
Amazon Web Services Machine Learning Best Practices in Financial Services

 1

Machine Learning Best Practices in
Financial Services

An overview of security and machine learning governance practices

using Amazon SageMaker

July 2020

Amazon Web Services Machine Learning Best Practices in Financial Services

 2

Notices
Customers are responsible for making their own independent assessment of the information in this

document. The information included in this document is for illustrative purposes only. Nothing in this

document is intended to provide you legal, compliance, or regulatory guidance. You should review the

laws that apply to you. This document: (a) is for informational and illustrative purposes only, (b)

represents current AWS product offerings and practices, which are subject to change without notice,

and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or

licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,

and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Web Services Machine Learning Best Practices in Financial Services

 3

Contents
Introduction .. 5

The ML lifecycle: How to provision, govern, and operationalize ML workloads .. 5

A. Provision a secure ML environment ... 10

Compute and network isolation ... 10

Authentication and authorization ... 11

Data encryption... 12

Auditability .. 12

B. Establish ML governance .. 13

Traceability .. 13

Explainability and interpretability ... 19

Model monitoring ... 23

Reproducibility .. 26

C. Operationalize ML workloads ... 28

Model development workload ... 30

Pre-production workload .. 31

Production and continuous monitoring workload .. 32

Conclusion ... 33

Contributors .. 34

Document Revisions.. 34

Amazon Web Services Machine Learning Best Practices in Financial Services

 4

Abstract
This whitepaper outlines security and model governance considerations for financial institutions using

machine learning applications. It illustrates how you can create a secure machine learning environment

on AWS and use best practices in model governance based on your organization’s risk tolerance,

integration with existing governance, and regulatory expectations.

Are you Well-Architected?
The AWS Well-Architected Framework helps you understand the pros and cons of the decisions you

make when building systems on AWS. Using the Framework allows you to learn architectural best

practices for designing and operating reliable, secure, efficient, and cost-effective systems in the cloud.

In the Machine Learning Lens, we focus on how to design, deploy, and architect your machine learning

workloads in the AWS Cloud. This lens adds to the best practices described in the Well-Architected

Framework.

https://aws.amazon.com/architecture/well-architected/?actwpp_AWSMLFSWAF_PDF
https://aws.amazon.com/architecture/machine-learning/?actwpp_AWSMLFSML_PDF

Amazon Web Services Machine Learning Best Practices in Financial Services

 5

Introduction
Financial institutions are increasingly building machine learning (ML) models to transform their

businesses. These institutions apply ML across a broad range of use cases including:

• fraud detection

• market surveillance

• due diligence

• portfolio optimization

• customer experience enhancement

• optimized trade execution

• quantitative strategy development

• algorithmic trading

An ML model’s ability to learn helps drive more accurate predictions. But care must be taken to help

ensure such models are being used in compliance with regulatory requirements and are well governed

and secure.

There are a number of publications that the financial services industry can use for guidance. For

example,

• The Guidance on Model Risk Management was developed jointly by the Federal Reserve and the

OCC. This reference discusses the need for effective model governance, including guidance

noted in Federal Reserve SR 11-7, OCC 2011-12.

• The European Central Bank (ECB) guide to internal models illustrates how you can implement a

secure and well-governed machine learning environment.

The ML lifecycle: How to provision, govern, and

operationalize ML workloads
This section presents a high-level overview of the various components that are part of an end-to-end

machine learning pipeline. While this is not intended to be an exhaustive guide, it helps frame our

discussion of security, governance, and operationalization of machine learning workflows for financial

services. Figure 1 illustrates the machine learning lifecycle graphically.

https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.guidetointernalmodels_consolidated_201910~97fd49fb08.en.pdf

Amazon Web Services Machine Learning Best Practices in Financial Services

 6

Figure 1 – Typical ML lifecycle

A typical ML workflow involves multiple stakeholders. To successfully govern and operationalize this

workflow requires collaboration across these teams. Stakeholders usually frame the high-level business

problem. Once identified, you must transform the business problem and frame it into a machine

learning problem, with well-defined inputs and outputs. This process typically involves business

stakeholders engaging with their data science center of excellence team, along with IT, and risk and

compliance partners, to understand the complexity of implementing the use case.

At this point, you must also gather any relevant success metrics or key performance indicators (KPIs),

both from the perspective of the model as well as any non-functional requirements in a production

solution, such as any regulatory or compliance needs that may dictate the validity of the solution. For

example, there may be regulations that impose certain requirements on explaining the reasons for

decisions that are made .This may dictate the types of algorithms that the data science teams can

explore. This is typically driven by regulatory or compliance experts, as well as business stakeholders.

The next stage is collecting the input data from various sources. This role is often performed by

engineering teams familiar with big data tools for data ingestion, extraction, transformation, and loading

(ETL). It is important to ensure that the data is versioned and the lineage of the data tracked for auditing

and compliance, detailed in Establish ML Governance.

Once the data is collected, data scientists typically explore an appropriately selected subset of the data

to understand the schema of the dataset, clean the dataset to remove or impute any missing values,

identify necessary transformations (such as removal of outliers, scaling input-independent variables,

dimensionality reduction, encoding categorical variables etc.) that may be required to transform the

data into a numerical format, suitable for building models. This process, known as “feature engineering”

typically consumes the majority of a data scientist’s time, but is a crucial step to identifying key features

that are predictive, and contain signals that correlate with the dependent variable.

Amazon Web Services Machine Learning Best Practices in Financial Services

 7

Once a set of features has been selected, data scientists typically decide which framework they want to

use and which models they want to try. Then they start the training iterations across models. Modeling

performance against the identified KPIs can be improved by tuning hyperparameters (parameters whose

values need to be defined at the outset prior to training) or by incorporating more labeled training data

to help the model see more instances and thus learn more. Once the models are trained, the model

artifacts and any corresponding code must be properly versioned and stored in a centralized code

repository or in an artifact management system. Note that this stage of the process is experimental and

data scientists may often go back to feature engineering or even the data collection stage if the model

performance is consistently poor. Data scientists also use a number of methods to identify what

features are important in driving model performance.

Next, DevOps engineers will typically pick up trained models and prepare them for deployment into

production. At this point, models need to be tested on integration with existing pipelines and business

workflows, back tested on historical data, performance tested for producing inferences at scale, and

quality-tested against any historical models. All the dependencies, model artifacts and any related

metadata need to be managed and stored. At this stage, there is typically a manual (“human-in-the-

loop") process to ensure the model meets the business goals, as well as any regulatory or compliance

requirements. Once the model is deployed for production, the model is regularly monitored for

performance degradation, data drift, or concept drift in order to trigger any retraining or deprecating

the model, which may be required as the needs of the business evolve. This is often a best practice but

is also recommended by regulations that require banking organizations to periodically review their

models.

Figure 2 shows the different technical and business stakeholders that are typically engaged throughout

the machine learning lifecycle.

Amazon Web Services Machine Learning Best Practices in Financial Services

 8

Figure 2 – Typical stakeholders and their responsibilities in an ML lifecycle

As this shows, it is necessary to ensure the proper layers of access controls, security, and governance

and monitoring at each stage of the ML lifecycle.

The rest of this whitepaper provides an example or illustration of how you can use Amazon SageMaker,

along with other AWS tools throughout the ML lifecycle. More specifically, based on our customers’

experience running regulated predictive models, we cover the following topics:

A. Provision a secure ML environment:

• Compute and network isolation: How to deploy SageMaker in a customer’s private

network, with no internet connectivity.

Institutional Clients Consumer Enterprise Operations &

Technology

LOB Business Representative LOB IT RepresentativeCDO

AI / ML Governance Council

Risk Compliance

Information Security Legal CounselCompliance Representative

AI / ML CoE

LOB AI/ML Lead LOB AI/ML Lead LOB AI/ML Lead

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

AI / ML Dev

Amazon Web Services Machine Learning Best Practices in Financial Services

 9

• Authentication and authorization: How to authenticate users in a controlled fashion, and

authorize these users based on their IAM permissions, with no multi-tenancy.

• Data protection: How to encrypt data in transit and at-rest with customer provided

encryption keys.

• Auditability: How to audit, prevent, or detect who did what at any given point in time to

ensure that malicious activities are blocked or identified early.

B. Establish ML governance:

• Traceability: Methods to trace ML model lineage from data preparation, model

development, and training iterations, as well as how to audit who did what at any given

point in time.

• Explainability and interpretability: Methods that may help explain and interpret the trained

model and obtain feature importance.

• Model monitoring: How to monitor your model in production to protect against data drift,

and automatically react to rules that you define.

• Reproducibility: How to reproduce the ML model based on model lineage and the stored

artifacts.

C. Operationalize ML workloads:

• Model development workload: How to build both automated and manual review processes

in the dev environment.

• Preproduction workload: How to build automated CI/CD pipelines using the AWS Code*

suite and AWS Step Functions.

• Production and continuous monitoring workload: How to combine continuous deployment

and automated model monitoring.

• Tracking and alerting: How to track model metrics (operational and statistical) and alert

appropriate users if something goes wrong.

Amazon Web Services Machine Learning Best Practices in Financial Services

 10

A. Provision a secure ML environment
For your financial institution, the security of a machine learning environment is paramount. You must

protect against unauthorized access, privilege escalation, and data exfiltration. There are four common

considerations when you set up a secure machine learning environment:

• compute and network isolation

• authentication and authorization

• data encryption

• auditability

These considerations are detailed in the following sections.

Compute and network isolation

A well-governed and secure machine learning workflow begins with establishing a private and isolated

compute and network environment. The virtual private cloud (VPC) that hosts SageMaker and its

associated components, such as Jupyter notebooks, training instances, and hosting instances, should be

deployed in a private network with no internet connectivity. Furthermore, these SageMaker resources

can be associated with your customer VPC environment, allowing you to apply network level controls,

such as security groups to govern access to SageMaker resources and control ingress and egress of data

into and out of the environment. Connectivity between SageMaker and other AWS services, such as

Amazon Simple Storage Service (Amazon S3), should be established using VPC endpoints or even AWS

PrivateLink. Additionally, when creating a VPC endpoint, we recommend attaching an endpoint policy to

further control access to specific resources for which you are connecting. Figure 3 below illustrates the

recommended deployment for a SageMaker notebook instance.

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://aws.amazon.com/privatelink/
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-notebook-and-internet-access.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 11

Figure 3 – Recommended deployment architecture for Amazon SageMaker notebook instance

Similarly, for training jobs and hosted models, SageMaker EC2 instances will communicate with Amazon

S3 through your VPC when retrieving training data from Amazon S3. SageMaker does this by creating an

elastic network interface (ENI) in your specified VPC and attaching it to the Amazon EC2 infrastructure in

the service account. Using this pattern, the service gives you control over the network-level access of

the services you run on SageMaker. Equally, when the SageMaker instances retrieve your trained model

for hosting, they will communicate with Amazon S3 through your VPC. In such manner, you can maintain

governance and control of the network communication of your SageMaker resources. For details on

setting up a private network environment as illustrated above, refer to the Amazon SageMaker

Workshop for Secure Networking. You can also refer to Vanguard’s 2019 re:Invent presentation on

Security for ML environments with Amazon SageMaker.

Authentication and authorization

After an isolated and private network environment is created, the next step is to ensure that only

authorized users can access the appropriate AWS services. AWS Identity and Access Management (IAM)

can help you create preventive controls for many aspects of your machine learning environment,

including access to SageMaker resources, access to your data in Amazon S3, and access to API

endpoints. You can access AWS using a RESTful API, and every API call is authorized by IAM. You grant

explicit permissions through IAM policy documents, which specify the principal (who), the actions (API

calls), and the resources (such as S3 objects) that are allowed, as well as the conditions under which the

access is granted.

Accordingly, access to a SageMaker Jupyter notebook instance is also governed by IAM. We recommend

that each data scientist be provided their own SageMaker notebook instance and only have access to

that particular notebook. Root access to the notebook instance should be disabled. In order to open a

https://sagemaker-workshop.com/security_for_sysops.html
https://sagemaker-workshop.com/security_for_sysops.html
https://www.youtube.com/watch?v=asuYSd5OmAE&feature=youtu.be
https://www.youtube.com/watch?v=asuYSd5OmAE&feature=youtu.be

Amazon Web Services Machine Learning Best Practices in Financial Services

 12

Jupyter Notebook instance, users will need access to the CreatePresignedNotebookInstanceUrl API call.

This API call creates a presigned URL which is used to obtain Web UI access to the Jupyter notebook

server. To secure this interface you can use IAM policy statements to wrap conditions around calling the

API, such as who can invoke the API and from what IP address.

While each organization will have different authentication and access requirements, you should

configure permissions in line with IAM Best Practices and your own internal policies and controls by

granting least privilege access, or granting only the permissions required to perform a particular task.

Role based access control (RBAC) is an approach used commonly by customers in financial services

for ensuring only authorized parties have access to desired system controls. Creating roles based on

job function policies, and using AWS Config to monitor and periodically audit IAM policies attached

to users is a recommended best practice for viewing configuration changes over time. For details

about how Millennium Management enforces compliance using IAM, read Millennium Management:

Secure machine learning using Amazon SageMaker. For more information about security best practices

for financial services on AWS, read Financial Services Industry Lens.

Data encryption

As machine learning environments can contain sensitive data and intellectual property, the third

consideration for a secure ML environment is data encryption. We recommend that you enable data

encryption both at-rest and in-transit. For at-rest encryption, such as data stored in Amazon S3 and the

data stored in Amazon Elastic Block Store (Amazon EBS) volumes within the SageMaker notebook, most

financial services customers require the use of customer managed customer master keys (CMK). For

details around CMK on AWS KMS, see AWS Key Management Service concepts. Additionally, we

recommend enabling Amazon S3 default encryption so that all new objects are encrypted when they are

stored in the Amazon S3 bucket. We also recommend using Amazon S3 bucket policies to prevent

unencrypted objects from being uploaded. For data in transit, all inter-network data in transit supports

TLS 1.2 encryption. Finally, for data transmitted between instances during distributed training, you can

enable inter-container traffic encryption. However, note that this can increase the training time,

particularly for distributed deep learning algorithms.

Auditability

The fourth consideration for a well governed and secure ML environment is having a robust and

transparent audit trail that logs all access and changes to the data and models such as a change in the

model configuration or the hyper-parameters. AWS CloudTrail is one service that will log, continuously

monitor, and retain account activity related to actions across your AWS infrastructure. CloudTrail logs

every AWS API call and provides an event history of your AWS account activity, including actions taken

through the AWS Management Console, AWS SDKs, command line tools, and other AWS services.

Another service, AWS Config allows you to continuously monitor and record configuration changes of

your AWS resources.

More broadly, in addition to the logging and audit capabilities, AWS recommends a defense in depth

approach to security, applying security at every level of your application and environment. Here, AWS

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://aws.amazon.com/blogs/machine-learning/millennium-management-secure-machine-learning-using-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/millennium-management-secure-machine-learning-using-amazon-sagemaker/
https://d1.awsstatic.com/whitepapers/architecture/wellarchitected-Financial-Services-Industry-Lens.pdf
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/blogs/security/how-to-prevent-uploads-of-unencrypted-objects-to-amazon-s3/
https://aws.amazon.com/blogs/security/how-to-prevent-uploads-of-unencrypted-objects-to-amazon-s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
https://wa.aws.amazon.com/wat.pillar.security.en.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 13

CloudTrail and AWS Config can be used as detective controls responsible for identifying potential

security threats or incidents. As the detective controls identify potential threats, you can set up a

corrective control to respond to and mitigate the potential impact of security incidents. Amazon

CloudWatch is a monitoring service for AWS resources which can trigger CloudWatch Events to

automate security responses. For details on setting up detective and corrective controls, refer to the

Amazon SageMaker Security Workshop.

B. Establish ML governance
ML governance includes four key aspects:

• traceability and auditability

• explainability

• real-time model monitoring

• reproducibility

The Financial Services Industry has various compliance and regulatory obligations. You should review

and understand these obligations with your legal counsel, compliance personnel, and other stakeholders

involved in the ML process. As an example, if Jane Smith was denied a bank loan, the lender may be

required to explain how that decision was made in order to comply with regulatory requirements. If the

lender is using ML as part of the loan review process, the prediction made by the ML model may need to

be interpreted or explained in order to meet these requirements. In general, a ML model’s

interpretability or explainability refers to the ability for people to understand and explain the processes

that the model uses to arrive at its predictions. It is also important to note that many ML models make

predictions of a likely answer, and not the answer itself. It may be appropriate to have additional trained

human review of predictions made by such models before any action is taken. The model may also need

to be monitored, so that if the underlying data based on which this prediction was made changes, the

model will be periodically retrained on new data. Finally, the ML model may need to be reproducible,

such that if the steps leading to the model’s output were retraced, the model outputs should not

change. In the section below, we will provide examples of things you may need to consider when you

are establishing a ML governance regime and showcases how you can operationalize your selected

governance regime.

Traceability

Effective model governance requires a detailed understanding of the data and data transformations

used in the modeling process, in addition to continuous tracking of all model development iterations. It

is important to know: which dataset was used, what types of transformations it went through, what

type of model was built, and its hyperparameters. Additionally, any post-processing steps such as batch

jobs to remove biases from predictions during batch inference need to be tracked. If a model is

promoted to online inference, model performance and model predictions need to be tracked.

https://sagemaker-workshop.com/security_for_sysops/detective.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 14

Within the machine learning workflow, there are various steps where transformations are applied to the

raw data, or to the dataset that is part of a data lake. This starts with data exploration, where missing,

duplicate, or inconsistent data points are identified and treated. It continues with data pre-processing

and feature engineering that help with new feature creation, normalization, and standardization. Finally,

just prior to start iterating with different frameworks, ML models or parameterization, it ends with the

preprocessed data split into three sets: training, testing, and validation. Depending on whether the

overall dataset is imbalanced, additional considerations such as stratified sampling, oversampling, or

under-sampling may be required. Well-governed machine learning workflows provide clear lineage of all

transformations applied to the data as well as the post-transformation data output. The following figure

shows some of key building blocks for tracking data and model lineage.

Figure 4 – Data and model lineage

With Amazon SageMaker Experiments, you can track ML artifacts and have clear lineage across datasets,

algorithms, hyperparameters, metrics, in addition to any other ML workflow steps, such as data pre-

processing or post-training model evaluation. By using Git repository, you can add model versioning to

the experiments, because you can pull the latest commit, the user IP, the commit ID, and the timestamp

of each model version. If necessary, you can also enforce that all library dependencies are downloaded

and versioned in Amazon S3, in order to hold an immutable snapshot and thus ensure backward

compatibility at future date. In addition, with SageMaker Experiments, you can search and browse your

current and past experiments, compare experiments, and identify best performing models in a secure

fashion, because all lineage metadata is stored in an encrypted fashion.

The process to track all artifacts is straightforward. You have to first create an experiment, as

shown in the code snippet below, to track all the ML workflow components, and the iterations

within them. SageMaker Experiments should be seen as a way to organize your data science

work. You can create experiments to organize all of your model development work for:

• a business use case you are addressing (for example, create an experiment named

“CreditCardDefault” as shown in the example that follows)

https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 15

• a data science team that owns the experiment (for example, create an experiment named

“CreditCardTeam-ProjectName”)

• a specific data science and ML project. Think of it as a “folder” for organizing your “files”.

The following is an example script for creating an SageMaker experiment:

cc_experiment = Experiment.create(

 experiment_name=f"CreditCardDefault-{int(time.time())}",

 description="Predict credit card default from payments data",

 sagemaker_boto_client=sm)

print(cc_experiment)

You can then start tracking parameters from the pre-processing/feature engineering steps, such as the

training data location, the validation data location, as well as, the pre-processing parameters such as the

train/test split ratio. On the latter, we could also add normalization mean, normalization standard

deviation, and any other indicator of what feature engineering steps like scaling, one-hot encoding, etc.

the data went through.

The following is an example script for tracking parameters used in the pre-processing pipeline.

with Tracker.create(display_name="Preprocessing", sagemaker_boto_client=sm) as

tracker:

 tracker.log_parameters({

 "train_test_split_ratio": 0.2

 })

 # we can log the s3 uri to the dataset we just uploaded

 tracker.log_input(name="ccdefault-raw-dataset", media_type="s3/uri",

value=raw_data_location)

 tracker.log_input(name="ccdefault-train-dataset", media_type="s3/uri",

value=train_data_location)

 tracker.log_input(name="ccdefault-test-dataset", media_type="s3/uri",

value=test_data_location)

Subsequently, you can start tracking each training job by creating a trial. In order to enrich the trial with

the parameters from the pre-processing job, you have to also create a trial component on the tracker

you instantiated, and add it to the trial. In the code snippet below, we named the trial cc-fraud-training-

job- along with a timestamp, added as TrialComponent the “Preprocessing” job, and thus its

parameters. On each training trial, SageMaker Experiments will track the Docker image of the model

that was used, the output bucket of the model artifact location, and the hyperparameters as shown

during the following model fit.

account = sess.boto_session.client('sts').get_caller_identity()['Account']

Amazon Web Services Machine Learning Best Practices in Financial Services

 16

image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-xgboost:latest'.format(account,

region)

output_bucket = ‘output-bucket-name’

preprocessing_trial_component = tracker.trial_component

trial_name = f"cc-fraud-training-job-{int(time.time())}"

cc_trial = Trial.create(

 trial_name=trial_name,

 experiment_name=cc_experiment.experiment_name,

 sagemaker_boto_client=sm

)

cc_trial.add_trial_component(preprocessing_trial_component)

cc_training_job_name = "cc-training-job-{}".format(int(time.time()))

xgb = sagemaker.estimator.Estimator(image,

 role,

 train_instance_count=1,

 train_instance_type='ml.m4.xlarge',

 train_max_run=86400,

output_path='s3://{}/{}/models'.format(output_bucket, prefix),

 sagemaker_session=sess,

 train_use_spot_instances=True,

 train_max_wait=86400,

 subnets = ['subnet-0f9914042f9a20cad'],

 security_group_ids = ['sg-089715a9429257862'],

 train_volume_kms_key=cmk_id,

 encrypt_inter_container_traffic=False) # set to

true for distributed training

xgb.set_hyperparameters(max_depth=5,

 eta=0.2,

 gamma=4,

 min_child_weight=6,

 subsample=0.8,

 verbosity=0,

 objective='binary:logistic',

 num_round=100)

xgb.fit(inputs = {'training':'s3://' + train_data_location},

 job_name=cc_training_job_name,

 experiment_config={

 "TrialName": cc_trial.trial_name,

Amazon Web Services Machine Learning Best Practices in Financial Services

 17

 "TrialComponentDisplayName": "Training",

 },

 wait=True,

)

time.sleep(2)

In order to review all the components and parameters in a trial, SageMaker Experiments lets you search

based on the trial name, as shown in the following code example.

Present the Model Lineage as a dataframe

sagemaker.session import Session

sess = boto3.Session()

lineage_table = ExperimentAnalytics(

 sagemaker_session=Session(sess, sm),

 search_expression={

 "Filters":[{

 "Name": "Parents.TrialName",

 "Operator": "Equals",

 "Value": trial_name

 }]

 },

 sort_by="CreationTime",

 sort_order="Ascending",

)

lineagedf= lineage_table.dataframe()

lineagedf

You can trace the details of each component of the feature engineering and training process, and

showcase them as the following data frame. Once all workflow artifacts are saved in Amazon S3, there

should also be Amazon S3 object-lock, and versioning enabled in order to be able to avoid any overwrite

and thus traceability loss.

Similarly, you can use model tracking capability to verify that a specific dataset was used in a training job

for an audit or to verify compliance. To achieve that, you search for the URL that represents its location

in Amazon S3. Model tracking capability returns the training jobs that used the dataset that you specify.

If your search doesn't return the dataset (the result is empty), the dataset wasn't used in a training job.

An empty result confirms, for example, that a holdout dataset wasn't used.

Amazon Web Services Machine Learning Best Practices in Financial Services

 18

def get_codecommit(commit_id):

 codecommitclient = boto3.client('codecommit')

 reponame =

codecommitclient.list_repositories()['repositories'][0]['repositoryName']

 return codecommitclient.get_commit(repositoryName=reponame,

 commitId=commit_id

)

Below you will need to navigate to CodeCommit to obtain the corresponding commit

IDs if you choose to commit your code.

If you only commit your code once, then use the same repo name and CommitIDs for

sclineage and endpointlineage.

sclineage = get_codecommit('1796a0a6972c8df97fd2d279557a6f94cfe91eae') # Enter your

CommitID here

endpointlineage = get_codecommit('a6df1799849f52295864754a8f1e30e604fefd00') #

Enter your CommitID here

with Tracker.create(display_name="source-control-lineage",

sagemaker_boto_client=sm) as sourcetracker:

 sourcetracker.log_parameters({

 "commit": sclineage['commit']['commitId'],

 "author":sclineage['commit']['author']['email'],

 "date":sclineage['commit']['author']['date'],

 "message":sclineage['commit']['message'].replace('-', '_').split('\n')[0]

 })

with Tracker.create(display_name="prod-endpoint-lineage", sagemaker_boto_client=sm)

as endtracker:

 endtracker.log_parameters({

 "commit": endpointlineage['commit']['commitId'],

 "author":endpointlineage['commit']['author']['email'],

 "date":endpointlineage['commit']['author']['date'],

 "message":endpointlineage['commit']['message'].replace('-',

'_').split('\n')[0]

 })

 endtracker.log_input(name="endpoint-name", value='cc-training-job-1583551877')

cc_trial.add_trial_component(sourcetracker.trial_component)

cc_trial.add_trial_component(endtracker.trial_component)

Amazon Web Services Machine Learning Best Practices in Financial Services

 19

Present the Model Lineage as a dataframe

from sagemaker.session import Session

sess = boto3.Session()

lineage_table = ExperimentAnalytics(

 sagemaker_session=Session(sess, sm),

 search_expression={

 "Filters":[{

 "Name": "Parents.TrialName",

 "Operator": "Equals",

 "Value": trial_name

 }]

 },

 sort_by="CreationTime",

 sort_order="Ascending",

)

lineagedf= lineage_table.dataframe()

lineagedf

To trace a model's lineage, you can trace the model's name from the relevant endpoint, or use one of

the trial components’ name. You can then use either of these names to search for the training, its

parameters, the pre-processing job, and the model version that were part of the deployed endpoint

with the TrialComponentName API as shown on the last part of the above code snippet. Below, you can

see the data frame with all the different components of the lineage. Important to note that the last row

showcases the commit ID, the timestamp, the author, and the commit message of the model version

that was deployed.

To help simplify the reproducibility process, Amazon SageMaker Studio, now provides notebook sharing

functionality so that each team member can easily share their work, and let their teammates reproduce

their model quickly.

Explainability and interpretability

Some models, like logistic regression and decision trees, are fairly simple and straightforward and it is

easier to interpret how the model came up with its output. But as more features are added or more

complicated machine learning models are used, interpretability becomes more difficult. When using an

algorithm’s predictions in connection with financial services decisions, it’s important to know which

features the model did or did not take into account, and in some cases, it may be important to have

appropriate human review of such predictions before taking action. Within financial services, model

https://aws.amazon.com/blogs/aws/amazon-sagemaker-studio-the-first-fully-integrated-development-environment-for-machine-learning/

Amazon Web Services Machine Learning Best Practices in Financial Services

 20

users may need to understand each model’s limitations, intent, and output, including understanding the

factors that contribute to the model’s outcomes.

There are a variety of different methods for helping explain machine learning models: partial

dependency plots, building surrogate models on either the entire dataset (global) or a subset of the data

(local), Quantitative input influence, LIME (Local Interpretable Model-Agnostic Explanation) and SHAP

(SHapley Additive exPlanations) to name a few. Explainability in neural network models continues to be

an active topic of research, and it is important to stay educated on this important topic.

While explainability in machine learning remains an active research topic, SHAP has emerged as a

popular unifying method for extracting feature importance and is detailed here within the context of our

dataset. The goal of SHAP is to explain the prediction by computing the contribution of each feature to

the prediction by producing two models: one with the feature included and another with the feature

withheld. The difference in predictions on a given sample is related to the importance of the feature.

SHAP values extend this idea beyond linear models or locally independent features by accounting for the

interdependency of features by averaging over all permutations of the order in which features are

added to a model.

SageMaker enables you to obtain SHAP values for popular models such as LightGBM, XGBoost or simple

deep learning models. We first need to ensure that the SHAP library is pre-installed in our local Jupyter

working environment. This library can be provisioned for data scientists from the outset via lifecycle

configuration scripts. If the development VPC, which the data scientists are using for model training and

development is configured to not have internet access, the library can be downloaded from a local PyPI

server or using a pip mirror from a separate VPC which does have internet access enabled such as a

shared services account.

Once imported, the trained model object can be copied over from Amazon S3 into the local

environment. The following function can call the SageMaker Experiments Trail and unpack the pickled

model object. Here our training container stores the trained XGBoost model object as a pickle file called

xgboost.pkl.

def download_artifacts(job_name, local_fname):

 ''' Given a trial name in a SageMaker Experiment, extract the model

file and download it locally'''

 sm_client = boto3.Session().client('sagemaker')

 response =

sm_client.describe_trial_component(TrialComponentName=job_name)

 model_artifacts_full_path =

response['OutputArtifacts']['SageMaker.ModelArtifact']['Value']

 p = re.compile('(?<=s3://).*?/')

 s = p.search(model_artifacts_full_path)

 object_name_start = s.span()[1]

 object_name = model_artifacts_full_path[object_name_start:]

 bucket_name = s.group()[:-1]

Amazon Web Services Machine Learning Best Practices in Financial Services

 21

 s3 = boto3.client('s3')

 s3.download_file(bucket_name, object_name, local_fname)

def unpack_model_file(fn):

 # Unpack model file

 _tar = tarfile.open(fn, 'r:gz')

 _tar.extractall()

 _fil = open('xgboost-model', 'rb')

 _model = joblib.load(_fil)

 print(_model)

 return _model

Once the model object is extracted, we can use the SHAP library to compute and plot the feature

importance on the entire training dataset or a subset of the dataset. While the former approach obtains

global feature importance across the entire dataset, local importance can also be derived that can then

be published as part of a detailed report for risk management and model governance. For example, if

the model predicts that a customer is likely to default on their credit card payments, you may need to

reverse the model’s decision by identifying which features led to the decision, and take corrective action

if necessary.

shap.summary_plot(shap_values, traindata.drop(columns =['Label']))

Amazon Web Services Machine Learning Best Practices in Financial Services

 22

Note that for tree-based models such as Gradient Boosted trees, the relative importance of a feature

can also be obtained by attributing whether a particular split by that feature contributes to the

predictive accuracy of the model, weighted by the number of observations split on that node. This Gini

impurity metric, averaged across all the trees can also be used as an initial metric for feature

importance. It is not uncommon to report multiple different approaches to calculating feature

importance. Since this metric can be natively obtained from XGBoost APIs, and does not generalize to

other non-tree-based models unlike SHAP values, we do not discuss it further here.

In addition to manually using SHAP values for identifying feature importance post-training, SageMaker

recently launched Amazon SageMaker Debugger, a fully managed service for debugging models during

training by visualizing tensors for deep learning models, as well as evaluating built-in and custom rules

to check training jobs and helping catch errors. SageMaker Debugger enables customers to log feature

importance and SHAP values during model training iterations, that can then be visualized later in

Amazon SageMaker Studio. For more information about SageMaker Debugger, read How Debugger

Works. Finally, we reiterate that while we discuss SHAP here from an implementation perspective, the

field of explainability is very nascent and under development, and the efficacy of models such as SHAP

for explainability is still subject to debate.

In addition to explainability, considerations of fairness and safety may also be important, which we briefly

discuss below. Fairness is a very complex and broad ranging topic and a full discussion is outside the scope

of this paper; in the context of this paper we discuss fairness as the evaluation for bias and the

understanding of any bias in a model. Considerable effort needs to be put in place to ensure that the

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-how-it-works.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-how-it-works.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 23

training data is fair and representative, and each dataset that is used for training should be reviewed for

bias. Companies implement model bias policies, bias checking methods and monitor results on a regular

basis. There are different types of bias. Here are some examples:

• Sampling bias—Occurs when the training data does not accurately represent real-world

scenarios. Sample bias can be reduced or eliminated by training your model on all potential

scenarios.

• Exclusion bias—Happens as a result of excluding some features from your dataset usually under

the umbrella of cleaning our data. This happens as a result of deletion of features based on the

developer’s understanding of the data. Exclusion bias can be reduced or eliminated by

appropriate research prior to elimination of features and also by procuring business Subject

Matter Expert (SME) consensus on features that are planned to be eliminated.

• Cultural or stereotype bias—Bias related to issues including appearances, social class, status,

and gender. Certain types of bias may be reduced by understanding and avoiding the cultural

and stereotype biased results. In the previous example, this could include ignoring statistical

relationships between occupation and gender. Key mitigating factors include using diverse

teams who are educated on and aware of these issues, and training the model with appropriate

datasets that minimize cultural and stereotype bias

• Measurement bias—This happens when there’s an issue with the device used to observe or

measure. Systematic value distortion occurs due to an issue with the device. Measurement bias

can be reduced or eliminated by leveraging multiple devices to avoid device distortions and

incorporating data checks by humans or Amazon Mechanical Turk to compare the device

outputs.

You should work with your risk, legal and compliance teams to assess legal, ethical, regulatory, and

compliance requirements for, and implications of, building and using ML systems. This may include

vetting legal rights to use data and/or models in the system, as well as determining applicability of laws

covering issues such as privacy, biometrics, anti-discrimination, and other considerations specific to

financial services use cases.

Model monitoring

Model monitoring is the next phase of a data science project's lifecycle after a machine learning model is

deployed to production. Model monitoring measures model performance against the actual outcomes,

and helps ensure the deployed model works as expected in a real-world environment. There may be

regulatory guidelines around model monitoring. Model performance data is often used in the audit

report, or as an early warning signal so that proper contingency plans can be executed. It can also be

used as guidelines for model re-training or model decommissioning.

One might ask why model monitoring is required if it is already verified and validated in a testing

environment. That's because machine learning model performance could degrade when the statistical

nature of data such as mean, average and correlation changes gradually, or the statistical relationship

Amazon Web Services Machine Learning Best Practices in Financial Services

 24

between the independent and dependent variables changes over time. These are called data drift and

concept drift respectively. Drifts could happen from various sources and there are different approaches

for drift detection. One way to detect data drift is to compare the schemas and the computed statistical

distributions between training and new data. Changes such as mean and standard deviation shift or

changes in data field types could be indicators for data drift. Prediction distribution can also be

monitored and computed over time as a way to detect model drift. In addition, if ground truth labels can

be collected for new data, then comparing prediction results with the ground truth is another way to

monitor model performance degradation.

Detecting data drift with SageMaker

Detecting data drift is a challenging engineering and science task. You would need to capture data

received by the models, run all kinds of statistical analysis to compare that data to the training set,

define rules to detect drift, and send alerts if it happens. And every time you release a new model, these

steps need to be repeated. The SageMaker Model Monitor helps simplify data drift detection with the

following steps/capabilities:

1. Capture incoming request data and model output – SageMaker Model Monitor captures

incoming request data and prediction output. The captured data is stored in your Amazon S3

bucket, and it is enriched with metadata such as content type and time stamp. As a user, you

have to ability to configure how much data is captured.

from sagemaker.model_monitor import DataCaptureConfig

endpoint_name = 'DEMO-xgb-churn-pred-model-monitor-' + strftime("%Y-%m-%d-%H-%M-

%S", gmtime())

print("EndpointName={}".format(endpoint_name))

data_capture_config = DataCaptureConfig(

 enable_capture=True,

 sampling_percentage=100,

 destination_s3_uri=s3_capture_upload_path)

predictor = model.deploy(initial_instance_count=1,

 instance_type='ml.m4.xlarge',

 endpoint_name=endpoint_name,

 data_capture_config=data_capture_config)

2. Create a monitoring baseline – SageMaker Model Monitor can create baseline using the data

that was used for training the model. It will infer a schema for the input data such as type and

completeness of each feature, and compute feature statistics as part of the baseline

computation.

from sagemaker.model_monitor import DefaultModelMonitor

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 25

from sagemaker.model_monitor.dataset_format import DatasetFormat

my_default_monitor = DefaultModelMonitor(

 role=role,

 instance_count=1,

 instance_type='ml.m5.xlarge',

 volume_size_in_gb=20,

 max_runtime_in_seconds=3600,

)

my_default_monitor.suggest_baseline(

 baseline_dataset=baseline_data_uri+'/training-dataset-with-header.csv',

 dataset_format=DatasetFormat.csv(header=True),

 output_s3_uri=baseline_results_uri,

 wait=True

)

3. Monitor an endpoint – You can establish a monitoring schedule using SageMaker Model

Monitor to inspect the collected data against the baseline. There are a number of built-in rules

such as violations checks applied to the results, and the results are pushed to Amazon S3.

The results contain statistics and schema information on the data received during the latest time frame,

as well as any violations that were detected. SageMaker Model Monitor also emits per-feature metrics

to Amazon CloudWatch, which can be used to set up alerts. The summary metrics are also available in

the SageMaker Studio for easy access. The reports and alerts can help identify data quality issues

quickly, so necessary remediation steps can be taken to address any issues.

Detecting model drift with SageMaker

Data drift detection is the first line of defense against model performance degradation. If ground truth

labels can be collected for new data, then SageMaker Batch Transform can be used to run batch

inference periodically for computing model metrics. The following steps list how to use SageMaker

Batch Transform to run and compute the model metrics:

1. Prepare data—Prepare model feature vectors using the labeled dataset and remove the actual

labels from the inputs, and save the request files in an Amazon S3 bucket.

2. Run batch transform—Run SageMaker batch transform against the target model in SageMaker.

The output file will be saved in an Amazon S3 bucket.

3. Compute metrics—Run model evaluation scripts using the output files and the original ground

truth labels to compute the new metrics and compare against the original validation metrics. If

the model performance metric changes cross a defined threshold, then remediation steps

should be considered.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-scheduling.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 26

There are many different options to run the preceding steps. For example, AWS Lambda functions can

be used to prepare the data, kick off the batch transform, and compute the model metrics, and thus a

potential model drift.

Reproducibility

Reproducibility refers to the ability to re-create the same ML model at a later date, or by a different

stakeholder while reducing the randomness involved in the process. Customers may need to be able to

reproduce and validate the end-to-end development process, and provide the necessary artifacts and

methodologies that were used to create the final model, in order to meet regulatory requirements.

While a full discussion of model reproducibility is outside the scope of this paper, we focus on how to

easily identify the source data used to develop the model, the actual model selection, its parameters, as

well as the artifacts of the final model when leveraging SageMaker.

With SageMaker Experiments and your version control system (Git, CodeCommit, or Artifactory), as

shown in the Traceability section, you can track all the lineage of the model version that was deployed,

and thus re-run the same pre-processing pipeline, on the same data, and then use the same model with

the same hyper-parameters to get almost the model. It is important to remember that due to the

randomness entailed in the optimizer implementing stochastic gradient descent, exactly same processes

on the same artifacts, might produce slightly different models which may have slightly different

prediction outcomes. In our case, randomness is completely eliminated by all the steps except that of

training the model, where although we use the exact same input, model type, and parameters, due to

the seed sequence and the stochastic nature of the optimizer, we might notice minor differences in the

optimal weights of the final model.

The following is an example script to keep track of commits from Git.

def get_codecommit(commit_id):

 codecommitclient = boto3.client('codecommit')

 reponame =

 codecommitclient.list_repositories()['repositories'][0]['repositoryName']

 return codecommitclient.get_commit(repositoryName=reponame,

 commitId=commit_id

)

Below you will need to navigate to CodeCommit to obtain the corresponding

commit IDs if you choose to commit your code.

If you only commit your code once, then use the same repo name and CommitIDs

for sclineage and endpointlineage.

sclineage = get_codecommit('1796a0a6972c8df97fd2d279557a6f94cfe91eae') # Enter

your CommitID here

Amazon Web Services Machine Learning Best Practices in Financial Services

 27

endpointlineage = get_codecommit('a6df1799849f52295864754a8f1e30e604fefd00') #

Enter your CommitID here

with Tracker.create(display_name="source-control-lineage",

sagemaker_boto_client=sm) as sourcetracker:

 sourcetracker.log_parameters({

 "commit": sclineage['commit']['commitId'],

 "author":sclineage['commit']['author']['email'],

 "date":sclineage['commit']['author']['date'],

 "message":sclineage['commit']['message'].replace('-',

'_').split('\n')[0]

 })

with Tracker.create(display_name="prod-endpoint-lineage",

sagemaker_boto_client=sm) as endtracker:

 endtracker.log_parameters({

 "commit": endpointlineage['commit']['commitId'],

 "author":endpointlineage['commit']['author']['email'],

 "date":endpointlineage['commit']['author']['date'],

 "message":endpointlineage['commit']['message'].replace('-',

'_').split('\n')[0]

 })

 endtracker.log_input(name="endpoint-name", value='cc-training-job-

1583551877')

cc_trial.add_trial_component(sourcetracker.trial_component)

cc_trial.add_trial_component(endtracker.trial_component)

Present the Model Lineage as a dataframe

from sagemaker.session import Session

sess = boto3.Session()

lineage_table = ExperimentAnalytics(

 sagemaker_session=Session(sess, sm),

 search_expression={

 "Filters":[{

 "Name": "Parents.TrialName",

 "Operator": "Equals",

 "Value": trial_name

 }]

 },

 sort_by="CreationTime",

 sort_order="Ascending",

Amazon Web Services Machine Learning Best Practices in Financial Services

 28

)

lineagedf= lineage_table.dataframe()

lineagedf

As shown in the previous code snippet, if you want to achieve model lineage and the ability to

reproduce your models, you must enforce usage of the Tracker API for both the pre-processing

parameters, and code versioning. In addition to the TrialComponent API, which will track the model, its

parameters, and the datasets natively, customers have to ensure that the Tracker API is always logged

for all other steps. Next, consider Git/CodeCommit best practices, with regards to branching,

committing, and properly commenting to enable the Tracker to accurately include the author, the

commitID, the date, and the message of the commit as shown in the bottom right section of the

following image.

C. Operationalize ML workloads
In this final section, we discuss some best practices around operationalizing FSI ML workloads. We begin

with a high-level discussion and then discuss a specific architecture that leverages AWS native tools and

services. In addition to the process of deploying models, or what in traditional software deployments is

referred to as CI/CD (continuous integration/deployment), deploying ML models into production for

regulated industries may have additional implications from an implementation perspective.

The following diagram captures some of the high-level requirements that an enterprise ML platform

might have to address guidelines around governance, auditing, logging, and reporting:

• A data lake for managing raw data as well as associated metadata

• A feature store for managing machine learning features as well as associated metadata

(mapping from raw data to generated features such as one-hot encodings, scaling

transformations etc.)

• A model and container registry containing trained model artifacts and associated metadata

(hyperparameters, training times, dependencies etc.)

• A code repository (Git/CodeCommit/Artifactory etc.) for maintaining and versioning source code

• A pipeline registry to version and maintain training and deployment pipelines

• Logging tools for maintaining access logs

• Production monitoring and performance logs

https://sagemaker-experiments.readthedocs.io/en/latest/trial_component.html
https://sagemaker-experiments.readthedocs.io/en/latest/tracker.html

Amazon Web Services Machine Learning Best Practices in Financial Services

 29

• Tools for auditing and reporting

Figure 5 – ML DevOps workflow

Below we illustrate a specific implementation that leverages AWS native tools and services. While there

are several scheduling and orchestration tools in the market such Airflow, Jenkins etc., for concreteness,

we will focus the rest of the discussion on AWS Step Functions.

Figure 6 – ML DevOps with AWS native tools

Amazon Web Services Machine Learning Best Practices in Financial Services

 30

Model development workload

Let’s start with the dev environment. Here, data scientists can analyze and validate raw data, generate

features, experiment with trained models, and validate these models in test scenarios. This can be done

either with or without production data, depending on the specific nature of the use case. Although we

have depicted the process as linear, this process is often highly cyclical and experimental.

To speed up experimentation, data scientists can use the AWS Step Functions Data Science SDK. This

open source library allows you to author a training pipeline that can be triggered either when new

features or data is pushed to the training data repository or when a new model is added. AWS Step

Functions is a fully serverless orchestration tool for deploying pipelines. The Data Science SDK is a

Python SDK that can be used for authoring state machines and provides convenient, easy-to-use APIs for

machine learning pipeline orchestration. The SDK automatically calls an AWS Lambda function to deploy

the model container, train the model on the data, create an endpoint or use offline testing through a

batch transform job to test the model performance.

Figure 7: Dev environment endpoint creation workflow

The lines of code below show how you can use the Data Science SDK to launch a model training job and

create a model from the training artifacts.

training_step = steps.TrainingStep(

 'Train Step',

 estimator=xgb,

 data={

 'train': sagemaker.s3_input(train_s3_file, content_type='csv'),

 'validation': sagemaker.s3_input(validation_s3_file, content_type='csv')},

 job_name=execution_input['JobName']

)

model_step = steps.ModelStep

 ('Save

 Model',

 model=training_step.get_expected_model(),

https://aws-step-functions-data-science-sdk.readthedocs.io/en/latest/

Amazon Web Services Machine Learning Best Practices in Financial Services

 31

 model_name=execution_input['ModelName']).

 result_path=’$.ModelStepResults’

)

As discussed in previous sections, SageMaker Experiments can be used to capture any metadata and

model lineage related to training. Once our experiments are complete, many financial services

companies might have a manual or human-in-the-loop process for validating and reviewing the trained

model, ensuring that it meets their requirements around model explainability and interpretability, any

model risk is properly documented, as well as an internal audit on whether the development process

has been properly documented. This review may also need to be conducted by independent parties who

are not responsible for the actual model development.

From a security and access management perspective, the development environment requires the most

manual human interactions and may often be less restrictive since it doesn’t involve production data.

However, in cases where the development environment does require production data access, special

attention is merited. One approach is to create micro-accounts, where only the teams and users who

are authorized are granted access and strict boundaries are enforced. In addition, special approval

workflows may need to be created before access can be granted to production data for model

development.

Pre-production workload

Once the model has been adequately reviewed, the model is ready to be passed on to pre-production or

production for deployment by a DevOps team. For simplicity, we have combined pre-production and

production environments here. However, you might choose to separate them.

DevOps teams will conduct:

• Integration testing to ensure that the model can be incorporated into the existing business

workflow, and may build any serving logic that may be required.

• QA testing such as performance testing, comparing model performance on historical production

data (back-testing) versus on training data, or A/B testing against previously deployed models.

• Stress testing where models are tested against various scenarios: for example, a trading

algorithm may be tested in conditions of low and high market volatility to understand model

risk.

Finally, the trained model source code, model features, model artifacts and associated metadata, builds

such as containers and associated metadata can be stored in the appropriate registries.

Amazon Web Services Machine Learning Best Practices in Financial Services

 32

Figure 8 – Testing model workflow

check_accuracy_step = steps.states.Choice(

 ‘Accuracty > 90%’

)

You can use AWS CodePipeline to create a manifest that picks up the tested model, requiring a human

approval flow to move the model to production. AWS CodePipeline integrates with infrastructure-as-

code tools such as AWS CloudFormation to provision the resources needed to deploy the model.

Production and continuous monitoring workload

Once the production pipeline is ready, AWS CodePipeline can run the AWS CloudFormation scripts

required to create the underlying infrastructure and AWS Step Functions state machine needed to

deploy the model to a production endpoint, as shown in the Figure 9. AWS CodePipeline can also be

used to launch the AWS Step Functions workflow needed to deploy the model into production as shown

below, by pulling code from AWS CodeCommit. If the model has already been validated against

production data in the pre-production stage, it can be deployed directly to an endpoint as shown in the

Figure 7; otherwise, a second retraining step may be needed against production data. This helps

minimize any skew between training and deployed model performance.

Amazon Web Services Machine Learning Best Practices in Financial Services

 33

Figure 9: AWS Step Functions state machine

In addition to continuous deployment, a key element of deploying ML workflows is monitoring. This

includes both performance monitoring of the endpoint and monitoring the model itself for drift as

described in the earlier sections. In previous sections, we have described how to use SageMaker Model

Monitor to establish model monitoring against deployed endpoints.

Once continuous monitoring has been set up, it is essential to retrain models often and set up triggers

for model re-training. These may include data or label/concept drift triggers, model performance drift

triggers, inclusion of new data or new features in the feature store, etc.; and can be event driven or

scheduled. AWS Lambda can then be used to trigger AWS Step Functions pipelines above for retraining

models.

Customers may also use human-in-the-loop workflow to periodically send model outputs to a human

reviewer. The outputs of the review process can be re-incorporated back into the training data as true

ground truth labels. Using SageMaker’s Augmented AI capability, customers can easily create human-in-

the-loop workflows using external or private workforce.

Conclusion
This whitepaper detailed some considerations for provisioning and operationalizing a well-governed ML

workflow. An ML workflow is an orchestrated effort across many different stakeholders. You should

work with your compliance team to evaluate how specific regulatory guidelines and your company’s

own policies may impact your use of machine learning.

Amazon Web Services Machine Learning Best Practices in Financial Services

 34

For more information about implementation details, see the Secure and compliant ML workflows with

Amazon SageMaker video in the SageMaker Developer Resources.

Contributors
Contributors to this document include:

• Stefan Natu, Sr. Machine Learning Solutions Architect

• David Ping, Principal Machine Learning Solutions Architect

• Kosti Vasilakakis, Sr. Business Development Manager, AWS Machine Learning

• Alvin Huang, Capital Markets Business Development

• Paul Jeyasingh, Advisory Consultant, AWS Professional Services

Document Revisions

Date Description

July 2020 First publication

https://www.youtube.com/watch?v=HlSEUvApDZE

	Introduction
	The ML lifecycle: How to provision, govern, and operationalize ML workloads
	A. Provision a secure ML environment
	Compute and network isolation
	Authentication and authorization
	Data encryption
	Auditability

	B. Establish ML governance
	Traceability
	The process to track all artifacts is straightforward. You have to first create an experiment, as shown in the code snippet below, to track all the ML workflow components, and the iterations within them. SageMaker Experiments should be seen as a way t...

	Explainability and interpretability
	Model monitoring
	Detecting data drift with SageMaker
	Detecting model drift with SageMaker

	Reproducibility

	C. Operationalize ML workloads
	Model development workload
	Pre-production workload
	Production and continuous monitoring workload

	Conclusion
	Contributors
	Document Revisions

