
Maximizing Microsoft SQL
Server Performance using

Amazon EC2 NVMe Instance
Store

July 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Environment Setup .. 1

Window Storage Spaces .. 1

SQL Server Benchmarking Setup ... 3

SQL Server Performance Testing ... 3

SQL Server Single Instance... 4

Always-On Availability Group .. 7

Write-back cache and EBS striping ... 9

Automating configuration of write-back cache and related operations using PowerShell

scripts ... 11

Conclusion ... 15

Appendix A: Initialization/Recovery and Shutdown Scripts .. 16

Initialization script ... 16

Shutdown script .. 22

Contributors ... 24

Further Reading ... 24

Document Revisions.. 24

Abstract

Amazon Elastic Block Store (EBS) provides multiple volume types with various

performance and throughput capabilities. Making EBS storage the preferred option for

Microsoft SQL Server deployments on AWS. However, there are multiple factors that

need to be considered when designing storage configuration for RDMS deployment.

This paper presents an approach directed at increasing SQL Server performance

through the use of NVMe disks as the write-back cache in front of traditional EBS

volumes.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 1

Introduction

Selecting proper configuration for storage subsystem is one of the critical tasks when

planning MS SQL Server deployment in the cloud. Every Amazon Elastic Compute

Cloud (Amazon EC2) machine instance can be provisioned with Amazon Elastic Block

Store (EBS) persistent block storage. EBS volumes are highly available and reliable

storage volumes that can be attached to any instance. EBS volumes that are attached

to an EC2 instance are exposed as storage volumes that persist independently from the

life of the instance.

This paper presents and analyzes a complementary approach directed at increasing

SQL Server performance through the use of NVMe disks as the write-back cache in

front of traditional EBS volumes. If you are a database administrator concerned about

the performance of your SQL Server or a system administrator planning for the

expansion of the environment to accommodate ever-increasing load, this paper may

provide you with a cost-effective way to improve performance of the disk subsystem for

SQL Server, and enable you to improve performance of the existing system or allow for

adding more load without reducing performance.

Many of the new Nitro instance types provide instance store using ultra-low latency local

NVMe drives physically attached to the host. However, due to temporal nature of the

instance store, these NVMe drives were used primarily to host MS SQL Server

TempDB. This paper focuses on using local NVMe as a Write-Back Cache in front of an

EBS volume, review performance benefits that this approach provides, and considers

options to mitigate the temporal nature of local NVMe instance store.

Environment Setup

Window Storage Spaces

Windows Storage Spaces (WSS) is a storage virtualization technology developed by

Microsoft and introduced with Windows Server 2012 r2. This technology enables you to

virtualize storage by grouping industry-standard disks into storage pools, and then

creating virtual disks called storage spaces from the available capacity in the storage

pools. Conceptually it is like RAID, implemented in software and is primarily used to

create flexible redundant drives. However, one of the important features of this

technology, is the ability to configure fast SSD drives as a write-back cache for slower

drives, EBS in our case.

https://aws.amazon.com/ebs
https://aws.amazon.com/ebs
https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/overview

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 2

For performance testing we will use a mid-range instance, R5D.4XLARGE, which is

recommended for medium size MS SQL Server databases. This instance comes with

16 vCPUs, 128 GB of RAM, and 2 NVMe drives at 300 GB each. One of these SSD

drives will be used to host TempDB, while the fraction of the second drive will be used

as the write-back cache as we will perform tests with cache of various sizes.

R5D.4XLARGE supports sustained EBS throughput 593.75 MB/s (128 KiB I/O) or 18,750

IOPS (16 KiB I/O).

The instance is provisioned with two 4TB EBS drives, one of them is used directly, while

the other one configured with the write-back cache on NVMe drive. Each drive provides

12,288 IOPS, which is less than the instance limit, so when the drive is used individually

it can deliver its maximum throughput.

After setting up the instance and configuring write-back cache for one of the drives, a

preliminary performance testing of the disk subsystem using CrystalDiskMark

application from the Windows Store was performed. The results of the test are

presented in Table 1 below:

NVMe drive 4-TB EBS drive 4-TB EBS drive WBC on

NVMe

Table 1 - Performance Comparison of various drives

The read performance of the drive with the write-back cache is the same as the one for

the native drive; the same is true for sequential write test as for this instance the NVMe

sequential write speed matches the write speed of the 4-TB EBS drive. For the random

writes, on the other hand, we clearly see the benefits of the write-back cache.

Performing this test gave us good numbers which indicated that raw disk performance

benefits from the write-back cache. Now we need to determine how these numbers

would translate into SQL Server performance.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 3

SQL Server Benchmarking Setup

For performance testing we will use the leading benchmarking and load testing software

for the most popular databases including SQL Server – HammerDB. We will use the

OLTP workload and implement TPC-C benchmark against the databases of various

sizes from 2,000 warehouses (HammerDB parameter of the DB size) to 30,000

warehouses, which translates into DB sizes from about 200 GB to 3 TB.

When configuring HammerDB for benchmarking we will use parameter set

allwarehouses true, to increase level of I/O load. For testing, we will use the

HammerDB Autopilot feature, which enables us to run multiple tests in series. The load

level is set by the number of virtual users that HammerDB creates to work against the

database.

As there is some deviation in results from test to test with the same load level, each test

will be repeated three times and capture TPM (transactions per minute) numbers

averaged across these tests. The first test in a series after attaching the new database

and restarting SQL Server usually produces significantly lower TPM numbers due to

SQL Server initialization (primarily, loading the cache and page buffers), so the results

of the first test in Autopilot run are discarded. Thus, the Active Virtual Users Sequence

for HammerDB Autopilot is set to 34 34 34 34 55 55 55 89 89 89 144 144

144 233 233 233 with the understanding that the results of the first benchmark with

34 virtual users will be discarded.

Note: The TPM numbers provided in the rest of this paper are not
indicative of the performance of the SQL Server on AWS – SQL
Server. Underlying Amazon EC2 instances, and EBS subsystems were
not configured to obtain maximum performance. The TPM numbers
provided are meaningful only for comparing relative performance of SQL
Server on one particular instance type with the specific workload running
against EBS volume configure with or without write-back cache.

SQL Server Performance Testing

We will cover SQL Server single instance as well as SQL Server in Always-On

Availability Group as our test cases, and then proceed with evaluation write-back

caching combined with RAID 0 across EBS volumes.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 4

SQL Server Single Instance

Figure 1 - Benchmarking results for 2,000 warehouses database

Figure 1 above represents the benchmarking results for 2,000 warehouses databases

placed on EBS drive versus the same EBS drive with the write-back cache of different

sizes. Horizontal axis captures the number of virtual users at logarithmic scale, while the

vertical axis represents the values of achieved TPM.

If for each level of workload (number of virtual users) divide the value of the TPM

achieved with the respective write-back cache to the baseline TPM value for the same

load and then average these numbers across all workloads, we will get the coefficient of

performance improvement (Cpi) provided by the write-back cache. If we plot Cpi against

the size of the write-back cache, we will get the chart presented on the Figure 2 below.

The write-back cache of 40 GB provides average performance improvement of about

70%, which grows to 120% for 100 GB cache, and, finally, to 140% for 200 GB cache.

For this relatively small database going from 100 GB cache to 200 GB cache provides

marginal improvement in performance, especially at the lower end of the workload – at

lower level of load the 200 GB cache performs the same as the 100GB cache as at this

level of load cache is not fully utilized.

Baseline, EBS volume

Write-back cache 40 GB

Write-back cache, 100 GB

Write-back cache, 200 GB

100,000 TPM

200,000 TPM

300,000 TPM

400,000 TPM

500,000 TPM

600,000 TPM

700,000 TPM

32 64 128 256

Cached vs. Direct EBS; 2,000 warehouses

TPM-EBS TPM-C40 TPM-C100 TPM-C200

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 5

Figure 2 - Coefficient of performance improvement

Now let’s see how using the write-back cache affects performance of a larger database,

specifically, the one based upon 8,000 warehouses with the size of about 800 GB. The

benchmarking results for this database is presented below in Figure 3. The 40 GB

cache provides average performance improvement of about 50%, but the larger cache

sizes of 100 GB and 200 GB result in much more impressive performance improvement

of about 140% and 170% respectively.

Figure 3 - Benchmarking results for 8,000 warehouses database

1.50

1.70

1.90

2.10

2.30

2.50

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Cpi

Baseline, EBS volume

Write-back cache 40 GB

Write-back cache 100 GB

Write-back cache 200 GB

100,000 TPM

200,000 TPM

300,000 TPM

400,000 TPM

500,000 TPM

32 64 128 256

Cached vs. Direct EBS, 8,000 warehouses

TPM-EBS TPM-C40 TPM-C100 TPM-C200

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 6

It appears from these results that larger databases with OLTP workload would benefit

from a larger cache at high level of load. Again, at a low level of workload the difference

in performance between 100 GB and 200 GB cache is minimal, but as the level of a

workload grows, a larger cache provides meaningful benefits.

The next step is to test performance benefits of write-back cache for really large

database of 30,000 warehouses, which translates into the database size of about 3 TB.

Typically for the OLTP database of this size a larger instance is recommended than the

R5D.4XLARGE, which we use for this testing. However, one of the goals of this test is to

demonstrate that even the mid-size instance could provide reasonable performance for

a quite large database if we use write-back cache in front of the EBS volume. The

NVMe Instance Store is not subject to the instance-level limit for EBS throughput and

can cope with extensive level of write requests, primarily to the log file, to allow

transactions commit without delay and then gradually offload changes to the underlying

EBS volume.

However, for benchmarking performance against this database we use a cache size of

100 GB and 200 GB as, judging from the results for 8,000 warehouses database, the 40

GB cache may not provide meaningful improvement in performance for the database of

this size. The benchmarking results for the 30,000 warehouses database is presented

below in Figure 4.

Figure 4 - Benchmarking results for 30,000 warehouses database

Baseline, EBS volume

Write-back cache 100 GB

Write-back cache 200 GB

50,000 TPM

100,000 TPM

150,000 TPM

200,000 TPM

250,000 TPM

32 64 128 256

Cached vs. Direct EBS, 30,000 warehouses

TPM-EBS TPM-C100 TPM-C200

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 7

The 100 GB cache provides average performance improvement of about 80% and the

200 GB results in performance improvement of about 85%. Again, at low level of

workload the difference in performance between 100 GB and 200 GB cache is minimal,

but as the level of workload grows, larger cache provides meaningful benefit.

Always-On Availability Group

As previously mentioned, if the instance is stopped for reasons such as a hardware

upgrade or component failure, the NVMe storage is lost. This is a shortcoming of the

WSS as it doesn’t recognize that in this particular case, the NVMe storage is used as

the cache in front of the persistent EBS storage, so loss of the SSD component should

be recoverable. However, this is not the case, and loss of the cache disk results in

unrecoverable failure of the whole virtual volume. For a test/development system this

may not be that critical, the volume can be recreated, and the database restored from

the backup. This approach may not work for production systems due to the substantial

downtime required to restore the operational status of the database.

However, most of the production systems already use a high-availability share-nothing

solution like SQL Server Always-On Availability Group. In this case the loss of one

instance would not affect the availability of the system and downtime of a failed instance

required to recreate the volume and restore the database would not result in the system

failure, but in temporary reduction in high availability.

Thus, it becomes important to evaluate effect of the write-back cache on the

performance of SQL Server configured with Always-On Availability Group with

synchronous replication, which would guarantee seamless failover without the data loss

in case of failure of primary instance.

For this evaluation we will limit benchmarking to the databases of 8,000 and 30,000

warehouses with the write-back cache of 200 GB. The benchmarking results for 8,000

warehouses database in Always-On Availability Group configuration with synchronous

commit is presented below in Figure 5. For comparison, the results for the same

database in single-instance configuration, discussed in the previous section, and

presented as dotted lines on the same chart. As compared with the single-instance

results, providing write-back cache of 200 GB results in slightly larger performance

improvement of about 175% for Always-On Availability Group configuration.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 8

Similarly, Figure 6 below presents benchmarking results for the 30,000 warehouses

database in Always-On Availability group configuration. Providing 200 GB cache results

in about 100% performance improvement as compared to the same configuration

hosted just on EBS volume. This even exceeds the 85% performance improvement that

we saw for the same database in a single-instance configuration.

These benchmarks confirm that providing a write-back cache for the EBS volume

hosting the database results in significant performance improvement as compared to

the same database hosted on EBS volume without cache. If we compare results

presented in Figure 1 above and Figure 6 below, we may see that providing 200 GB

write-back cache for a 3 TB database in Always-On Availability Group configuration with

synchronous replication allows to reach the same level of performance that we achieve

for a database 15 times smaller in a single-instance configuration.

Baseline, Always On on EBS

Reference, single instance

Always-On on EBS with Write-
Back Cache

Reference, single instance

50,000 TPM

100,000 TPM

150,000 TPM

200,000 TPM

250,000 TPM

300,000 TPM

350,000 TPM

400,000 TPM

450,000 TPM

32 64 128 256

Cached vs. Direct EBS, 8,000 warehouses

EBS-AG EBS C200-AG C200

Figure 5 - Benchmarking results for 8,000 warehouses database in

Always-On Availability Group with synchronous commit configuration.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 9

Write-back cache and EBS striping

One of the recommended approaches to increase performance of the underlying

storage is to use RAID-0 disk striping. To test this, we will compare the performance of

a 4 TB drive and a virtual drive of the same size comprised of 4 1-TB drives in RAID-0

striping configuration.

As shown below from the data in Table 2, the RAID-0 striping produces a significantly

higher sequential read and write performance. Now it is time to test how striping will

affect SQL Server performance and whether providing a write-back NVMe cache in front

of a striped volume will improve performance. For this test we will use an

R5D.12XLARGE instance and 30,000 warehouses HammerDB database. There will be

two series of tests; the first test will be against the database located on a striped

volume, and the second test will be against the database located on the same volume

but with the 200 GB write-back cache in front of it.

Always-On on EBS

Always-On on EBS
with Write-Back

50,000 TPM

100,000 TPM

150,000 TPM

200,000 TPM

250,000 TPM

32 64 128 256

Cached vs. Direct EBS, 30,000 warehouses

EBS-AG EBS C200-AG C200

Figure 6 - Benchmarking results for 30,000 warehouses database in

Always-On Availability Group with synchronous commit configuration.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 10

Single 4-TB volume 4 1-TB volumes in RAID-0

configuration

Table 2 - Single 4-TB volume vs. 4 1-TB volumes in RAID-0 configuration

As shown in the previous tests, for each set of virtual users three benchmarks will be

captured and results averaged to obtain more consistent results. Also, considering the

larger instance and faster storage, we will extend the HammerDB Autopilot sequence to

include test with 377 virtual users so that the whole sequence will look like 34 34 34

34 55 55 55 89 89 89 144 144 144 233 233 233 377 377 377. The

benchmarking results are presented below in Figure 7.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 11

As shown in the chart, a modest 200 GB NVMe cache in front of a 3 TB database on

already optimized through striping EBS-based volume almost doubles performance of

SQL Server. The Cpi starts at about 1.5 (a 50% performance improvement) at low

levels of load and then exceeds 2.0 (a 100% improvement) for larger loads. The

average Cpi for all data points on the chart is 1.95.Figure 7 - Benchmarking results for

30,000 warehouses database on striped volume with and without write-back cache.

Automating configuration of write-back cache

and related operations using PowerShell scripts

There are multiple ways to organize your storage subsystem for SQL Server in Amazon

EC2, using native features in combination with WSS. It would be difficult and impossible

to develop a script that would cover the multitude of available EC2 instance

configurations and EBS storage configurations. In this section, we will present and

discuss a PowerShell initialization script and corresponding shutdown script for a

configuration which includes the following:

4 1-TB volumes, RAID-0,
200 GB WBC

4 1TB volumes, RAID-0

100,000 TPM

150,000 TPM

200,000 TPM

250,000 TPM

300,000 TPM

350,000 TPM

400,000 TPM

450,000 TPM

32 64 128 256 512

Striped EBS vs. Striped EBS with WBC, 30,000 warehouses

TPM-4x1TB-WBC200 TPM-4x1TB-EBS

Figure 7 - Benchmarking results for 30,000 warehouses database on striped

volume with and without write-back cache.

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 12

• An instance with at least two NVMe volumes; the first one will be used

individually to create a drive to host TempDB, and a fraction of the second one

will be used as a write-back cache.

• One or more large EBS volume to host SQL Server database files; if more than

one volume available for database, they will be combined into a RAID-0.

• One small EBS volume will be used as swap space for NVMe-based write-back

cache.

The target storage configuration is presented below in Figure 8. The Storage Pool

SSD contains one of the two NVMe drives. This drive is the base for the SSD virtual

disk, which is attached to the host as drive S:\. The SQL Server is configured to put

TempDB on this drive. The storage pool, virtual disk, and S:\ drive is re-created on

system start-up. This is not an issue because the SQL Server creates a new

TempDB if the files aren’t found. The only requirement is that SQL Server should be

configured for a Delayed or Manual start so that the drive is created before SQL

Server needs it.

Figure 8 - Storage Configuration

Storage pool DATA includes the second NVMe drive, the large EBS volume(s) for SQL

Server data, and an EBS volume sufficient to accommodate a configured write-back

cache, which is re-allocated to this volume prior to scheduled shutdown to preserve

health of the cached drive. For more information see, Shutdown script. Under normal

operational condition, the virtual disk WCDB contains the EBS volume(s) and the

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 13

second NVMe drive configured as the write-back cache. This virtual drive is attached to

the host as drive D:\. The SQL Server is configured to place the database and log files

for the HammerDB database used for performance testing on this drive.

The scripts were tested against instances of various sizes in R5D family with one or

more EBS volumes for hosting the database. The initialization script will perform the

following actions:

1) Creates an SSD storage pool using one of the NVMe disks, an SSD volume in

this pool, and creates and formats the S:\ drive on this volume. The S:\ drive will

be used for TempDB, a recommended approach for instances with NVMe

storage as SQL Server will re-create TempDB upon start-up if it is not present.

2) Checks for the presence and status of the DATA storage pool. If the pool is in an

UNHEALTHY state (this could be the result of unexpected shutdown/failure of the

instance), it drops the pool, and releases its resources.

3) Checks for the presence of DATA storage pool. If pool does not exist (initial start

of the instance or start after unexpected shutdown/failure with the pool deleted

on previous step), it will create a DATA storage pool using the second of NVMe

drive and available EBS volumes, a WCDB volume using one or more large EBS

volumes with the write-back cache on NVMe, and will mark the smaller of the

EBS volumes as RETIRED to reserve it in case cache needs to be moved to EBS

prior to scheduled shutdown. It also creates and formats the D:\ drive on a

WCDB volume. The D:\ drive is configured with write-back cache on NVMe and

will be used for SQL Server user database(s).

4) If the DATA storage pool exists, it checks whether the write-back cache is on

NVMe. If cache is not on SSD drive (could be the result of re-allocating cache to

EBS volume by the shutdown script to preserve integrity of the WCDB volume

ahead of scheduled stopping of the instance), it adds the available NVMe disk

to the DATA pool, and re-allocates write-back cache to the SSD to restore drive

D:\ performance.

5) Verifies that the WCDB volume is attached to the instance. In some cases, it may

get detached at shutdown/startup.

6) Captures the current state of the storage configuration on the instance to the

execution log.

The initialization script should be placed into the User Data section of the respective

EC2 instance and configured to run on every start by using the <persist> tag:

<powershell>

$CacheSize = 100 # Cache Size in GB

… The rest of the script …

</powershell>

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-user-data.html

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 14

<persist>true</persist>

Note: The first line of the initialization script defines and sets the value of the
variable that controls the size of the allocated write-back cache in gigabytes. This
value should not exceed the amount of space available on NVMe of the
respective instance. The initialization script execution log generated by the
Write-Host cmdlets in the script can be found in the

UserdataExecution.log file located at C:\ProgramData\Amazon\EC2-

Windows\Launch\Log\ for Windows Server 2016 and above.

Shown below is an example log generated at the initial instance startup:

2020/02/09 20:19:06Z: Userdata execution begins

2020/02/09 20:19:06Z: <persist> tag was provided: true

2020/02/09 20:19:06Z: Running userdata on every boot

2020/02/09 20:19:07Z: <powershell> tag was provided.. running

powershell content

2020/02/09 20:19:30Z: Message: The output from user scripts:

SSD storage pool does not exist - Creating

SSD storage pool created

Data storage pool does not exist - Creating

Data storage pool does not exist - Creating

Storage configuration

FriendlyName HealthStatus OperationalStatus Size

------------ ------------ ----------------- ----

NVMe Amazon Elastic B Healthy Online 100

WCDB Healthy Online 999

SSD Healthy Online 277

DriveLetter FriendlyName HealthStatus OpStatus SizeRemaining

Size

----------- ------------ ------------ -------- ------------- -

C System Healthy OK 62.27 GB 100

GB

D WCDB Healthy OK 998.84 GB 998.98

GB

S SSD Healthy OK 276.88 GB 276.98

GB

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 15

2020/02/09 20:19:30Z: Userdata execution done

The shutdown script could be started manually or by some other means, such as using

the On-Shutdown feature of the local policy, ahead of the scheduled stopping of the

instance. The script validates necessary conditions, then re-allocates write-back cache

from the NVMe drive to the spare small EBS volume that was added to the DATA pool

by initialization script in the retired state. The size of this EBS volume should be

sufficient to hold the allocated write-back cache. The script also stops SQL Server

service and SQL Server agent. Stopping the SQL Server is not required, however, if it

keeps running, the performance of SQL Server would be significantly impaired during

cache reallocation.

Note: Swapping a drive for write-back cache can take a long time. Theoretically,
if WSS realized that the drive being swapped is used as cache, it would be
sufficient to just flush the cache onto the underlying volume and then swap the
drives. Unfortunately, this is not the case so the WSS actually copying everything
from the write-back cache disk being retired to the new one. For large cache
sizes (100 GB, 200 GB) this operation may take significant time.

In the tests on the R5D.4XLARGE, transferring a cache to a 300 GB EBS took about 4

seconds per GB of allocated cache. Using a larger instances or faster drives, this time

can be reduced.

Conclusion

Using the write-back cache feature of the Windows Storage Spaces provides a new way

to maximize SQL Server performance on AWS, which can be combined with the

approaches outlined in the Maximizing Microsoft SQL Server Performance with Amazon

EBS blog post. Significant performance improvements provided by utilizing write-back

cache on NVMe enables you to:

• Achieve a higher SQL Server performance without migrating to more powerful

instance type and/or using EBS volumes with provisioned IOPS.

• Achieve cost savings by downgrading installation to a smaller instance and/or

removing provisioned IOPS from the EBS volumes without sacrificing

performance.

Due to the temporal (non-persistent) nature of the NVMes, this approach to improve

SQL Server performance, for all practical cases except for some development

https://aws.amazon.com/blogs/storage/maximizing-microsoft-sql-server-performance-with-amazon-ebs/
https://aws.amazon.com/blogs/storage/maximizing-microsoft-sql-server-performance-with-amazon-ebs/

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 16

databases, would require deployment of Always-On Availability Group(s) with

synchronous replication in either Standard or Enterprise edition of SQL Server.

However, this requirement does not look excessive as most production workloads are

anyway deployed in high-availability configuration.

The temporal nature of NVMes can be mitigated for scheduled stopping of the

instance by re-allocating cache to a spare EBS volume and then upon start-up of the

instance re-allocating cache back to new NVMe.

Appendix A: Initialization/Recovery and

Shutdown Scripts

The following scripts were developed to address the configuration discussed in this

paper. If your configuration is different, you can use these scripts as a sample template

to assist you in developing scripts to address your specific needs.

Initialization script

$CacheSize = 10 # Cache Size in GB

Write-Host " " # Create new line in the log

Check for presence of SSD data pool to host SQL Server TempDB

if (!(Get-StoragePool | ? FriendlyName -EQ SSD))

 {

 Write-Host "SSD storage pool does not exist - Creating"

 # ---

 # Create "SSD" storage pool and respective drive to host SQL

Server TempDB

 # ---

 New-StoragePool -StorageSubSystemId (Get-

StorageSubSystem).UniqueId `

 -FriendlyName SSD `

 -PhysicalDisks (Get-PhysicalDisk -CanPool $true `

 -FriendlyName 'NVMe

Amazon EC2 NVMe' |

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 17

 Select -First 1) |

Out-Null

 # ---

 # Create virtual disk "SSD" on pool "SSD" to host SQL Server

TempDB

 # ---

 Get-StoragePool SSD | New-VirtualDisk -FriendlyName SSD `

 -ProvisioningType Fixed

`

 -UseMaximumSize `

 -ResiliencySettingName

Simple | Out-Null

 # ---

 # Configure volume "S" on virtual disk "SSD" to host SQL Server

TempDB

 # ---

 Get-VirtualDisk SSD | Get-Disk | Set-Disk -IsReadOnly 0

 Get-VirtualDisk SSD | Get-Disk | Set-Disk -IsOffline 0

 Get-VirtualDisk SSD | Get-Disk | Initialize-Disk -

PartitionStyle GPT -Confirm:$false

 Stop-Service -Name ShellHWDetection # Required to avoid pop-

up dialog

 Get-VirtualDisk SSD | Get-Disk | New-Partition -Alignment

1024KB `

 -DriveLetter "S"

`

 -UseMaximumSize

| Out-Null

 Format-Volume -DriveLetter "S" -FileSystem NTFS `

 -NewFileSystemLabel SSD `

 -AllocationUnitSize 64KB -Confirm:$false | Out-

Null

 Start-Service -Name ShellHWDetection # Restore service

 # ---

 Write-Host "SSD storage pool created"

 }

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 18

Check for presence and status of the Data pool which hosts DB

if ((Get-StoragePool | ? FriendlyName -EQ Data) `

 -AND `

 (Get-StoragePool | ? FriendlyName -EQ Data).HealthStatus -NE

"Healthy")

 {

 Write-Host "Data storage pool exists but not healthy -

Deleting"

 # ---

 # Remove Data Storage pool - the DB will be UNAVALABLE!!!

 # ---

 Get-StoragePool Data | Get-PhysicalDisk | ? FriendlyName -EQ

NVME |

 Set-PhysicalDisk -Usage Retired -NewFriendlyName

RetiredNVME

 #--

 Remove-VirtualDisk -FriendlyName WCDB -Confirm:$false

 #--

 Remove-StoragePool -FriendlyName Data -Confirm:$false

 #--

 Write-Host "Unhealthy Data storage pool Deleted"

 }

If it does not exist, create Data pool which hosts DB - could be

on initial

system configuration or may follow deletion of the pool due to

unexpected

loss of the efemeral drive (server was stopped without

reconfiguring pool).

In the latter case the DB(s) need to be restored from the backup

or by some

other means.

if (!(Get-StoragePool | ? FriendlyName -EQ Data))

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 19

 {

 Write-Host "Data storage pool does not exist - Creating"

 # ---

 # Create "Data" storage pool and respective drive to host SQL

Server DB(s)

 # on the SSD-writecached drive

 # ---

 New-StoragePool -StorageSubSystemId (Get-

StorageSubSystem).UniqueId `

 -FriendlyName Data `

 -PhysicalDisks (Get-PhysicalDisk -CanPool $true) |

Out-Null

 # ---

 # Set FriendlyName for the drive that will be used as Swap

Space for SSD Cache

 # NOTE: For swap we select the smallest of the EBS drives

 # ---

 Get-StoragePool Data | Get-PhysicalDisk | ? FriendlyName -EQ

'NVMe Amazon Elastic B' |

 Sort Size | Select -First 1 |

 Set-PhysicalDisk -MediaType SSD -Usage Retired -

NewFriendlyName Swap

 # ---

 # Set MediaType and FriendlyName for the drive(s) that will be

used for HDD Tier

 # ---

 Get-StoragePool Data | Get-PhysicalDisk | ? FriendlyName -EQ

'NVMe Amazon Elastic B' |

 Set-PhysicalDisk -MediaType HDD -Usage AutoSelect -

NewFriendlyName Data

 # ---

 # Set FriendlyName and Usage for the NVMe drive(s) so they

could be used as Cache

 # ---

 Get-StoragePool Data | Get-PhysicalDisk | ? FriendlyName -EQ

'NVMe Amazon EC2 NVMe' |

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 20

 Set-PhysicalDisk -MediaType SSD -Usage Journal -

NewFriendlyName NVME

 # ---

 # Create virtual disk "WCDB" on pool "Data" to host SQL Server

database

 # ---

 Get-StoragePool Data | New-VirtualDisk -FriendlyName WCDB `

 -ProvisioningType Fixed

`

 -UseMaximumSize `

 -ResiliencySettingName

Simple `

 -WriteCacheSize

($CacheSize * 1073741824) |

 Out-Null

 # ---

 # Configure volume "D"• on Write-Cached virtual disk

 # ---

 Get-VirtualDisk WCDB | Get-Disk | Set-Disk -IsReadOnly 0

 Get-VirtualDisk WCDB | Get-Disk | Set-Disk -IsOffline 0

 Get-VirtualDisk WCDB | Get-Disk | Initialize-Disk -

PartitionStyle GPT -Confirm:$false

 Stop-Service -Name ShellHWDetection # Required to avoid pop-

up dialog

 Get-VirtualDisk WCDB | Get-Disk |

 New-Partition -Alignment 1024KB -DriveLetter

"D" -UseMaximumSize |

 Out-Null

 Format-Volume -DriveLetter "D" -FileSystem NTFS `

 -NewFileSystemLabel WCDB `

 -AllocationUnitSize 64KB -Confirm:$false | Out-

Null

 Start-Service -Name ShellHWDetection # Restore service

 # ---

 Write-Host "Data storage pool does not exist - Creating"

 }

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 21

If the Data pool was prepared for instance shutdown and loss of

efemeral

storage, we may recover optimal (WriteBackCache on ephemeral SSD)

Data pool

configuration.

Please note that depending on the size of the cache, this

operation may take

long time!

if ((Get-StoragePool | ? FriendlyName -EQ Data) `

 -AND `

 (Get-StoragePool | ? FriendlyName -EQ Data).HealthStatus -

EQ "Healthy" `

 -AND `

 (Get-VirtualDisk | ? FriendlyName -EQ WCDB) `

 -AND `

 (Get-PhysicalDisk | ? FriendlyName -EQ Swap).Usage -EQ

"Journal" `

 -AND `

 (Get-PhysicalDisk | ? CanPool -EQ $true | ? FriendlyName -

EQ "NVMe Amazon EC2 NVMe")

)

 {

 Write-Host "Recovery conditions met - recovering WCDB drive"

 #--

 $Swap = Get-PhysicalDisk | ? FriendlyName -EQ Swap

 $NVME = Get-PhysicalDisk | ? CanPool -EQ $true | ? FriendlyName

-EQ "NVMe Amazon EC2 NVMe"

 #--

 # Add new NVMe drive to Storage Pool

 Add-PhysicalDisk -PhysicalDisks $NVME -StoragePoolFriendlyName

Data

 # Set attributes of the new NVMe drive

 Set-PhysicalDisk -InputObject $NVME -Usage Journal -

NewFriendlyName NVME

 # Set attributes of the Swap drive

 Set-PhysicalDisk -InputObject $Swap -Usage Retired

 #--

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 22

 # Reallocation cache to NVMe

 Repair-VirtualDisk -FriendlyName WCDB

 #--

 Write-Host "Recovery of WCDB drive completed successfully"

 }

It may happen that virtual disk WCDB is left in the "Detached"

state upon

recovery - we need to re-attach it to the host

if ("Detached" -EQ (Get-VirtualDisk | ? FriendlyName -EQ

WCDB).OperationalStatus)

 {

 Write-Host "WCDB Virtual Disk is <Detached> - attaching"

 Connect-VirtualDisk -FriendlyName WCDB

 }

Current status capture

Write-Host "Storage configuration"

Get-Disk | FT FriendlyName, HealthStatus, OperationalStatus,

@{n="Size";e={[math]::Round($_.Size/1GB,2)}}

Get-Volume | ? DriveType -EQ Fixed

Shutdown script

if (!(Get-StoragePool | ? FriendlyName -EQ Data))

 {

 Write-Host "Target storage pool not found - exiting"

 exit

 }

$NVME = Get-PhysicalDisk | ? FriendlyName -EQ NVME

if (!$NVME)

 {

 Write-Host "Cache (NVME) drive not found - exiting"

 exit

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 23

 }

$Swap = Get-PhysicalDisk | ? FriendlyName -EQ Swap

if (!$Swap)

 {

 Write-Host "Swap drive not found - exiting"

 exit

 }

if ($Swap.Usage -NE "Retired")

 {

 Write-Host "Swap drive is not in RETIRED usage state - exiting"

 exit

 }

$WCDB = Get-VirtualDisk | ? FriendlyName -EQ WCDB

if (!$WCDB)

 {

 Write-Host "Taqrget virtual disk WCDB not found - exiting"

 exit

 }

Write-Host "Found new Swap drive - proceeding with swapping cache

drive for EBS"

#---

Stop-Service -Name SQLSERVERAGENT

Stop-Service -Name MSSQLSERVER

#---

Change Swap disk usage to AutoSelect to enable media swap

Set-PhysicalDisk -FriendlyName Swap -MediaType SSD -Usage Journal

Change cache drive NVME usage to Retired to enable removal

Set-PhysicalDisk -FriendlyName NVME -Usage Retired

Reallocation....

Repair-VirtualDisk -FriendlyName WCDB

Delete NVMe drive before shutdown

Remove-PhysicalDisk -PhysicalDisks $NVME -StoragePoolFriendlyName

Data -Confirm:$false

Amazon Web Services Maximizing MS SQL Server Performance using Amazon EC2 NVMe Instance

Store

 24

Contributors

Contributors to this document include:

• Alex Zarenin, Senior Solution Architect, Amazon Web Services

Further Reading

For additional information, see:

• Amazon Elastic Block Store (EBS)

• Maximize EBS volume performance with Fast Snapshot Restore

• Microsoft SQL Server on AWS

• Maximizing Microsoft SQL Server Performance with Amazon EBS

• Amazon EC2 Instance Store

Document Revisions

Date Description

July 2020 First publication

https://aws.amazon.com/ebs/?ebs-whats-new.sort-by=item.additionalFields.postDateTime&ebs-whats-new.sort-order=desc
https://aws.amazon.com/blogs/aws/new-amazon-ebs-fast-snapshot-restore-fsr
https://aws.amazon.com/sql/
https://aws.amazon.com/blogs/storage/maximizing-microsoft-sql-server-performance-with-amazon-ebs/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/InstanceStorage.html

	Introduction
	Environment Setup
	Window Storage Spaces
	SQL Server Benchmarking Setup

	SQL Server Performance Testing
	SQL Server Single Instance
	Always-On Availability Group
	Write-back cache and EBS striping

	Automating configuration of write-back cache and related operations using PowerShell scripts
	Conclusion
	Appendix A: Initialization/Recovery and Shutdown Scripts
	Initialization script
	Shutdown script

	Contributors
	Further Reading
	Document Revisions

