
Modern Application
Development on AWS

Cloud-Native Modern Application Development and

Design Patterns on AWS

October 2019

This paper has been archived.
For the latest techincal guidance on the AWS Cloud, see the
AWS Whitepapers & Guides page:

https://aws.amazon.com/whitepapers/Archived

https://aws.amazon.com/whitepapers/

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

Contents

Introduction .. 6

Accelerating the Innovation Flywheel .. 6

Modern Application Development ... 7

Capabilities of Modern Applications .. 7

Best Practices of Modern Application Development ... 9

Modern Application Design Patterns .. 14

Implementing Microservice Architectures using AWS Services 14

Continuous Integration and Continuous Delivery on AWS .. 30

CI/CD Services on AWS .. 30

CI/CD Patterns for Different Application Types ... 33

Conclusion ... 38

Contributors ... 38

Further Reading ... 39

AWS Services .. 39

Whitepapers ... 40

Video ... 40

Document Revisions.. 40

 Archived

Abstract

Modern application development using containers and serverless technologies can help

your organization accelerate innovation. This paper includes information about

important best practices and design patterns that you can use to build your modern

application in the AWS Cloud.

Archived

Amazon Web Services Modern Application Development on AWS

 6

Introduction

Modern companies are increasingly global, and their products are increasingly digital.

These digital products—such as cloud infrastructure, mobile apps, big data pipelines,

and social media—are influencing application development, which requires an

unprecedented pace of change for companies. To achieve this speed, business leaders

must adapt their culture, processes, and technologies to the new reality of this digital

age.

Rapid innovation is vital for modern companies, which must drive growth by making the

most of their human resources, seeking out new opportunities, and nurturing new ideas.

Digital technology is at the core of this rapid innovation.

Accelerating the Innovation Flywheel

Businesses in almost all industries are experiencing an unprecedented pace of change,

and rapid innovation is crucial to improving their pace. Small, unknown competitors can

get ahead in a matter of months by focusing on innovation, so it is essential to not only

innovate, but to do so quickly.

Amazon has learned that experiments let you innovate faster. To accelerate innovation,

we perform an experiment, listen to user feedback, and experiment again. We do not

fear failure, but apply the learnings from each experiment in future efforts. We call this

the innovation flywheel. To spin this flywheel rapidly, we need a system to release

products, collect feedback, add new features, and release again. The features of

modern applications make this process possible, and enable you to spin the flywheel

and get ahead of the competition through rapid innovation.

 Archived

Amazon Web Services Modern Application Development on AWS

 7

Modern Application Development

The most successful companies recognize that it is their technology that sets them

apart from the competition. To keep growing and winning business, companies need to

invent new products rapidly. To promote a culture of innovation that makes this

possible, successful companies continually update their methods of designing, building,

and administering applications. We call this modern application development.

Modern application development gives companies a competitive edge by enabling them

to innovate more rapidly. Companies that embrace innovation can complete more

experiments and bring ideas to market more quickly by shifting resources from

undifferentiated heavy lifting—such as administering and provisioning infrastructure—to

more valuable activities.

Modern application development practices can help companies to realize the speed and

agility that go with innovation. Some customers take their on-premises virtual machines

(VMs) and move them (also known as lift-and-shift) to host them on Amazon Elastic

Compute Cloud (Amazon EC21). Other customers change the platform of their

applications to a container-based model that is more optimized for the cloud. Still other

companies refactor their monolithic applications and transition to a microservice-based

architecture. Most companies find that when they build more cloud-native applications,

they spend less time on administrative overhead and can focus more on their core

business.

Capabilities of Modern Applications

Modern applications should be:

• Secure – It is crucial for any application to be secure. Security measures must

be implemented not only in a certain piece of the application, but in all layers and

at each stage of the lifecycle.

• Resilient – A modern application is resilient. For example, if an application

encounters a failure when it calls an external data source, it should retry or

otherwise handle the exception—not become unresponsive—while continuing to

operate with a graceful degradation of functionality. This pattern also applies to a

microservice architecture2 and interactions with other services.

Archived

Amazon Web Services Modern Application Development on AWS

 8

• Elastic – By flexibly scaling out and scaling in depending on the rate of requests

or other metrics, modern applications can optimize cost without missing business

opportunities. Automating the process of scaling out and scaling in, or using

managed services that include auto scaling functionality, reduces routine

administrative burden and prevents the extreme disruption of outages.

• Modular – Modern applications are modular, with high cohesion and loose

coupling. Larger systems should not be single monoliths, but should be

separated along domain boundaries into different components, each with a

distinct responsibility. Not only does this separation allow for greater availability

and scalability, but frequent releases are easier, because different components

can be deployed independently.

• Automated – Integration and deployment of modern applications must be

automated to enable frequent, high-quality releases. In addition to being error

prone, manual processes can introduce dependence on individual people, such

as requiring a single administrator to make deployments. To support agile

development and frequent releases, modern applications should be deployed

through continuous integration and continuous delivery (CI/CD) pipelines. In a

CI/CD model, code is pushed to version control, tests are run in a clean CI

environment, and deployments are performed automatically if all tests pass.

• Interoperable – In modern applications, each service must interact with other

services, provide the resources requested of it, and perform the tasks expected

of it. It must be possible to add functionality to different services independently

and continue to release frequently, without impacting other services. This means

that services must keep their implementation details private, exposing all

required functionality through robust, public APIs. These public APIs must also

be stable and backward compatible to allow for independent releases.

There are various methods you can use to implement modern applications. This paper

includes information about methods to deploy applications in the cloud with containers

and serverless technology. Archived

Amazon Web Services Modern Application Development on AWS

 9

Best Practices of Modern Application Development

Through conversations with customers and our own development teams, we found that

there are several modern application development best practices shared by

organizations that bring innovative ideas to the market rapidly.

Security and Compliance

When you build your system in the AWS Cloud, we recommend that you always start

with security and compliance. Securing the whole application lifecycle enables

organizations to address security threats without sacrificing speed of innovation.

For example:

• Authentication – Control access to your system with permission settings that

prevent malicious access. AWS administrators can sign in to the AWS Console

with AWS Identity and Access Management (IAM) credentials, or through

integrations with Microsoft Active Directory or a SAML Identity Provider.

Applications built on AWS can leverage Amazon Cognito to allow end users to

authenticate and access resources.

• Authorization – Implement role-based access control with flexible policies that

restrict the use of resources without overly complicated administration. IAM

provides granular authorization policies for any AWS resources.

• Auditing and Governance – Evaluate the behavior of workloads and make sure

that they conform to compliance requirements and your organization’s standards.

AWS CloudTrail can audit interactions with AWS APIs and log aggregation with

Amazon CloudWatch enables you to audit your applications. AWS Config can

make sure that AWS resources are configured to align with your organization’s

standards.

• Validation – Test all aspects of application functionality, and make sure that it

works as intended. Automate validation as much as possible with continuous

integration and continuous delivery (CI/CD).

Modern applications should be thoroughly and frequently tested, however, this must not

reduce development velocity. Similarly, you should limit developer permissions, but you

should not revoke the access that they require. Build your security into the entire

application lifecycle, and automate and continuously reevaluate your security processes

and standards.

Archived

Amazon Web Services Modern Application Development on AWS

 10

Microservice Architecture

As monolithic applications grow, it becomes difficult to modify or add functionality to

them, and to track what parts of the codebase are involved in a specific change. As a

result, small changes can require lengthy regression testing, and development of new

features can slow. In an application built with a microservice architecture and loosely

coupled components, many new features and bug fixes can be implemented at the level

of a single service and released much more rapidly.

Organizations with monolithic legacy applications can become more agile and flexible

by redesigning their applications into microservices. Each service is deployed

separately, and all the services work together to offer the same functionality as the

monolithic system. Microservices can be built, modified, and released quickly, which

provides faster experimentation and innovation. Each team that builds microservices

can also take clear ownership of their own design, development, deployment, and

operations.

To achieve this loose coupling, the microservices in a system must communicate with

each other. A datastore that is shared between services creates tight coupling, hidden

dependencies, timing issues, and challenges with scaling and availability. It is better to

use published APIs or asynchronous message queues to communicate between

separate services. Separating processes into different pieces that are connected by

messages in queues creates clear transaction boundaries and enables services to

operate more independently.

Messaging systems can provide scalability, resilience, availability, consistency, and

distributed transactions because of the following characteristics:

• Trusted and resilient message delivery system

• Non-blocking and one-way operation

• Loosely coupled services

• Bringing focus to different logical components in the system, and allowing each

to work independently

Architectures that take advantage of these elements can easily expose robust APIs and

asynchronous communication channels, which enables each service to be operated and

automated independently, and which also improves reliability.

When many different microservices are connected to perform a process, you must have

a method to monitor the state of a single end-to-end task. You must also make sure that

Archived

Amazon Web Services Modern Application Development on AWS

 11

all the necessary steps happen in the correct order and at the correct time. You can use

state machines to both monitor the state of tasks and make sure they occur in the

correct order.

You also need a method to manage the overall workflow between services, to configure

various timeouts, cancellations, heartbeats for long-running tasks, and granular

monitoring and auditing. Managing services with this type of tooling improves speed,

productivity, and flexibility. To make sure that microservices execute in the correct

sequence with appropriate timing, modern applications take advantage of orchestration

and messaging tools. Using orchestration tools makes it easy to build robust services in

a repeatable way. AWS Step Functions is a fully managed tool that can coordinate

arbitrary workflows across services. When you use messaging tools, you remove direct

dependencies between services, which improves reliability and scalability. You can use

different tools—such as Amazon Simple Queue Service (Amazon SQS), Amazon

CloudWatch Events, and Amazon Kinesis—depending on the specific workload. By

using orchestration and messaging tools together, your developers do not have to

spend time on workflow execution, state management, and inter-service

communication, which gives them valuable time to focus on core business logic.

Using Serverless Technology

When you operate and maintain the servers and operating systems (OS) that run your

organization’s applications, your system administrators must spend time completing

simple and repetitive tasks, such as applying OS security patches. Instead of scaling up

by request volume, they must provision servers for peak volume ahead of time, while

carefully considering availability and durability requirements. You might also have to pay

for all of this overprovisioned infrastructure in advance, instead of paying for what you

use as you go.

Though services such as AWS Auto Scaling and AWS Systems Manager can reduce

these burdens on conventional, VM-based infrastructure, when you build your system

on serverless technology, you don’t have to provision and manage servers. Your

administrators don’t have to spend time on OS patches, or maintain unused resources

to be prepared for occasional peak usage. Serverless applications scale to meet the

precise demand on each component. Reliability and fault-tolerance are also largely

built-in by default, which eliminates much of the design and operations time required for

these aspects of the system. By building modern applications with serverless

technologies from the beginning, the whole lifecycle of building, deploying, and running

applications can also be kept secure. When you remove operational complexity, your

Archived

Amazon Web Services Modern Application Development on AWS

 12

developers can focus their time and energy on building products that delight your

customers.

AWS provides serverless computing services such as AWS Lambda3 and AWS

Fargate4. There is Amazon Simple Storage Service (Amazon S3)5 for object storage,

and there are now two serverless database options: Amazon DynamoDB6, a fast and

flexible NoSQL database, and Amazon Aurora Serverless7, an on-demand and auto-

scaling configuration for Amazon Aurora. If you want to build an end-to-end serverless

application, compute, database, and storage services might not be enough. You can

use other serverless AWS offerings8 throughout your workload, from API management,

messaging, and orchestration, to troubleshooting and monitoring.

Automating Deployment with CI/CD

Companies strive to innovate quickly to deliver the most value they can to customers as

quickly as possible. To achieve this, modern applications use continuous integration

and continuous delivery (CI/CD) to automate the entire release process: building and

running tests, promoting artifacts to staging, and the final deployment to production.

CI/CD can also automate certain security controls, such as scanning for known

vulnerabilities and performing static analysis. The full CI/CD pipeline can consist of an

arbitrary number of quality gates and controls, all of which must be passed successfully

before any new code makes it to production.

By automating the full build/test/deploy process, it becomes not only more reproducible,

but faster as well. It can also be performed much more frequently—perhaps many times

a day—meaning that each individual deployment consists of fewer changes and less

risk. Instead of being a high-risk, all-hands-on-deck event, CI/CD allows deployments to

production to be mundane affairs. Finally, because the time from when code is

committed to when it is deployed is so much shorter than with manual processes, high-

priority security fixes or config changes no longer require special hot patches, but can

flow through the standard pipeline.

AWS customers can take advantage of fully-managed CI/CD services such as AWS

CodeBuild, AWS CodePipeline, and AWS CodeDeploy, in addition to open-source

options and third-party marketplace offerings.

Archived

Amazon Web Services Modern Application Development on AWS

 13

Managing Infrastructure as Code

To get the full benefits of CI/CD, you should create a model for your entire application

and infrastructure as code (IaC). By modeling infrastructure as code, you can

incorporate it into your standard application development lifecycle, execute

infrastructure changes in your CI/CD pipeline, and get additional benefits, such as

reducing configuration errors and provisioning faster. AWS provides a number of IaC

tools. One tool is AWS CloudFormation9, which is a service that lets you specify any

cloud infrastructure you need in a simple template file, and then provisions the

infrastructure for you. Another tool is AWS Serverless Application Model (SAM)10, which

builds on AWS CloudFormation with additional tooling and convenience functions for

building serverless applications. AWS Cloud Development Kit (CDK)11 is a tool that

provides a framework to design cloud infrastructure in code using a language of your

choice and then provisions it with CloudFormation.

Monitoring and Logging

Developers of modern applications should monitor the behavior of their application at

runtime using monitoring and logging tools, and use that data to maintain or improve

their customers’ experience. In modern digital products, this could mean monitoring a

many data types, including application logs, data from mobile devices, web click

streams, IoT sensor data, or other usage data. Modern application developers should

take advantage of all of this data as they continue to expand and enhance their

products.

On AWS, you can set up monitoring, logging, and alarms for all your application

components using Amazon CloudWatch. For more information on logging, see Log

Aggregation.

Modern Application Checklist

Use the following information to verify the modernization level of your application:

• Security and compliance are built in throughout the application lifecycle

• Application is structured as a collection of microservices

• Serverless technologies are used wherever possible

• CI/CD is used to deliver high-quality functionality quickly

• Infrastructure is developed and deployed as code

• Monitoring tools are used to gain insight into the behavior of the application

Archived

Amazon Web Services Modern Application Development on AWS

 14

Modern Application Design Patterns

A best practice for modern application development is to use patterns to design and

implement your applications. Using AWS services as building blocks for these

applications, you can greatly reduce your implementation effort and achieve reliability

and availability, which enables your developers to focus on business logic that adds

value to your applications.

Implementing Microservice Architectures using AWS

Services

You can use common patterns for microservices, following best practices, and

implement them using AWS services.

API Gateways

The API gateway pattern can be used when there are many calls to backend services,

and when the content provided varies depending on the client interface or device type.

API gateways can consolidate different backend services behind a unified API and

serve the content required for each device.

Figure 1 – Example of communication between services and mobile devices and computer

browsers without an API gateway

Archived

Amazon Web Services Modern Application Development on AWS

 15

Figure 2 – Example of communication between services and mobile devices and computer

browsers with an API gateway

If you plan to use the API gateway pattern in the AWS Cloud, you can use Amazon API

Gateway12 to integrate with backend endpoints. Amazon API Gateway also enables you

to create, publish, maintain, monitor, and protect REST or WebSocket APIs at any

scale.

Amazon API Gateway provides many other capabilities required of production-grade

APIs, such as throttling, caching, logging, API tokens, authentication or authorization

integrated with Amazon Cognito, custom authorizers, and proxying of requests to other

AWS services. One essential AWS service that Amazon API Gateway can send proxy

requests to is AWS Lambda, which is the foundation for creating arbitrary web services

without managing any server infrastructure. Archived

Amazon Web Services Modern Application Development on AWS

 16

Because Amazon API Gateway is managed by AWS, you don't have to worry about

operating and maintaining it. Using Amazon API Gateway provides improved security,

reliability, and availability, which allows your developers to spend more time on core

application functionality.

Figure 3 – Example of communication between services and mobile devices and computer

browsers with Amazon API gateway

Archived

Amazon Web Services Modern Application Development on AWS

 17

Service Discovery and Service Registries

When a system includes multiple microservices, services must be able to find the

location of the other services that they depend on. Microservices must be scalable and

elastic, and if components fail, new instances or containers must be brought online to

ensure constant availability. This means that the IP addresses of the instances or

containers in a microservice can be constantly changing. Each instance of a service

also must be continually monitored for availability. You can use load balancers to

provide stable, available endpoints, which are usually the best choice for public-facing

web endpoints. However, load balancers require additional compute resources and

introduce latency. If the client is under your control, as are the calls between

microservices, it can be more efficient to use a service discovery pattern, which you can

also think of as client-side load balancing.

In the service discovery pattern, information about the services to be discovered must

be registered somewhere. A service registry is a central location where services to be

called can store information about themselves as each individual container or instance

starts up.

Figure 4 – Example of a service registry pattern Archived

Amazon Web Services Modern Application Development on AWS

 18

Figure 5 – Example of a service discovery pattern

You can use AWS Cloud Map to implement a service registry and service discovery

pattern in the AWS Cloud. AWS Cloud Map is a fully managed service that allows

clients to look up IP address and port combinations of service instances using DNS, and

to dynamically retrieve abstract endpoints, such as URLs or Amazon Resource Names

(ARNs) over the HTTP-based service discovery API.

Figure 6 – Example of a service registry and service discovery pattern using AWS Cloud Map

Circuit Breaker

The circuit breaker pattern regulates the calls between microservices in your

application. To respond to user requests, the microservices in your application make

calls to each other. If Service A sends a call to Service B, but the return call from

Service B is delayed or produces an error, then Service A returns an error to the user. If

Service A retries the call instead of returning an error, it might provide a better user

experience, but retries can produce extra load and long delays, and can end with an

Archived

Amazon Web Services Modern Application Development on AWS

 19

error returned to the user. Instead, Service A should recognize that Service B is down,

and degrade gracefully, if possible.

Figure 7 – Example of a circuit breaker pattern with returned calls between microservices

In the circuit breaker pattern, when calls to other services take longer than expected or

return errors, the circuit breaker keeps count of the incidences and changes to the open

state if the count exceeds the limit you configure. When in the open state, the circuit

breaker returns errors to the caller immediately, without calling downstream services.

After a fixed amount of time has passed, the circuit breaker returns to a closed state,

which allows calls to the downstream service to return to normal.

Figure 8 – Example of a circuit breaker pattern with errors returned immediately to the user

It was previously a best practice to implement circuit breakers using a library or

framework in the service code, but now it is often handled in containerized

microservices with sidecars. A sidecar is a separate helper container that is launched

with the main container that exposes a core service. Envoy Proxy13 is one popular

example of a sidecar. Though Envoy Proxy can be deployed on its own, it is often

deployed as part of a service mesh. In this type of deployment, Envoy Proxy is the data

plane and a tool such as AWS App Mesh or Istio is the control plane.

Archived

Amazon Web Services Modern Application Development on AWS

 20

Command-Query Responsibility Segregation

Command Query Responsibility Segregation (CQRS) involves separating the data

mutation or command part of a system from the query part. Updates and queries are

conventionally completed using a single datastore. You can use CQRS to separate

these two workloads if they have different requirements for throughput, latency, or

consistency. When you separate command and query functions, you can scale them

independently. For example, you can send queries to horizontally-scalable read

replicas. For greater separation of command and query functions, you can use different

data models and datastores for updates and queries. You can perform writes on a

normalized model in a relational database through an ORM (object-relational mapping)

and perform queries against a denormalized database that stores data in the same

format required by an API (such as data transfer objects or DTOs), which reduces

processing overhead.

Figure 9 – Example of an architecture with updates and queries using a single datastore

and ORM

Archived

Amazon Web Services Modern Application Development on AWS

 21

Figure 10 – Example of a CQRS architecture with separate command and query workloads and

two datastores

Though this example optimizes your architecture for consistent writes in a relational

database and very low-latency reads, you might instead want to optimize for very high

write throughput and flexible query capabilities. In this situation, you can use a NoSQL

datastore, such as Amazon DynamoDB, to get high write scalability on a workload with

certain, well-defined access patterns when you add data. You can then use a relational

database, such as Amazon Aurora, to provide complex, one-time query functionality.

With this option, you can use Amazon DynamoDB streams that send data to an AWS

Lambda function that makes appropriate updates to keep the data on Amazon Aurora

up-to-date. Archived

Amazon Web Services Modern Application Development on AWS

 22

Figure 11 – Example of a CQRS architecture on AWS with DynamoDB, Lambda, and Aurora

You can also combine the command part of a CQRS architecture with the event

sourcing pattern (see the following section). When you combine these patterns, you can

rebuild the service query data model with the latest application state by replaying the

update events. It is important to remember that the CQRS pattern generally results in

eventual consistency between the queried datastore and the datastore that is written to.

Event Sourcing

With the event sourcing pattern, instead of updating data stores directly, any events with

significance to business logic–such as orders being placed, credit inquiries being made,

or orders being processed or shipped–are added to a durable event log. Because each

event record is stored individually, all updates are atomic (indivisible and irreducible).

A key characteristic of this pattern is that the application state at any point in time can

be rebuilt by simply reprocessing the stored events. Because data is stored as a series

of events rather than through direct updates to data stores, various services can replay

events from the event store to compute the appropriate state of their respective data

stores. This works well with the CQRS pattern discussed previously, especially because

Archived

Amazon Web Services Modern Application Development on AWS

 23

you can reproduce data for an event regardless of whether the command and query

data stores have different schemas.

Figure 12 – Example of the event sourcing pattern

Because the event sourcing pattern involves storing and later replaying event

messages, it requires some mechanism for storing and retrieving messages. If you plan

to use this pattern in the AWS Cloud, depending on your use case, you can use

Amazon Kinesis Data Streams14, Amazon Simple Queue Service (SQS)15, Amazon

MQ16, or Amazon Managed Streaming for Kafka (Amazon MSK)17. In the event sourcing

pattern, each event that changes the system is stored first to a message queue, and

then updates to the application state are made based on that event. For example, an

event can be written as a record in an Amazon Kinesis stream, and then a service built

on AWS Lambda can retrieve the record and perform updates in its own data store).
Archived

Amazon Web Services Modern Application Development on AWS

 24

Figure 13 – Example of an event sourcing pattern using Amazon Kinesis and AWS Lambda

Sometimes it is useful to expand from one source of events to multiple targets. You can

do this directly with Amazon Kinesis Data Streams, which allows multiple consumers to

retrieve data from a stream. You can also use Amazon Simple Notification Service

(Amazon SNS) to expand to multiple Lambda functions, which all listen to the same

topic, and can propagate event data from Kinesis to other stateful components. With

this configuration, you can also add an Amazon Simple Queue Service (Amazon SQS)

queue between Amazon SNS and a given Lambda function that enables you to specify

what causes the Lambda functions to execute.

Choreography

When a new customer creates an account on your website, they might need to save

their profile information, receive a welcome email, and get credited with some initial

points to use on the site. All of these activities are implemented by different services.

There are two implementation methods that you can consider to execute these tasks

between your microservices: the orchestration pattern and the choreography pattern.

With the orchestration pattern, similar to the relationship in a symphony between a

conductor and an orchestra, there is a central service that issues commands to other

services and makes sure that the entire process is completed. With the choreography

pattern, just as dancers move independently after they have learned the choreography

Archived

Amazon Web Services Modern Application Development on AWS

 25

of their dance, each service can execute independently in response to a particular

event.

When you use the choreography pattern, an initial event that contains all the required

information can be saved in a single message, and concludes an initial transaction.

Other services can then retrieve that message asynchronously and complete their

respective tasks. With this architecture, services are loosely coupled and do not have a

direct impact on each other. The asynchronous relationship between saving and

retrieving messages also provides scalability and reliability benefits.

Figure 14 – Example of the choreography pattern

To implement the choreography pattern in the AWS Cloud, you can use Amazon

Kinesis and AWS Lambda, or, depending on your requirements, use a combination of

Amazon Simple Notification Service (Amazon SNS), Amazon Simple Queue Service

(Amazon SQS), and AWS Lambda.

Figure 15 – Example of the choreography pattern using Amazon SNS, Amazon SQS, and

AWS Lambda

Archived

Amazon Web Services Modern Application Development on AWS

 26

Log Aggregation

The more complicated a system is, the more import it is to have good logs. The

challenge is that if logs are scattered across different services, it’s difficult to get a

unified view of the entire system. It is essential to have a centralized place where logs

are uniformly managed and discoverable. Gathering metrics is also important. In a

microservice architecture, calls to various services might be required to handle a given

request, so it can be more difficult to find the source of poor performance or errors

compared to a monolith. This is why it’s critical to have centrally aggregated logs and

runtime metrics.

Figure 16 – Example of an architecture with log aggregation

For aggregated logging in the AWS Cloud, you can use Amazon CloudWatch Logs18. If

you use AWS Lambda to implement microservices, anything you write to stdout is sent

to CloudWatch Logs. Amazon Elastic Container Service (Amazon ECS) and AWS

Fargate can also send anything written to stdout to Amazon CloudWatch Logs with the

awslogs log driver. If you use Amazon Elastic Kubernetes Service (Amazon EKS), the

logs can be sent to Amazon CloudWatch Logs using the sidecar pattern with Fluentd19

or Fluent Bit20. CloudWatch Container Insights21 can also be used to send logs and

metrics to CloudWatch for containerized applications running on either Amazon ECS

and AWS Fargate or Amazon EKS.

Archived

Amazon Web Services Modern Application Development on AWS

 27

To trace the execution times or errors from calls between services, you can use AWS X-

Ray22. AWS X-Ray lets you understand how your application and its underlying services

are performing so you can identify and troubleshoot the root cause of performance

issues and errors. X-Ray provides an end-to-end view of requests as they travel through

your application, and shows a map of your application’s underlying components.

Figure 17 – Example of an architecture with log aggregation using Amazon CloudWatch and

AWS X-Ray

Polyglot Persistence

In microservice architectures, each service should expose a public API and hide

implementation details from other services. With this architecture, as long as the team

that builds a given service maintains the API contract, it can freely modify the internals

of a service without worrying whether other services depend on the modified code.

Teams can also make deployments to their own services when they need to and can

choose to implement their service with their preferred programming languages and

databases. With polyglot persistence, you choose the correct data storage technology

based on the data access patterns and other requirements of a given service.

If every service team has to use the same data storage technology, they can encounter

implementation challenges or poor performance if that data store is not a good fit for a

given situation. When teams are allowed to choose the data store that is the best fit for

their requirements, they can implement their services more easily and achieve better

performance and scalability.

AWS offers several data storage services that enable polyglot persistence, as

summarized in the following table.

Archived

Amazon Web Services Modern Application Development on AWS

 28

Table 1 – AWS data storage services for polyglot persistence

Data Store Features

Amazon

DynamoDB

A key-value and document database that delivers single-digit

millisecond performance at any scale. It's a fully managed, multi-

region, multi-master, durable database with built-in security, backup

and restore, and in-memory caching for internet-scale applications.

DynamoDB can handle more than 10 trillion requests per day and can

support peaks of more than 20 million requests per second.

Amazon Aurora

and Amazon

Relational

Database Service

(RDS)

Amazon Aurora is a MySQL and PostgreSQL-compatible relational

database built for the cloud, that combines the performance and

availability of traditional enterprise databases with the simplicity and

cost-effectiveness of open source database.

Amazon Relational Database Service (Amazon RDS)23 makes it easy

to set up, operate, and scale a relational database in the cloud. It

provides cost-efficient and resizable capacity, while automating time-

consuming administration tasks, such as hardware provisioning,

database setup, patching and backups. It enables you to focus on your

applications so you can give them the fast performance, high

availability, security, and compatibility they need.

Amazon

ElastiCache

Amazon ElastiCache offers fully managed Redis and Memcached.

Seamlessly deploy, run, and scale popular open-source compatible,

in-memory data stores. Build data-intensive apps or improve the

performance of your existing apps by retrieving data from high

throughput and low latency in-memory data stores.

Amazon EBS Amazon Elastic Block Store (EBS) is an easy to use, high performance

block storage service designed for use with Amazon Elastic Compute

Cloud (EC2) for both throughput and transaction intensive workloads

at any scale.

Amazon EBS volume data is replicated across multiple servers in an

Availability Zone to prevent the loss of data from the failure of any

single component. Amazon EBS volumes offer the consistent and low-

latency performance needed to run your workloads. With Amazon

EBS, you can scale your usage up or down within minutes—all while

paying a low price for only what you provision.

Archived

https://aws.amazon.com/relational-database/
https://aws.amazon.com/relational-database/
https://aws.amazon.com/redis/
https://aws.amazon.com/memcached/

Amazon Web Services Modern Application Development on AWS

 29

Data Store Features

Amazon EFS Amazon Elastic File System (Amazon EFS) provides a simple,

scalable, elastic file system for Linux-based workloads for use with

AWS Cloud services and on-premises resources. It is built to scale on

demand to petabytes without disrupting applications, growing and

shrinking automatically as you add and remove files, so your

applications have the storage they need when they need it. It is

designed to provide massively parallel shared access to thousands of

Amazon EC2 instances, which enables your applications to achieve

high levels of aggregate throughput and IOPS with consistent low

latencies.

Amazon S3 Amazon Simple Storage Service (Amazon S3) is an object storage

service that offers industry-leading scalability, data availability,

security, and performance. This means customers of all sizes and

industries can use it to store and protect any amount of data for a

range of use cases, such as websites, mobile applications, backup

and restore, archive, enterprise applications, IoT devices, and big data

analytics.

Archived

Amazon Web Services Modern Application Development on AWS

 30

Continuous Integration and Continuous Delivery

on AWS

Because continuous integration (CI) and continuous delivery (CD) are critical to

recognizing the value of modern application development, it is important carefully

consider how to implement these best practices on AWS. AWS offers several services

to help you deliver modern applications quickly, as discussed in the Automating

Deployment with CI/CD section. Because these services are fully managed, your

development teams can focus on automating deployments and rapidly delivering new

functionality instead of the undifferentiated heavy lifting of maintaining and securing CI

servers.

CI/CD Services on AWS

You can use the following AWS services for CI/CD deployments in the AWS Cloud.

AWS Cloud9

AWS Cloud924 is a cloud-based integrated development environment (IDE) that you

can use to write, run, and debug your code with only a browser. It includes a code

editor, debugger, and terminal. AWS Cloud9 includes essential tools for popular

programming languages, including JavaScript, Python, and PHP, so you don’t have to

install files or configure your development machine to start new projects.

Because your AWS Cloud9 IDE is cloud-based, you can work on projects from your

office, home, or anywhere you have an internet-connected machine. AWS Cloud9 also

provides a seamless experience for developing serverless applications, which enables

you to easily define resources, debug, and switch between local and remote execution

of serverless applications. With AWS Cloud9, you can quickly share your development

environment with your team, which enables you to pair program and track each other's

inputs in real time. Archived

Amazon Web Services Modern Application Development on AWS

 31

Figure 18 – Example of code in AWS Cloud9

AWS CodeStar

AWS CodeStar25 enables you to quickly develop, build, and deploy applications in the

AWS Cloud. AWS CodeStar provides a unified user interface, which enables you to

easily manage your software development activities in one place. With AWS CodeStar,

you can set up your entire continuous delivery toolchain in minutes, so you can start

releasing code faster. AWS CodeStar makes it easy for your whole team to work

together securely. You can easily manage access and add owners, contributors, and

viewers to your projects. Each AWS CodeStar project includes a project management

dashboard that you can use to easily track progress across your entire software

development process, from your backlog of work items to your teams’ recent code

deployments.

AWS CodePipeline

AWS CodePipeline26 is a fully managed continuous delivery service that helps you

automate your release pipelines for fast and reliable application and infrastructure

updates. CodePipeline automates the build, test, and deploy phases of your release

process each time there is a code change, based on the release model you define. This

enables you to rapidly and reliably deliver features and updates.

Archived

Amazon Web Services Modern Application Development on AWS

 32

AWS CodeCommit

AWS CodeCommit27 is a fully-managed source control service that hosts secure Git-

based repositories.28 It makes it easy for teams to collaborate on code in a secure and

highly scalable ecosystem. CodeCommit eliminates the need to operate your own

source control system or worry about scaling its infrastructure. You can use

CodeCommit to securely store anything from source code to binaries, and it works

seamlessly with your existing Git tools.

AWS CodeBuild

AWS CodeBuild29 is a fully managed continuous integration service that compiles

source code, runs tests, and produces software packages that are ready to deploy. With

CodeBuild, you don’t need to provision, manage, and scale your own build servers.

CodeBuild scales continuously and processes multiple builds concurrently, so your

builds are not left waiting in a queue. You can get started quickly by using prepackaged

build environments, or you can create custom build environments that use your own

build tools.

AWS CodeDeploy

AWS CodeDeploy30 is a fully managed deployment service that automates software

deployments to a variety of computing services, such as Amazon Elastic Compute

Cloud (Amazon EC2), AWS Fargate, AWS Lambda, and your on-premises servers.

With AWS CodeDeploy, you can rapidly release new features and avoid downtime

during application deployment. AWS CodeDeploy also handles the complexity of

updating your applications. You can use AWS CodeDeploy to automate software

deployments, which eliminates the need for error-prone manual operations. The service

scales to match your deployment needs.

AWS Amplify Console

The AWS Amplify Console31 provides a Git-based workflow to deploy and host full-

stack serverless web applications. A full-stack serverless application consists of a

backend built with cloud resources, such as GraphQL32 or REST APIs, file and data

storage, and a frontend built with single page application frameworks, such as React33,

Angular34, Vue35, or Gatsby36. Full-stack serverless web application functionality is often

spread across frontend code that runs in the browser and backend business logic that

runs in the cloud. This makes application deployment complex and time consuming

because you must carefully coordinate release cycles to make sure that your frontend

and backend are compatible, and that new features do not break your production

customers. The Amplify Console accelerates your application release cycle by providing

Archived

Amazon Web Services Modern Application Development on AWS

 33

a simple workflow to deploy full-stack serverless applications. You connect your

application's code repository to Amplify Console, and changes to your frontend and

backend are deployed in a single workflow on every code commit.

CI/CD Patterns for Different Application Types

You can use a CI/CD pattern for each major type of modern application that you might

deploy in the AWS Cloud. You can implement CI/CD quickly using AWS-native

development tools without worrying about the heavy lifting of setting up and maintaining

a complicated CI environment. The following are some examples of how you can use

CI/CD patterns in the AWS Cloud.

Deploy a Single-Page Application

Single-page applications (SPAs) are applications that consist of static content (HTML,

CSS, JavaScript, and media) that is downloaded to the browser, from which calls are

made to backend APIs. You can use the AWS Amplify Console to quickly build and

release SPAs. AWS Amplify console can automatically detect when new code is pushed

to repositories such as GitHub37 or AWS CodeCommit, deploy the static frontend

content to Amazon Simple Storage Service (Amazon S3), then deliver the content to

your users through Amazon CloudFront38, a content delivery network. The Amplify

Console can also deploy changes to serverless backends with GraphQL and REST

APIs, authentication, analytics, and storage created by the Amplify CLI.

Figure 19 – Example architecture of deployment for a single-page application

Archived

Amazon Web Services Modern Application Development on AWS

 34

Deploy to Containers

Using AWS CodePipeline, you can continuously deploy to the Amazon Elastic

Container Service (Amazon ECS) container orchestration service with minimal

configuration. In the source stage, AWS CodePipeline automatically detects changes in

the source code repository. In the build stage, it builds Docker images using AWS

CodeBuild and pushes them to a Docker repository, such as Amazon Elastic Container

Registry (ECR)39. Finally, AWS CodePipleline deploys to Amazon ECS.

Figure 20 – Example architecture of deployment to containers

Archived

Amazon Web Services Modern Application Development on AWS

 35

Deploy to Containers (Blue/Green Deployment)

Amazon ECS and AWS CodeDeploy also support blue/green deployment to containers.

AWS CodeDeploy uses Application Load Balancers (ALBs)—a type of Amazon Elastic

Load Balancing40—to automate blue/green deployments by switching traffic smoothly

between two parallel target groups.

Figure 21 – Example architecture of blue/green deployment to containers

Archived

Amazon Web Services Modern Application Development on AWS

 36

Canary Deployments to AWS Lambda

AWS CodeDeploy also supports canary deployments to AWS Lambda. AWS

CodeDeploy uses Lambda’s traffic shifting capabilities to automate the gradual rollout of

new function versions. This enables you to gradually shift traffic between two versions,

and helps you reduce the risk and limit the impact of new Lambda deployments.

Figure 22 – Example architecture of a canary deployment in the AWS Cloud

When you perform AWS Lambda deployments with AWS CodeDeploy, you can use

one of the following predefined deployment configuration options or you can create

your own custom configuration. All of these options can also be used to deploy

applications based on the Serverless Application Model (SAM). Archived

Amazon Web Services Modern Application Development on AWS

 37

Table 2 – Predefined deployment configuration options for canary deployments with

AWS Lambda and AWS CodeDeploy

Deployment Configuration Description

CodeDeployDefault.LambdaCanary10Percent5

Minutes

Shifts 10 percent of traffic in the first

increment. The remaining 90 percent is

deployed 15 minutes later.

CodeDeployDefault.LambdaCanary10Percent10

Minutes

Shifts 10 percent of traffic in the first

increment. The remaining 90 percent is

deployed 10 minutes later.

CodeDeployDefault.LambdaCanary10Percent15

Minutes

Shifts 10 percent of traffic in the first

increment. The remaining 90 percent is

deployed 15 minutes later.

CodeDeployDefault.LambdaCanary10Percent30

Minutes

Shifts 10 percent of traffic in the first

increment. The remaining 90 percent is

deployed 30 minutes later.

CodeDeployDefault.LambdaLinear10PercentEv

ery1Minute

Shifts 10 percent of traffic every minute

until all traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEv

ery2Minutes

Shifts 10 percent of traffic every two

minutes until all traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEv

ery3Minutes

Shifts 10 percent of traffic every three

minutes until all traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEv

ery10Minutes

Shifts 10 percent of traffic every 10

minutes until all traffic is shifted.

CodeDeployDefault.LambdaAllAtOnce Shifts all traffic to the updated Lambda

functions at once. Archived

Amazon Web Services Modern Application Development on AWS

 38

Conclusion

Modern companies must broaden their reach across the globe and invest in digital

initiatives to beat the competition. As user interaction with digital products evolves, the

customer experience must get better and satisfy an increasingly diverse pool of users.

To satisfy users’ high expectations, businesses must not fear failure, but must

constantly experiment and incorporate user feedback into their products.

Modern application development is a mindset and a methodology to enable rapid

updates and releases. Development teams that embrace these modern practices

eliminate undifferentiated heavy lifting by automating repetitive tasks, using managed

services wherever possible, and spending most of their time building products that

delight their customers.

Successfully adopting modern application development best practices enables your

organization to experiment and innovate rapidly, and using native AWS services to

implement these practices lets you move even faster.

Contributors

Contributors to this document include:

• Atsushi Fukui, Solutions Architect, Amazon Web Services

• Kevin Bell, Solutions Architect, Amazon Web Services

Archived

Amazon Web Services Modern Application Development on AWS

 39

Further Reading

For more information, see the following resources.

AWS Services

• Amazon API Gateway

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

• AWS Cloud Map

https://docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html

• AWS Lambda

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

• Amazon Kinesis Data Streams

https://docs.aws.amazon.com/streams/latest/dev/introduction.html

• Amazon Simple Queue Service

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperG

uide/welcome.html

• Amazon Simple Notification Service

https://docs.aws.amazon.com/sns/latest/dg/welcome.html

• Amazon Elastic Container Service

https://docs.aws.amazon.com/AmazonECS/latest/userguide/Welcome.html

• Amazon EKS

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

• AWS CodePipeline

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

• AWS CodeCommit

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

• AWS CodeBuild

https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html

• AWS CodeDeploy

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

Archived

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/Welcome.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

Amazon Web Services Modern Application Development on AWS

 40

• Blue/Green Deployments from AWS CodeDeploy to Amazon ECS

https://docs.aws.amazon.com/AmazonECS/latest/userguide/deployment-type-

bluegreen.html

• AWS CodeStar

https://docs.aws.amazon.com/codestar/latest/userguide/welcome.html

• AWS Cloud9

https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html

• Messaging Services

https://aws.amazon.com/messaging/

• Serverless Services

https://aws.amazon.com/serverless/

Whitepapers

• Microservices on AWS

https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf

• Introduction to DevOps on AWS

https://d1.awsstatic.com/whitepapers/AWS_DevOps.pdf

• Infrastructure as Code

https://d1.awsstatic.com/whitepapers/infrastructure-as-code.pdf

• Practicing Continuous Integration and Continuous Delivery on AWS

https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-

continuous-delivery-on-AWS.pdf

Video

Choosing the Right Messaging Service for Your Distributed App (API305)

https://www.youtube.com/watch?v=4-JmX6MIDDI

Document Revisions

Date Description

October 2019 First publication

Archived

https://docs.aws.amazon.com/AmazonECS/latest/userguide/deployment-type-bluegreen.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/deployment-type-bluegreen.html
https://docs.aws.amazon.com/codestar/latest/userguide/welcome.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html
https://aws.amazon.com/messaging/
https://aws.amazon.com/serverless/
https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
https://d1.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://d1.awsstatic.com/whitepapers/infrastructure-as-code.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.youtube.com/watch?v=4-JmX6MIDDI

Amazon Web Services Modern Application Development on AWS

 41

1 Amazon EC2 – https://aws.amazon.com/ec2/

2 Microservices – https://martinfowler.com/articles/microservices.html

3 AWS Lambda – https://aws.amazon.com/lambda/

4 AWS Fargate – https://aws.amazon.com/fargate/

5 Amazon S3 – https://aws.amazon.com/s3/

6 Amazon DynamoDB – https://aws.amazon.com/dynamodb/

7 Amazon Aurora Serverless – https://aws.amazon.com/rds/aurora/serverless/

8 Serverless – https://aws.amazon.com/serverless/

9 AWS CloudFormation – https://aws.amazon.com/cloudformation/

10 AWS Serverless Application Model –https://aws.amazon.com/serverless/sam/

11 AWS CDK – https://docs.aws.amazon.com/cdk/latest/guide/what-is.html

12 Amazon API Gateway – https://aws.amazon.com/api-gateway/

13 Envoy Proxy – https://www.envoyproxy.io/

14 Amazon Kinesis – https://aws.amazon.com/kinesis/

15 Amazon Simple Queue Service – https://aws.amazon.com/sqs/

16 Amazon MQ – https://aws.amazon.com/amazon-mq/

17 Amazon MSK – https://aws.amazon.com/msk/

18 Amazon CloudWatch – https://aws.amazon.com/cloudwatch/

19 Fluentd – https://www.fluentd.org/

20 Fluent Bit – https://fluentbit.io/

21 Using Container Insights –https://docs.aws.amazon.com/AmazonCloudWatch/latest/

monitoring/ContainerInsights.html

22 AWS X-Ray – https://aws.amazon.com/xray/

23 Amazon RDS – https://aws.amazon.com/rds/
24 Amazon RDS – https://aws.amazon.com/rds/

25 AWS CodeStar – https://aws.amazon.com/codestar/

Notes

Archived

https://aws.amazon.com/ec2/
https://martinfowler.com/articles/microservices.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/serverless/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/serverless/sam/
https://docs.aws.amazon.com/cdk/latest/guide/what-is.html
https://aws.amazon.com/api-gateway/
https://www.envoyproxy.io/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/sqs/
https://aws.amazon.com/amazon-mq/
https://aws.amazon.com/msk/
https://aws.amazon.com/cloudwatch/
https://www.fluentd.org/
https://fluentbit.io/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/%20monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/%20monitoring/ContainerInsights.html
https://aws.amazon.com/xray/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/codestar/

Amazon Web Services Modern Application Development on AWS

 42

26 AWS CodePipeline – https://aws.amazon.com/codepipeline/

27 AWS CodeCommit https://aws.amazon.com/codecommit/

28 Git – https://git-scm.com/

29 AWS CodeBuild – https://aws.amazon.com/codebuild/

30 AWS CodeDeploy – https://aws.amazon.com/codedeploy/

31 AWS Amplify Console – https://aws.amazon.com/amplify/console/

32 GraphQL – https://graphql.org/

33 React – https://reactjs.org/

34 Angular – https://angular.io/

35 Vue – https://vuejs.org/index.html

36 Gatsby – https://www.gatsbyjs.org/

37 GitHub – https://github.com/

38 Amazon CloudFront – https://aws.amazon.com/cloudfront/

39 Amazon Elastic Container Registry – https://aws.amazon.com/ecr/

40 Amazon Elastic Load Balancing – https://aws.amazon.com/elasticloadbalancing/

Archived

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codecommit/
https://git-scm.com/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/amplify/console/
https://graphql.org/
https://reactjs.org/
https://angular.io/
https://vuejs.org/index.html
https://www.gatsbyjs.org/
https://github.com/#_blank
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/ecr/
https://aws.amazon.com/elasticloadbalancing/

	Introduction
	Accelerating the Innovation Flywheel

	Modern Application Development
	Capabilities of Modern Applications
	Best Practices of Modern Application Development
	Security and Compliance
	Microservice Architecture
	Using Serverless Technology
	Automating Deployment with CI/CD
	Managing Infrastructure as Code
	Monitoring and Logging
	Modern Application Checklist

	Modern Application Design Patterns
	Implementing Microservice Architectures using AWS Services
	API Gateways
	Service Discovery and Service Registries
	Circuit Breaker
	Command-Query Responsibility Segregation
	Event Sourcing
	Choreography
	Log Aggregation
	Polyglot Persistence

	Continuous Integration and Continuous Delivery on AWS
	CI/CD Services on AWS
	AWS Cloud9
	AWS CodeStar
	AWS CodePipeline
	AWS CodeCommit
	AWS CodeBuild
	AWS CodeDeploy
	AWS Amplify Console

	CI/CD Patterns for Different Application Types
	Deploy a Single-Page Application
	Deploy to Containers
	Deploy to Containers (Blue/Green Deployment)
	Canary Deployments to AWS Lambda

	Conclusion
	Contributors
	Further Reading
	AWS Services
	Whitepapers
	Video

	Document Revisions

