ASP.NET

application may be running on a number of load-balanced EC2 instances, with each

instance depending on a SQL Server database hosted on Amazon RDS, and additional

functionality being provided by a number of microservices hosted across EC2 instances,

containers, and AWS Lambda functions. Although CloudWatch provides rich capabilities

to monitor each individual component, trying to isolate which distributed components is

causing a problem is a challenge in its own right.

AWS X-Ray provides an SDK that allows you to trace incoming requests to your

application, and trace requests from your application to AWS services, HTTP services,

and databases.

For each request into your application, data is recorded as a series of segments that are

grouped into a trace. Once a trace is recorded, you can view it from the trace history,

allowing you to inspect your application’s performance and behavior to help focus on

potential problems.

Figure 6: AWS X-Ray trace example

AWS X-Ray can also display service graphs, which show graphical views of the

services used by your application, helping to isolate various issues, including faults,

latency spikes, and possible bottlenecks.

https://aws.amazon.com/config/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html
https://aws.amazon.com/xray/

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 41

Figure 7: AWS X-Ray service graph example showing integration across various components

By providing a cohesive view of end-to-end application behavior, AWS X-Ray makes it

possible to accurately and quickly identify sources of problems in distributed systems.

At a glance, it helps locate an API, microservice, or component with problems, allowing

you to drill down further with more detailed tools, such as Amazon CloudWatch.

Additional AWS Service Logs

Although application and operating system monitoring can give a focused view on how

an application is behaving, sometimes it’s necessary to monitor the wider environment

of AWS services.

Amazon VPC Flow Logs allow you to monitor IP traffic for your AWS resources. Flow

Logs creates logs for network traffic going in and out of your VPC networks. For each

flow log, you can choose to filter the traffic it records and also choose to store the logs

in Amazon CloudWatch or Amazon S3. Flow logs are useful for troubleshooting a

number of networking issues—such as overly-restrictive security group rules—and can

also be used to audit the traffic passing through the network.

https://aws.amazon.com/vpc

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 42

Closely related to Flow Logs, Amazon Route 53 Query Logging can track queries for

DNS public hosted zones and can send logs to CloudWatch Logs.

When running .NET applications on EC2 instances or in containers, Elastic Load

Balancing (ELB) allows you to spread load across multiple instances, letting your

application scale and letting you take advantage of elasticity. You can use ELB Access

Logs to monitor HTTP/HTTPS traffic to Application Load Balancers and TCP traffic to

Network Load Balancers. Logs are captured as compressed files and stored in an

Amazon S3 bucket, and can be used to analyze traffic patterns and troubleshoot load-

balancing issues.

For high volume ASP.NET websites with a global presence, it’s a common requirement

to reduce load on the web servers. The Amazon CloudFront Content Delivery Network,

helps by moving static content closer to users, tracking detailed information about every

request, and storing the resulting logs in an Amazon S3 bucket.

Finally, for applications that need to store or share files, Amazon S3 provides a simple

service to store and serve objects at scale. You can use S3 Server Access Logging to

track access requests to your S3 buckets for troubleshooting and security audit

purposes.

Conclusion

Delivering business value by fully taking advantage of the AWS Cloud requires agile

ways of working, flexible application architectures, and modern development practices.

Although .NET was considered as an exclusive Windows technology, the use of

Xamarin for cross-platform mobile development, and the rise of .NET Core has helped

turn .NET into a truly diverse cross-platform application framework.

This paper serves as a starting point for developing and deploying .NET applications on

AWS; the real value of running .NET applications on AWS is in integrating them with the

growing platform of innovative AWS services.

Archived

Amazon Web Services Developing and Deploying .NET Applications on AWS

 43

Contributors

Contributors to this document include:

• Sepehr Samiei, Senior Solutions Architect, Amazon Web Services

• Mark Easton, Senior Solutions Architect, Amazon Web Services

• Aaron Schwam, Senior Manager, Amazon Web Services

• Kirk Davis, Senior Specialist Solution Architect, Amazon Web Services

• Sai Prashant Vajja, Specialist Solutions Architect, Amazon Web Services

• Ryan Pothecary, Partner Trainer, Amazon Web Services

• Brajendra Singh, Partner Solutions Architect, Amazon Web Services

• Immaya Kumar Jaganathan, Senior Solutions Architect, Amazon Web Services

• Christian Siegers, Senior Solutions Architect, Amazon Web Services

• Sriwantha Attanayake, Solutions Architect, Amazon Web Services

• Purvi Goyal, Senior Product Manager, Amazon Web Services

• Fatai Amoranbini, Cloud Application Architect, Amazon Web Services

• Tayo Olabumuyi, Principal Sales Leader, Amazon Web Services

Document Revisions

Date Description

July 2020 Updated with new services and features

October 2019 First publication

Notes

1 https://visualstudiomagazine.com/articles/2019/05/06/net-5.aspx

	Abstract
	Introduction
	Working with Different Variants of .NET
	.NET Framework
	Mono
	Xamarin
	Unity
	.NET Core
	.NET Standard

	Running .NET Applications in the AWS Cloud
	Choosing a Host Operating System
	Building Monoliths or Microservices
	Migrating and Rehosting .NET Applications
	AWS Elastic Beanstalk
	Amazon EC2 Instances
	AWS Systems Manager

	Modernizing and Replatforming .NET Applications
	Running Applications in Containers
	Amazon Elastic Container Service
	Amazon Elastic Kubernetes Service
	Amazon Elastic Container Registry
	AWS Fargate

	Creating Serverless Applications with AWS Lambda

	Storage Solutions for .NET Applications on AWS
	Artificial Intelligence and Machine Learning with .NET

	Developing .NET Applications
	AWS .NET SDKs
	AWS Toolkit for Visual Studio
	AWS Toolkit for Visual Studio Code
	AWS Tools for PowerShell
	Test Tools

	Continuous Integration and Continuous Delivery
	Infrastructure as Code
	AWS CloudFormation
	AWS Cloud Development Kit

	Using AWS Developer Tools
	Version Control
	Build and Package Applications
	Application Deployment
	Building a CI/CD Pipeline

	Seamless Integration with Azure DevOps
	AWS Tools for Visual Studio Team Services
	Custom Scripts

	Security and Operations
	Application Security
	Programmatic Authentication and Authorization
	Developer Access Control
	Runtime Access Control
	Runtime Access Control with Temporary Credentials

	Active Directory
	User Identity Management
	Storing and Retrieving Secrets

	Monitoring
	Amazon CloudWatch
	Amazon CloudWatch Application Insights for .NET and SQL Server
	Auditability and Change Tracking
	AWS X-Ray
	Additional AWS Service Logs

	Conclusion
	Contributors
	Document Revisions

