
Modernize .NET Applications
with Linux Containers
Technical Guide

August 5, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Before you begin ... 2

Understand your drivers ... 2

Build your action plan ... 4

Choosing container orchestration .. 6

Tools and libraries .. 7

Cost considerations ... 8

Cloud computing .. 8

AWS pricing model ... 8

AWS container services ... 9

Architecture overview .. 13

Walkthrough ... 16

Refactoring from .NET Framework to .NET 5 ... 16

Replatforming from Windows VMs to Linux containers .. 50

Logging and monitoring ... 58

Security .. 60

User to application authentication and authorization .. 60

Application to database authentication and authorization .. 61

Identity and access management for Amazon ECS ... 63

Compliance validation for Amazon ECS ... 66

In-flight data protection using encryption ... 66

Source code ... 69

Conclusion ... 69

Contributors ... 69

Document revisions ... 70

About this guide

Many architects, developers, and IT practitioners want to modernize their existing .NET

Framework applications by refactoring to the latest, cross-platform version of .NET

(previously referred to as .NET Core) and replatforming from Windows virtual machines

(VMs) to Linux containers. This guide outlines a methodology to assess applications

that are suitable to move to Linux containers. It describes the business and technical

benefits of this approach, and offers a prescriptive procedure using a sample application

and reference architecture to guide organizations in the delivery of this process.

For comments, corrections, or questions, see this form.

https://us-east-1.quicksight.aws.amazon.com/sn/dashboards/164546be-aca0-4576-8dd1-32b2b1db8772%5b…%5d1-32b2b1db8772_c70a44a4-4462-407e-af91-e2ceb710e990

Amazon Web Services Modernize .NET Applications with Linux Containers

 1

Overview

Organizations are modernizing their Windows workloads using a combination of re-

hosting, replatforming, and refactoring approaches, to take full advantage of cloud

economics, unlock innovation for their business, and deliver new functionality to their

customers. Many organizations with .NET Framework applications, such as DraftKings,

FileForce, and AgriDigital, intend to refactor their applications to the latest, cross-

platform version of .NET, and replatform to Linux containers in the cloud. However, the

path to achieve this can be challenging. This guide aims to equip architects, developers,

and IT professionals with the information they need to soundly assess and safely

complete this approach.

Since the introduction of .NET Framework in 2002, more than six million developers

have adopted the .NET programming ecosystem to build their applications.1 In its initial

form, .NET was built to run exclusively on the Windows operating system. This resulted

in large portfolios of applications running on .NET and Windows, particularly in the

enterprise.

However, over the course of the past 10+ years, a lot has changed in the technology

industry and the way applications are built. These changes include the rise of the Linux

operating system, the growing influence of open source, and widespread adoption of

technologies such as the public cloud, containers, and DevOps practices. These trends,

among other factors, drove Microsoft to focus their .NET investments on a new version

of .NET that was initially called .NET Core and is now simply referred to as .NET for

versions 5 and above. This new version of .NET is free, open source, and cross-

platform, which brings new capabilities for .NET developers to run their applications

anywhere powered by a modular, lightweight framework.

While this open and portable .NET future is welcomed by many in the .NET community,

it brings complications for organizations that have invested in the .NET Framework and

Windows to power their applications. On one hand, there are attractive benefits of

refactoring .NET Framework applications to the latest, cross-platform version of .NET.

These include removing Windows licensing costs by moving to Linux, and accessing the

latest innovations from the .NET community. On the other hand, refactoring .NET

Framework applications to the latest version of .NET is not a small effort, particularly for

complex applications that have many dependencies on libraries that do not have cross-

platform equivalents, such as ASP.NET Web Forms, Windows Communication

Foundation (WCF), .NET Remoting, or Windows Workflow (WF).

https://aws.amazon.com/blogs/modernizing-with-aws/modernizing-legacy-net-applications-draftkings-principles-for-success/
https://aws.amazon.com/solutions/case-studies/fileforce-case-study/
https://aws.amazon.com/solutions/case-studies/agridigital-case-study/

Amazon Web Services Modernize .NET Applications with Linux Containers

 2

In addition to porting to the latest version of .NET, many organizations simultaneously

want to move their VM-based deployments to containers, to predictably deploy their

applications across environments, maximize the efficiency of their resource

consumption, and introduce DevOps practices to automate their development lifecycle.

Gartner predicts that by 2022, more than 75% of global organizations will be running

containerized applications in production, up from less than 30% in 20202. An IDC survey

found that 45% of respondents’ application portfolio is running in containers today, and

that is expected to increase to 60% in three years.3

It’s clear that containers are becoming a primary mechanism for packaging applications.

However, just like the pathway to the latest, cross-platform version of .NET, containers

bring their own set of complexities and challenges, particularly for organizations that

lack a depth of container expertise.

In the following sections, this paper walks through this use case of modernizing a .NET

Framework application running on Windows VMs to .NET 5, and Linux containers

running on Amazon Elastic Container Service (Amazon ECS) and AWS Fargate.

Before you begin

Understand your drivers

Before you begin, take the time to understand your business and technical drivers, and

work backwards from your desired results to form a plan of action. Common business

and technical drivers that motivate the approach to modernize existing .NET Framework

applications with the latest, cross-platform version of .NET and Linux containers are

outlined in the following tables.

Table 1 - Business drivers

Driver Description Solution

Accelerate innovation Development and IT teams spend

most of their time maintaining existing

applications rather than innovating.

Adopt containers to facilitate

DevOps practices and

automation.

Lower total cost of

ownership (TCO)

Licensing costs inflate overall spend

and manual processes slow teams

down.

Move from Windows to Linux to

reduce licensing costs and to

containers to optimize resource

utilization.

https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

Amazon Web Services Modernize .NET Applications with Linux Containers

 3

Driver Description Solution

Address skills gap Internal expertise in cloud-native

technologies creates barriers to cloud

adoption and modernization.

Use AWS modernization

programs and experts to upskill

your staff.

Improve security and

compliance

Unmaintained applications and IT

practices pose a risk to the

organization’s security posture.

Upgrade to the latest version of

.NET Core and containers for

new security features.

Table 2 - Technical drivers

Driver Description Solution

Access the latest

enhancements

Teams work around issues that

have been solved in newer releases

of the software.

Upgrade to .NET Core for

new features and access

innovations on Linux such as

AWS Graviton Processor.

Increase productivity Manual processes slow teams down

and cause delays in release cycles.

Adopt DevOps practices and

automation.

Scale with traffic demands Applications are provisioned for

peak load and underutilize

infrastructure resources.

Use container automatic

scaling and stateless

applications to scale up and

down as traffic demands.

Predictable performance

across environments

Application behavior is not

consistent across environments

leading to unforeseen problems.

Use containers for isolation

and consistent behavior

across environments.

If these drivers resonate with you and your teams, then modernizing your .NET

Framework applications with the latest, cross-platform version of .NET and Linux

containers is likely a good approach to start your modernization journey.

Remember, there are many options for modernizing your existing .NET Framework

applications that also include moving to Windows containers, breaking down monoliths

to microservices, and rewriting the application to be event-driven with serverless

functions and AWS Lambda.

While these other approaches have their own unique set of benefits, refactoring .NET

Framework applications to the latest, cross-platform version of .NET and Linux

containers brings significant cost savings, as outlined in the next section. This approach

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/lambda/

Amazon Web Services Modernize .NET Applications with Linux Containers

 4

can be a good fit for teams with tight timelines, as the amount of architectural change is

generally less than decomposing a monolith or moving to AWS Lambda.

Build your action plan

With any engineering project, it’s important to establish a clear plan and scope up front.

For example, DraftKings found the following key principles for success during their .NET

refactoring project:

Table 3 – DraftKings key principles for success

Key Principle Description

Get buy-in from leadership Seek leadership support by showing a strong business case

Update with a purpose Limit the scope of changes to the refactoring effort

Modernize incrementally Start small and invest in automation once the process is proven

Trust but verify Invest in functional, integration, and performance tests to ensure

consistent behavior

Communicate often but

deliberately

Communicate regular updates to resolve issues quickly and bring

visibility to the progress

Expect unforeseen problems Expect problems to occur and document them to remove

possibilities of repeating mistakes

Plan for support Plan to support other teams as they embark on following the

process to refactor their applications

Once your plan is established, consider the following recommendations for your project.

Keep in mind that each project is unique, and you will have to assess and experiment to

find the practices that work best for your teams.

https://aws.amazon.com/blogs/modernizing-with-aws/modernizing-legacy-net-applications-draftkings-principles-for-success/

Amazon Web Services Modernize .NET Applications with Linux Containers

 5

Table 4 – Refactoring recommendations

Recommendation Description

Start with an assessment Understand the scope of the refactoring effort and determine

which libraries will be problematic. The Porting Assistant for .NET

can help with this assessment by providing a compatibility report

for your existing solutions. Additionally, assess your code for

pieces that can be refactored in isolation so progress can be

made in smaller, safer steps.

Consider starting with

applications that have limited

downstream impact

If your organization has several applications that require

refactoring, consider starting with functionality that will not break

many downstream dependencies. This allows for learning and

tuning of the process without as much risk as starting with highly

coupled, business critical functionality.

Upgrade tests first Upgrading tests first helps to ensure that everything works at a

functional level, so that changes are verified incrementally as you

port to the latest, cross-platform version of .NET.

Verify dependencies work for

target OS

Evaluate your third-party dependencies to make sure that they

are supported on your target platform (Windows, Linux, macOS)

before making large code changes.

Maintain backwards

compatibility

When you refactor from .NET Framework to the latest, cross-

platform version of .NET, reduce the risk of changing behavior of

the application by keeping the changes specific to the refactoring

effort, rather than adding to or altering existing functionality.

When building a plan for refactoring, it can be difficult to predict the time and resources

that it will take to complete. Every project is different, and the complexity of the

applications in scope dictates the level of effort for refactoring.

Many organizations choose to start with a single application, to get a clearer picture of

the time and resource requirements, before addressing the rest of the application

estate. It’s common for organizations to invest in internal best practices and runbooks to

expedite the process for future refactoring projects.

The next section reviews the options for running containers on AWS. Choosing a

container orchestrator is the first decision point when creating a replatforming plan from

VMs to containers.

https://aws.amazon.com/porting-assistant-dotnet/

Amazon Web Services Modernize .NET Applications with Linux Containers

 6

Choosing container orchestration

As you re-platform your application, you can select a container orchestrator that is most

suitable for your requirements. 80% of all containers in the cloud run on AWS,4 and you

have a broad set of options to run and manage your containers on AWS. When

choosing your container orchestration option, you should start with the question, “How

much of the container infrastructure do I want to manage?” The following options are

available to you:

• Self-Managed Containers on Amazon Elastic Compute Cloud (Amazon EC2)

— EC2 virtual machines give you full control of your server clusters and provide a

broad range of customization options. You can choose Amazon EC2 to run your

container orchestration if you need server-level control over the installation,

configuration, and management of your container orchestration environment.

• Amazon Elastic Kubernetes Service (Amazon EKS) — Amazon EKS is a

managed service that makes it easy for you to run Kubernetes on AWS without

needing to install and operate your own Kubernetes control plane or worker nodes.

Amazon EKS provisions and scales the Kubernetes control plane, including the API

servers and backend persistence layer, across multiple AWS Availability Zones for

high availability and fault tolerance. Amazon EKS integrated with various AWS

services such as Elastic Load Balancing, AWS Identity and Access Management

(AWS IAM), Amazon VPC, and AWS CloudTrail to provide scalability and security

for your applications.

• Amazon Elastic Container Service (Amazon ECS) — Amazon ECS is a highly

scalable, high-performance container management service that supports Docker

containers and enables you to run applications on a managed cluster of Amazon

EC2 instances. With simple API calls, you can launch and stop container-enabled

applications, query the complete state of your cluster, and access many familiar

features like security groups, Elastic Load Balancing, EBS volumes, and IAM roles.

You can use Amazon ECS to schedule the placement of containers across your

cluster based on your resource needs and availability requirements.

https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/ecs/

Amazon Web Services Modernize .NET Applications with Linux Containers

 7

• AWS Fargate — AWS Fargate is a serverless compute engine for containers that

works with both Amazon ECS and Amazon EKS. AWS Fargate removes the need

to provision and manage servers and enables you to specify and pay for resources

per application. AWS Fargate is the easiest way to get started with containers on

AWS. With AWS Fargate, developers don’t have to manage the underlying

infrastructure and they can launch and scale their containers easily and manage

everything at the container level. This guide uses AWS Fargate for ECS to deploy

containerized .NET Framework applications on AWS.

The next section covers some of the tools and libraries that are available to you as you

build your .NET applications and DevOps automation on AWS.

Tools and libraries

AWS has many tools available for developers and IT practitioners to build and run

container applications and infrastructure. The following table covers some of the primary

tools that are useful for the refactoring and replatforming process. You’ll use many of

these tools later on in the Walkthrough section of the guide. For the latest news and

releases, visit the .NET on AWS landing page.

Table 5 – Tools and libraries

Tool/Library Description

AWS SDK for .NET Use AWS services with purpose-built .NET libraries and

APIs

AWS Cloud Development Kit Define AWS infrastructure directly in code with the Cloud

Development Kit for .NET

AWS Toolkit for Visual Studio Extension for Visual Studio to create, debug, and deploy

applications on AWS

Porting Assistant for .NET Code analysis tool that scans .NET Framework applications

and generates a .NET Core/.NET 5+ compatibility

assessment

AWS Extensions for .NET CLI Build .NET applications with the .NET CLI

https://aws.amazon.com/fargate/
https://aws.amazon.com/developer/language/net/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/cdk/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/porting-assistant-dotnet/
https://github.com/aws/aws-extensions-for-dotnet-cli

Amazon Web Services Modernize .NET Applications with Linux Containers

 8

Tool/Library Description

AWS Tools for PowerShell Manage AWS services and resources with PowerShell

AWS Toolkit for Azure DevOps Extension for Azure DevOps to deploy applications on AWS

AWS Command Line Interface

(AWS CLI)

Unified tool to manage your AWS services

Cost considerations

Cloud computing

With cloud computing, companies have access to a scalable platform, low-cost storage,

database technologies, and tools on which to build enterprise-grade solutions. Cloud

computing helps businesses reduce costs and complexity, adjust capacity on-demand,

accelerate time-to-market, increase opportunities for innovation, and enhance security.

Weighing the financial considerations of operating an on-premises data center versus

using cloud infrastructure is not as simple as comparing hardware, storage, and

compute costs. Whether you own your own data center or rent space at a colocation

facility, you have to manage investments that include capital expenditures, operational

expenditures, staffing, opportunity costs, licensing, and facilities overhead.

AWS pricing model

AWS offers a simple, consistent, pay-as-you-go pricing model, so you are charged only

for the resources you consume. With this model, there are no upfront fees, no minimum

commitments, and no long-term contracts required. There is also flexibility to choose the

pricing model that best fits your needs if the pay-as-you-go model is not optimal for your

use case. Short descriptions of all of these pricing models are found below.

• On-Demand Instance — With On-Demand Instances, you pay for compute

capacity by the hour, with no minimum commitments required.

• Reserved Instance — For longer-term savings, you can purchase in advance. In

addition to providing a significant discount (up to 60 percent) compared to On-

Demand Instance pricing, Reserved Instances allow you to reserve capacity.

https://aws.amazon.com/powershell/
https://aws.amazon.com/vsts/
https://aws.amazon.com/cli/

Amazon Web Services Modernize .NET Applications with Linux Containers

 9

• Spot Instance — You can request unused Amazon Elastic Compute Cloud

(Amazon EC2) capacity. Instances are charged the Spot Price, which is set by

Amazon EC2 and fluctuates, depending on supply and demand. For more

information, see Amazon EC2 Spot Instances Pricing.

For more information, see the AWS Cloud Economics Center and Savings Plans.

AWS container services

There are several cost aspects to consider when running applications on AWS. These

include, but are not limited to, storage, data transfer, service usage, compute, and

operations. This guide focuses on compute (where the containers run) and operations

cost (staffing) of managing the compute resources. To simplify the analysis, it does not

include the cost of running a database in the example.

As mentioned, there are four different services that AWS provides to run container-

based applications: Amazon EC2, Amazon EKS, Amazon ECS, and AWS Fargate. To

understand the cost implications of running containers on each of these services, this

paper reviews an example of a simple application architecture, and compares the cost

of running it on each service with an On-Demand pricing model in the us-east-1 Region.

As detailed previously, you could choose a different pricing structure such as Spot

Instances or Saving Plans, which are supported for the services covered in this guide.

The examples in the following sections were generated by the AWS Pricing Calculator.

As the baseline for the comparison, this paper uses an application running on Windows

in Amazon EC2, as shown in the following figure:

https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/economics/
https://aws.amazon.com/savingsplans/
https://calculator.aws/#/estimate?id=962adcc4611ed94c0aef310846f355dc2b247ba9

Amazon Web Services Modernize .NET Applications with Linux Containers

 10

Application architecture in Amazon EC2

Summary by service and operating system

The following table represents the summary of running the preceding application on

each service, and compares the monthly cost of running on Windows versus Linux.

These figures include the cost of compute, the Amazon Virtual Private Cloud (Amazon

VPC), and Elastic Load Balancing (ELB). Running on Linux costs less than running on

Windows for each service. This is influenced by the license-included cost of Windows.

Additionally, the cost for Amazon EKS compared to the other options is higher due to

the per-cluster cost of cluster management.

Table 6 – Sample monthly cost summary by service and OS*

Service Windows (monthly) Linux (monthly)

Amazon EC2 $192.57 (details) $125.41 (details)

Amazon EKS $265.57 (details) $198.41 (details)

Amazon ECS $192.57 (details) $125.41 (details)

AWS Fargate N/A $137.38**

https://aws.amazon.com/vpc/
https://aws.amazon.com/elasticloadbalancing/
https://calculator.aws/#/estimate?id=0edb5bb42e05b928bb33280f39eb5ce8d1320d9a
https://calculator.aws/#/estimate?id=acd90bdf72b818c6f8916526609e22d8723f006d
https://calculator.aws/#/estimate?id=eb7d83bfdc8604447dca6c0fa873d679d3ef90f9
https://calculator.aws/#/estimate?id=72899c06e081330009d43b69bfc757d3951835c8
https://calculator.aws/#/estimate?id=0edb5bb42e05b928bb33280f39eb5ce8d1320d9a
https://calculator.aws/#/estimate?id=acd90bdf72b818c6f8916526609e22d8723f006d

Amazon Web Services Modernize .NET Applications with Linux Containers

 11

*This table is an example only. For the most recent pricing information, see the

AWS Pricing Calculator.

**AWS Fargate is not included in the AWS Pricing Calculator. This paper breaks

down the costs for AWS Fargate in the following section.

Self-managed containers on Amazon EC2

Running containers on Amazon EC2 gives you the highest level of control over the

underlying compute, but it comes with the highest TCO, because you must manage the

entirety of the container’s lifecycle. Additionally, you are responsible for optimally

utilizing the underlying compute, rather than leaving this to the managed container

orchestrator. For more information, see the details links in the preceding table.

Amazon EKS

With Amazon EKS, you pay $0.10 per hour for each cluster that you create. You can

use a single Amazon EKS cluster to run multiple applications by taking advantage of

Kubernetes namespaces and IAM security policies. You can run Amazon EKS on AWS

using either Amazon EC2 or AWS Fargate, and on-premises using AWS Outposts or

Amazon EKS Anywhere.

If you are using Amazon EC2 (including with Amazon EKS-managed node groups), you

pay for AWS resources (such as EC2 instances or EBS volumes) you create to run your

Kubernetes worker nodes. You pay only for what you use, as you use it; there are no

minimum fees and no upfront commitments.

The calculations in this guide use Amazon EC2 for compute. For more details on

Amazon EKS pricing, see the Amazon EKS pricing page. For more information, see the

details links in the preceding table.

Amazon ECS

With Amazon ECS, there is no additional charge for the cluster management. You can

run Amazon ECS on AWS using either Amazon EC2 or AWS Fargate, and on-premises

using AWS Outposts or Amazon ECS Anywhere. Again, you only pay for what you use,

as you use it.

For the calculations in this guide, we used EC2 for compute, and for more details on

ECS pricing reference the Amazon ECS pricing page. For more information, see the

details links in the preceding table.

https://calculator.aws/#/
https://aws.amazon.com/outposts/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/eks/pricing/
https://aws.amazon.com/ecs/pricing/

Amazon Web Services Modernize .NET Applications with Linux Containers

 12

AWS Fargate

AWS Fargate can be used to run containers on Amazon ECS and Amazon EKS,

removing the operational cost of managing the underlying infrastructure yourself. Pricing

is calculated based on the vCPU and memory resources used from the time you start to

download your container image until the Amazon ECS Task or Amazon EKS Pod ends,

rounded up to the nearest second.

For simplicity, this guide assumes that AWS Fargate will run all the time (730 hours per

month), but ideally you benefit more from AWS Fargate when cluster utilization falls

under certain thresholds. Windows containers are not supported to run on AWS Fargate

at this time. Therefore this paper estimates only the cost of running Linux containers.

See the AWS Fargate pricing page for more information.

For details of the Fargate calculations in the preceding table, see the following table.

Table 7 – AWS Fargate cost breakdown (example)

Component Cost breakdown Cost (monthly)

Total $85.05 + $35.10 + $17.23 $137.38

Compute vCPU per hour: $0.04048

RAM GB per hour: $0.004445

($0.04048 x 2 vCPU) + ($0.004445

x 8GB) = $0.11652

$0.11652 x 730 hours

$85.05

NAT Gateway Usage monthly cost: $0.045 * 730

hours = $32.85

Data Processing Cost: $0.045 * 50

GB per month = $2.25

$35.10

Application Load

Balancer

Fixed hourly charges (monthly):

$16.43

LCU charges x 100 GB (monthly):

$0.80

$17.23

Operational costs (staffing)

One of the benefits of using managed services is that you can save time by not having

to perform operations that are considered undifferentiated heavy lifting. Managed

services in AWS such as AWS Fargate remove the burden of managing your

https://aws.amazon.com/fargate/pricing/

Amazon Web Services Modernize .NET Applications with Linux Containers

 13

infrastructure, freeing your resources to focus more on building your applications to

drive business outcomes. For more information on the operational savings from using

managed services such as AWS Fargate, see Saving money a pod at a time with EKS,

Fargate, and AWS Compute Savings Plans.

Architecture overview

It’s common for enterprise applications built in the last decade to follow a layered N-Tier

architectural approach. The functionally for different aspects of the application are

logically separated, yet bundled together as interdependent code modules.

There are multiple advantages of an N-Tier architecture. They’re easy to develop, more

feasible to test if the application size is small, and can scale vertically. However, as

more functionality is added and the code base grows, the applications become

cumbersome to manage, change, and scale. State-dependent applications are

particularly difficult to scale horizontally, and the compute capacity must be provisioned

to consider the peak load.

This guide uses the familiar MvcMusicStore reference application, which is built on an

N-Tier approach using ASP.NET MVC 5 and .NET Framework 4.8. It maintains a

session state in memory, and it can scale vertically by default. The data persistence

layer uses Microsoft SQL Server. The high-level architecture for this application follows.

MvcMusicStore application in Amazon EC2 with Amazon RDS database

https://aws.amazon.com/blogs/containers/saving-money-pod-at-time-with-eks-fargate-and-aws-compute-savings-plans/
https://aws.amazon.com/blogs/containers/saving-money-pod-at-time-with-eks-fargate-and-aws-compute-savings-plans/
https://en.wikipedia.org/wiki/Multitier_architecture
https://github.com/aws-samples/dotnet-modernization-music-store

Amazon Web Services Modernize .NET Applications with Linux Containers

 14

Many customers start their cloud journey with a lift-and-shift approach, running their N-

Tier .NET Framework applications on EC2 without any code changes. It’s common for

these deployments to have more than one EC2 Windows instance with an Application

Load Balancer (ALB), routing the user requests to one of the EC2 instances. A stateful

application can have session affinity (sticky sessions) enabled at the ALB level to create

an affinity between a client and a specific EC2 instance.

Along with the ALB, developers can use AWS Auto Scaling to monitor an application

and automatically adjust capacity to maintain steady, predictable performance at the

lowest possible cost. Amazon RDS for SQL Server is a managed database service that

frees you up to focus on application development by managing time-consuming

database administration tasks, including provisioning, backups, software patching,

monitoring, and hardware scaling.

This guide refactors this traditional N-Tier .NET Framework application to run on

Amazon ECS with AWS Fargate. As mentioned in the previous sections, running

containers on Amazon EC2 and Amazon EKS is also an option, but using Amazon ECS

and AWS Fargate is a simple yet powerful place to start if you and your teams are new

to containers.

Fargate integrates natively with AWS services such as Application Load Balancer and

AWS Auto Scaling, enabling developers to start with the minimum amount of compute

to meet user requirements and scale dynamically as the incoming traffic increases. The

high-level architecture for the containerized version of this application follows, and is the

target of the transformation detailed in this guide. In the following figure, the one vCPU,

two GB blocks represent the AWS Fargate tasks where the application containers are

running.

https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/rds/sqlserver/
https://aws.amazon.com/autoscaling/

Amazon Web Services Modernize .NET Applications with Linux Containers

 15

MvcMusicStore application in AWS Fargate with Amazon RDS database

Additional benefits of moving to containers are realized when teams also implement

automation and DevOps. A cloud-optimized, containerized application allows you to

quickly and frequently deliver consistent applications to your users. A common

development pipeline for continuous deployment with AWS follows.

DevOps architecture with CI/CD pipeline

Amazon Web Services Modernize .NET Applications with Linux Containers

 16

Following is a walkthrough of the procedural guidance to accomplish this transformation

quickly and safely.

Walkthrough

Refactoring from .NET Framework to .NET 5

The following walkthrough uses the MvcMusicStore application to demonstrate how to

port an ASP.NET MVC and Entity Framework-based application to .NET 5. There are

two primary methodologies for refactoring; modify the code in place, or incrementally

move code from the original project to a new project.

The first methodology (modify in place) is used in this guide for simplicity, though the

second has value for large applications to ensure that the code is buildable throughout

the process. Additionally, in this guide, we use the GUI version of the Porting Assistant

for .NET, but there is also a Visual Studio extension available if you prefer to stay in

your integrated development environment (IDE).

The majority of the code changes for this walkthrough are driven by the conversion of

ASP.NET to ASP.NET Core, which includes modifying the configuration, static content,

session management, and identity handling. To minimize changes, Entity Framework

(EF) remains during the porting effort, because EF6 is compatible with .NET Core and

.NET 5.

For this section of the walkthrough, there are three stages:

• Prerequisites – Prepare the local development environment for refactoring.

• Assessment – Use the Porting Assistant to assess compatibility with .NET 5.

• Refactoring – Port each component of the application to .NET 5.

Prerequisites

1. Install the Porting Assistant for .NET and its prerequisites. See Getting started

with Porting Assistant for .NET.

2. Install Visual Studio 2019 16.4 or later (any version, community, professional or

enterprise) with the ASP.NET and web development workload. Download here.

3. Clone the MvcMusicStore repository (GitHub repository) and switch to the

net48-upgrade-completed branch.

https://github.com/aws-samples/dotnet-modernization-music-store
https://docs.aws.amazon.com/portingassistant/latest/userguide/porting-assistant-vs-ide.html
https://docs.aws.amazon.com/portingassistant/latest/userguide/porting-assistant-getting-started.html
https://docs.aws.amazon.com/portingassistant/latest/userguide/porting-assistant-getting-started.html
https://visualstudio.microsoft.com/downloads/
https://github.com/aws-samples/dotnet-modernization-music-store

Amazon Web Services Modernize .NET Applications with Linux Containers

 17

4. Install full .NET Framework 4.8 and .NET 5.0.

5. Install and start SQL Server on your local machine. See the installation

instructions.

6. Install SQL Server Management Studio. Download here.

7. Set up Membership Schema and database to manage users by opening

PowerShell and running the command that matches your local SQL Server

installation:

• For SQL Server Express:

&

$env:WINDIR\Microsoft.Net\Framework\v4.0.30319\aspnet_regsql.exe

-S .\SQLEXPRESS -d Identity -A all -E

• For other SQL Server versions:

&

$env:WINDIR\Microsoft.Net\Framework\v4.0.30319\aspnet_regsql.exe

-S . -d Identity -A all -E

8. Open the MvcMusicStore solution in Visual Studio. If using SQL Server Express,

in Web.config, change the connectionStrings to the following:

<connectionStrings>

 <add name="MusicStoreEntities" connectionString="Data

Source=.\SQLEXPRESS;Initial Catalog=MusicStore;Integrated

Security=SSPI" providerName="System.Data.SqlClient"/>

 <add name="IdentityConnection" connectionString="Data

Source=.\SQLEXPRESS;Initial Catalog=Identity;Integrated

Security=SSPI" providerName="System.Data.SqlClient"/>

</connectionStrings>

9. Run the application in Visual Studio by choosing IIS Express for hosting and

start the application in debug mode. A browser window should start, and you

should see the home page for the application, as shown in the following figure.

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-express-localdb?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-express-localdb?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

Amazon Web Services Modernize .NET Applications with Linux Containers

 18

MvcMusicStore homepage user interface (UI)

Assessment

This section assesses the compatibility of the MvcMusicStore application using the

Porting Assistant for .NET to identify the source files and libraries that are not

compatible with .NET Core/.NET 5. This exercise gives you an idea of the level of effort

that refactoring will require. This walkthrough uses Porting Assistant v1.4.3.

1. Start the Porting Assistant application and choose Get Started.

Amazon Web Services Modernize .NET Applications with Linux Containers

 19

Porting Assistant home page

2. On the Porting Assistant for .NET settings page, for Target framework,

choose .NET 5.0.0.

3. Specify an AWS named profile (if you need to create a profile, see Create the

IAM user).

4. Choose Next.

https://docs.aws.amazon.com/portingassistant/latest/userguide/porting-assistant-prerequisites.html#porting-assistant-iam
https://docs.aws.amazon.com/portingassistant/latest/userguide/porting-assistant-prerequisites.html#porting-assistant-iam

Amazon Web Services Modernize .NET Applications with Linux Containers

 20

Porting Assistant setup page

5. On the Specify a solution file path page, for Solution file, choose the

MvcMusicStore.sln file for the project.

6. Choose Assess.

Amazon Web Services Modernize .NET Applications with Linux Containers

 21

Porting Assistant assess a new solution UI

A Successfully assessed notification banner appears with the MvcMusicStore

application listed as an assessed solution.

7. In the list of Assessed solutions, choose the MvcMusicStore application, and

choose View details.

Porting Assistant assessed solutions UI

This action takes you to the Assessment overview page, which displays a

summary of the number of incompatible packages, incompatible APIs, build

errors, and number of suggested porting actions. To share the results of the

assessment, choose Export assessment report.

Amazon Web Services Modernize .NET Applications with Linux Containers

 22

Porting Assistant assessment overview UI

Further down on the page, there are additional details of the assessment that include

the following:

• Projects tab — Lists the projects in your solution, the target framework for the

solution, the number of referenced projects in the solution, the number of

incompatible packages in the solution, the number of incompatible APIs in the

solution, and the port status (ported or not ported) of the solution.

• Project references tab — Displays the project references graph, which is a

graphical representation of your projects and references. Select a node to see

its project dependencies.

o To port your projects, start by selecting the base of your library, and then

move outward to test each layer. You should first port base libraries with the

most dependencies from other projects (libraries that show more inward

arrows than outward arrows).

o To view details about a node, select the node and choose View details.

• NuGet packages tab — Lists the number of NuGet packages in your solutions

file, the name of the NuGet packages, the version number of the packages, the

source files in the package, the number of compatible APIs in the package, and

the compatibility status and suggested replacement of each package.

Amazon Web Services Modernize .NET Applications with Linux Containers

 23

• APIs tab — Lists the name of each API call in the solution, the name of the

package within which the API call appears, the number of source files that

include each API call, the suggested replacement for the API call, and the

compatibility status of the API call.

• Source files tab — Lists the source file name in the solution and the number of

incompatible API calls over the total number of API calls for each source file.

You can select a source file to view the incompatible API calls and replacement

suggestions in the source code. In each source file, any section of code that is

detected as incompatible will be highlighted as follows:

o Porting action — Code that initiates a porting action in the project

o Incompatible method invocation — An API that is incompatible with .NET

5

Browse each of the tabs and familiarize yourself with the proposed changes by

reviewing each source file. Once you have completed your review, you will have an

understanding of the changes required to complete the refactor to .NET 5. Proceed to

the next section to begin the refactoring effort.

Refactoring

Now that you’ve assessed the solution, you’re ready to port the project to .NET 5. For

simplicity of this guide, you will port the solution in place and make the necessary

modifications to each component of the application’s functionality. If you want to jump

directly to the .NET 5 compatible version, you can check out the refactored framework-

to-core-completed branch.

Use Porting Assistant to initiate the refactor

1. On the Assessment overview page of the Porting Assistant, choose Port

solution.

Amazon Web Services Modernize .NET Applications with Linux Containers

 24

Porting Assistant assessment overview UI

2. On the How would you like to save ported projects dialog box, for Write

method, choose Modify source in place, and choose Save.

Porting Assistant write method UI

3. On the next page review the Port destination, new target framework version, and

the NuGet package upgrades. Then, choose Port.

4. After the process completes, choose View log to view the log of the changes

made by the Porting Assistant.

5. After you have reviewed the changes, open Visual Studio. The next step is to

make manual changes that are required to complete the port to .NET 5.

Amazon Web Services Modernize .NET Applications with Linux Containers

 25

Add dependencies required for the refactor

Before changing the application source code, install the dependencies you need for the

.NET 5 version of your application. To follow the best practice of minimizing the

changes to our application during the refactor, continue using EntityFramework

because it is compatible with .NET Core, and will remove the change that was

automatically made by the Porting Assistant to switch to EntityFrameworkCore.

Additionally, the .NET Framework Membership APIs and Forms Authentication are not

compatible with .NET 5, so you must switch to ASP.NET Core Identity. To support these

changes, take the following actions:

1. Remove the Microsoft.EntityFrameworkCore Package Reference from the

.csproj file:

<ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore"

Version="*" />

 ...

</ItemGroup>

2. Navigate to Tools > NuGet Package Manager > NuGet Package Console and

install the following dependencies:

Install-Package EntityFramework -Version 6.4.4

Install-Package Microsoft.AspNetCore.Identity.EntityFrameworkCore

Install-Package Microsoft.AspNetCore.Authentication.Cookies

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Set up configuration

In ASP.NET Core, the Startup.cs class replaces the .NET Framework Global.asax

class. It acts as an entry point to the application, setting up configuration and wiring up

services (dependency injection). You can also configure the request pipeline in the

Startup.cs class to handle all requests made to the application.

Note the following method calls in Startup.cs:

• The AddControllersWithViews extension method registers MVC services for

controllers and views.

• The UseStaticFiles extension method adds the static file handler to support

images, CSS files, and so on. Order is important here and the

UseStaticFiles extension method must be called before UseRouting.

Amazon Web Services Modernize .NET Applications with Linux Containers

 26

• The UseRouting extension method adds MVC Controller routing.

1. The .NET Framework version of the MvcMusicStore application uses PascalCase

for JSON serialization. To maintain same behavior, set up

JsonSerializerOptions in the ConfigureServices method of Startup.cs:

public class Startup

{

[...]

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews()

 .AddJsonOptions(jsonOptions =>

jsonOptions.JsonSerializerOptions.PropertyNamingPolicy = null);

}

[...]

}

2. Navigate to the appsettings.json file in the project root, where you will see the

settings that were ported from Web.config. Note the ConnectionStrings section

and ensure it matches your SQL Server installation. If you are not using SQL Server

Express, remove \\SQLEXPRESS from each string.

"ConnectionStrings": {

 "LocalSqlServer": "data source=.\\SQLEXPRESS;Integrated

Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User

Instance=true",

 "MusicStoreEntities": "Data Source=.\\SQLEXPRESS;Initial

Catalog=MusicStore;Integrated Security=SSPI",

 "IdentityConnection": "Data Source=.\\SQLEXPRESS;Initial

Catalog=Identity;Integrated Security=SSPI"

}

Migrate static content and layout

ASP.NET MVC applications depend upon a well-known folder structure. The scaffolding

depends on “View source code” files being in the Views folder, “Controller source code”

files being in the Controllers folder, and so on. Some of the non-.NET specific folders

are also at the same level, such as CSS and images. In ASP.NET Core MVC, most of

the structure is the same, with the exception of static content, which should be in the

wwwroot folder. This includes Javascript, CSS, and image files.

Amazon Web Services Modernize .NET Applications with Linux Containers

 27

1. To adhere to the structure of ASP.NET Core MVC applications, move the

Content and Scripts folders to the wwwroot folder. If you cannot see this

directory, in the Solution Explorer, choose Show All Files.

2. Since the target is Linux, ensure that the case is correct for the static images by

copying the source code from this file to wwwroot/Content/Site.css.

Set up EntityFramework for MusicStoreEntities

You saw earlier that the Porting Assistant automatically converted the

EntityFramework usage to EntityFrameworkCore. In this section you’ll roll back

those changes and configure the MusicStoreEntities model to use

EntityFramework, because EntityFramework is supported in .NET Core, and you

want to minimize the changes made to the application.

1. In Models/MusicStoreEntities.cs, replace using

Microsoft.EntityFrameworkCore with using System.Data.Entity.

2. Add a constructor which takes the connection string:

public class MusicStoreEntities : DbContext

{

 public MusicStoreEntities(string nameOrConnectionString)

 : base(nameOrConnectionString)

 {

 }

 [...]

}

3. Remove the OnConfiguring method.

4. In the ASP.NET version of the application, you specified configuration via XML,

but in ASP.NET Core all configuration is code-based. You implement this by

creating a subclass of System.Data.Entity.Config.DbConfiguration and

applying System.Data.Entity.DbConfigurationTypeAttribute to the

MusicStoreEntities DbContext subclass:

namespace MvcMusicStore.Models

{

 [DbConfigurationType(typeof(CodeConfig))]

 public class MusicStoreEntities : DbContext

 {

 [...]

 }

https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/wwwroot/Content/Site.css

Amazon Web Services Modernize .NET Applications with Linux Containers

 28

 public class CodeConfig : DbConfiguration

 {

 public CodeConfig()

 {

 SetProviderServices("System.Data.SqlClient",

System.Data.Entity.SqlServer.SqlProviderServices.Instance);

 }

 }

}

5. In the Startup.cs class, within ConfigureServices, add factory method for

the MusicStoreEntities context with its connection string. The DbContext

should be resolved once per request to ensure optimal performance and reliable

operation of EntityFramework.

using MvcMusicStore.Models;

[...]

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews()

 .AddJsonOptions(jsonOptions =>

jsonOptions.JsonSerializerOptions.PropertyNamingPolicy = null);

 services.AddScoped(_ => new

MusicStoreEntities(Configuration.GetConnectionString("MusicStoreEnt

ities")));

}

Remove EntityFramework functionality that is not supported in .NET Core

1. In Models/AccountModels.cs, remove the following line:

using Compare =

System.ComponentModel.DataAnnotations.CompareAttribute;

2. In Models/Album.cs, add using

Microsoft.AspNetCore.Mvc.ModelBinding, and change the class attribute

[Bind(Exclude="AlbumId")] to [Bind], because the property in the Bind

attribute class is not available in .NET Core.

3. Add the attribute [BindNever] to the AlbumID property:

Amazon Web Services Modernize .NET Applications with Linux Containers

 29

using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace MvcMusicStore.Models

{

 [Bind]

 public class Album

 {

 [ScaffoldColumn(false)]

 [BindNever]

 public int AlbumId { get; set; }

 [...]

 }

}

4. In Models/Order.cs, apply the same changes in steps 2 and 3: add using

Microsoft.AspNetCore.Mvc.ModelBinding,

replace[Bind(Exclude="OrderId")] with [Bind], and add attribute

[BindNever] to the OrderId property.

Refactor the landing page functionality

In this section, you’ll refactor the functionality that includes fetching music albums, the

genre menu, and the customer shopping cart summary.

1. Controllers/HomeController.cs depends on the MusicStoreEntities

DBContext class to fetch data from the database. Add a new constructor with

MusicStoreEntities in HomeController.cs. Dependency injection will

resolve the instance of MusicStoreEntities registered in Startup.cs, while

creating the instance of HomeController and injecting it at runtime.

2. Update the code for HomeController:

Amazon Web Services Modernize .NET Applications with Linux Containers

 30

public class HomeController : Controller

{

 // replace MusicStoreEntities storeDB = new

MusicStoreEntities();

 // with the code below

 private readonly MusicStoreEntities storeDB;

 public HomeController(MusicStoreEntities musicStoreEntities)

 {

 storeDB = musicStoreEntities;

 }

 [...]

}

Refactor the store functionality

The MvcMusicStore application enables customers to browse music albums through

music category pages and detail pages. Data for music albums is loaded dynamically

from the database.

The following components don’t exist in ASP.NET Core:

• System.Web

• ChildActionOnlyAttribute

1. In Controllers/StoreController.cs, add a new constructor and inject

MusicStoreEntities DBContext class:

public class StoreController : Controller

{

 // replace MusicStoreEntities storeDB = new

MusicStoreEntities();

 // with the code below

 private readonly MusicStoreEntities storeDB;

 public StoreController(MusicStoreEntities musicStoreEntities)

 {

 storeDB = musicStoreEntities;

 }

 [...]

}

2. Delete the GenreMenu() method. You’ll convert it to the ViewComponent later in

this guide.

Amazon Web Services Modernize .NET Applications with Linux Containers

 31

3. Delete the corresponding View for Genre menu by deleting the file

Views/Store/GenreMenu.cshtml

Refactor the shopping cart functionality

Users of the MvcMusicStore application are allowed to add items to the cart, either as

anonymous or as authenticated users. If a customer adds items to the cart as an

anonymous user, after their authentication, shopping cart functionality attempts to

merge the current cart with the cart items stored in the database.

The Shopping Cart business logic is embedded in Models/ShoppingCart.cs. This

class depends on the MusicStoreEntities DBContext to fetch the cart items from

the database and it uses session to store CartId.

1. Add new constructor to Models/ShoppingCart.cs to inject DBContext and

IHttpContextAccessor. You have already registered MusicStoreEntities

DBContext and HttpContextAccessor classes to ServiceCollection in

Startup.cs.

2. Set ShoppingCardId as a part of the constructor to ensure CartId is always

set as a part of cart object:

public partial class ShoppingCart

{

// replace MusicStoreEntities storeDB = new

MusicStoreEntities();

// with the code below

private readonly MusicStoreEntities storeDB;

private readonly IHttpContextAccessor httpContextAccessor;

public ShoppingCart(MusicStoreEntities musicStoreEntities,

IHttpContextAccessor httpContextAccessor)

{

this.storeDB = musicStoreEntities;

this.httpContextAccessor = httpContextAccessor;

this.ShoppingCartId = this.GetCartId();

}

[...]

}

Amazon Web Services Modernize .NET Applications with Linux Containers

 32

3. Delete static methods GetCart(HttpContextBase context) and

GetCart(Controller controller) from ShoppingCart.cs, as these are

not needed anymore. These static methods return the ShoppingCart object

and set cartId before returning shopping cart object. You’ll address this in the

coming steps.

4. Update the GetCartId method to use ISession:

public string GetCartId()

{

HttpContext context = this.httpContextAccessor.HttpContext;

if (context.Session.GetString(CartSessionKey) == null)

{

if (!string.IsNullOrWhiteSpace(context.User?.Identity?.Name))

{

context.Session.SetString(CartSessionKey,

context.User.Identity.Name);

}

else

{

// Generate a new random GUID using System.Guid class

Guid tempCartId = Guid.NewGuid();

// Send tempCartId back to client as a cookie

context.Session.SetString(CartSessionKey,

tempCartId.ToString());

}

}

return context.Session.GetString(CartSessionKey).ToString();

}

5. In Startup.cs, add dependency injection for the shopping cart in the

ConfigureServices method, as shown in the following code example. This

enables you to inject the shopping cart object to classes that depend on it:

public void ConfigureServices(IServiceCollection services)

{

[...]

services.AddScoped<ShoppingCart>();

}

Amazon Web Services Modernize .NET Applications with Linux Containers

 33

6. Refactor Controllers/ShoppingCartController.cs. The

ShoppingCartController loads customer cart data from the database using

MusicStoreEntities.cs, and also manages it using the ShoppingCart.cs

object. Add a dependency to MusicStoreEntities and ShoppingCart objects

as a part of constructor and update the class:

public class ShoppingCartController : Controller

{

// replace MusicStoreEntities storeDB = new

MusicStoreEntities();

// with the code below

private readonly MusicStoreEntities storeDB;

private readonly ShoppingCart shoppingCart;

public ShoppingCartController(MusicStoreEntities

musicStoreEntities, ShoppingCart shoppingCart)

{

this.storeDB = musicStoreEntities;

this.shoppingCart = shoppingCart;

}

[...]

}

7. Now that you have the ShoppingCart object dependency injected through the

constructor, you can replace the static method

ShoppingCart.GetCart(this.HttpContext) with the ShoppingCart object,

as shown in the following code example. Do this for the Index(),

AddToCart(int id), and RemoveFromCart(int id) Actions.

public ActionResult Index()

{

// replace var cart = ShoppingCart.GetCart(this.HttpContext);

// with the code below

var cart = shoppingCart;

[...]

}

8. Lastly, delete the CartSummary() method, as it’s not needed anymore. You’ll

convert it in the next section.

Amazon Web Services Modernize .NET Applications with Linux Containers

 34

Create view components

In the .NET Framework version of the MvcMusicStore application, there are few

reusable components, Cart Summary and Genre Menu, that are rendered from the

_Layout.cshtml Razor page using the @Html.RenderAction() method. These

reusable components consist of both Razor markup and some backend logic. In the

.NET Framework version of the app, the backend logic is implemented as controller

actions marked with a [ChildActionOnly] attribute, and the markup is implemented

as a normal Razor view.

Child Actions are not supported in ASP.NET Core MVC, and they are replaced with a

new View Component feature. Conceptually, View Components are very similar to Child

Actions, but they are lightweight and they do not participate in controller lifecycle (they

cannot leverage the filter pipeline OnActionExecuting() and OnActionExecuted()

actions, nor do they use model binding). Generally, a View Component is created by

creating a class where the name ends with the suffix ViewComponent. It fully supports

constructor dependency injection.

1. Add a new folder at the root level of the project called ViewComponents.

2. Right-click on the ViewComponents folder and choose Add > New Item.

3. Choose C# class.

4. Name the class CartSummaryViewComponent.cs.

5. Choose Add.

6. Add a new constructor with ShoppingCart and add an Invoke() method by

copying the code from this file.

7. Add a CartSummary Razor View Component: right-click Views > Shared and

add a new Components folder.

8. Right-click the Components folder and add the new sub-folder CartSummary.

9. Right-click the CartSummary folder, select Add > View, and choose Razor

View - Empty.

10. Name the View Default.cshtml.

11. Add the following code example to Default.cshtml, which corresponds to the

code from Views/ShoppingCart/CartSummary.cshtml.

12. Delete Views/ShoppingCart/CartSummary.cshstml.

https://www.jetbrains.com/dotnet/guide/tutorials/basics/razor-pages/
https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/ViewComponents/CartSummaryViewComponent.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 35

@Html.ActionLink("Cart (" + ViewData["CartCount"] + ")",

"Index",

"ShoppingCart",

new { id = "cart-status" })

13. Add a new Genre View Component class: right-click the ViewComponents folder

and select Add > New Item.

14. Choose C# class.

15. Name the class GenreMenuViewComponent.cs.

16. Choose Add.

17. Add a new constructor with MusicStoreEntities.

18. Add an Invoke() method by copying the code from this file.

19. Add the Genre Menu Razor View Component: right-click Views > Shared >

Components folder.

20. Add new sub-folder GenreMenu.

21. Right-click the GenreMenu folder, choose Add > View, and choose Razor View

- Empty.

22. Name the View Default.cshtml.

23. Add the following code example to Default.cshtml, which corresponds to the

code from Views/Store/GenreMenu.cshtml.

24. Delete Views/Store/GenreMenu.cshstml.

@model IEnumerable<MvcMusicStore.Models.Genre>

<ul id="categories">

 @foreach (var genre in Model)

 {

 @Html.ActionLink(genre.Name,

 "Browse", "Store",

 new { Genre = genre.Name }, null)

}

https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/ViewComponents/GenreMenuViewComponent.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 36

25. Replace the RenderAction code in Views/Shared/_Layout.cshtml with the

code to invoke the ViewComponent:

<body>

 <div id="header">

 <ul id="navlist">

 [...]

 Store

 @await Component.InvokeAsync("CartSummary")

 [...]

</div>

@await Component.InvokeAsync("GenreMenu")

<div id="main">

 @RenderBody()

</div>

[...]

</body>

Configure identity and authentication

In the .NET Framework version of the MvcMusicStore application, user management

and authentication are configured using Membership APIs and Form authentication.

Both of these libraries are not supported in ASP.NET Core. They are replaced by

ASP.NET Core Identity. This migration requires changing the database schema and

data that the application uses to manage users and handle authentication. You will

create the new schema and run the data migration at the end of the code refactor.

1. Unlike the Membership API that uses ADO.NET to access SQL database,

ASP.NET Core Identity uses Entity Framework to manage users. Update

Startup.cs with the following code example to configure Entity Framework and

Identity services and set the login path to /Account/Logon. This redirects an

unauthenticated user to the Logon page if they try to access functionality that

requires authentication. For example, the checkout page will redirect an

unauthenticated user to the Logon page for authentication. Note that there are

two types in this code snippet, ApplicationDbContext and User, that haven’t

been created yet. You create them in subsequent steps.

Amazon Web Services Modernize .NET Applications with Linux Containers

 37

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.Identity;

namespace MvcMusicStoreCore

{

 [...]

 public void ConfigureServices(IServiceCollection services)

 {

 [...]

 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("Identity

Connection")));

 services.AddIdentity<User, IdentityRole>()

 .AddEntityFrameworkStores<ApplicationDbContext>()

 .AddDefaultTokenProviders();

 services.ConfigureApplicationCookie(options =>

options.LoginPath = "/Account/Logon");

 }

 [...]

}

2. Enable Identity by calling UseAthentication in the Configure method, as

shown in the following code example. UseAuthentication adds authentication

middleware to the request pipeline for the application.

public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

{

 [...]

 app.UseRouting();

 app.UseAuthentication();

 app.UseAuthorization();

 app.UseSession();

 [...]

}

3. Add the ApplictionDbContext and User types. Go to the Models folder and

add a new class, User.cs, that extends the IdentityUser.

Amazon Web Services Modernize .NET Applications with Linux Containers

 38

4. Add the properties that map back to the AspNetUser columns in the database.

using Microsoft.AspNetCore.Identity;

namespace MvcMusicStore.Models

{

 public class User : IdentityUser

 {

 public string PasswordQuestion { get; set; }

 public string PasswordAnswer { get; set; }

 public bool IsApproved { get; set; }

 }

}

5. Create another class, ApplicationDbContext.cs, that extends

IdentityDbContext, passing in the User class created in the preceding step.

ASP.NET Core Identity requires an Entity Framework DbContext class to talk to

tables and populate the models. The base IdentityDbContext<TUser> class

is available in the Microsoft.AspNetCore.Identity.EntityFrameworkCore

.dll file, which interacts with the Identity tables to retrieve and store information.

The TUser class can be any class that extends the IdentityUser class.

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore;

namespace MvcMusicStore.Models

{

 public class ApplicationDbContext : IdentityDbContext<User>

 {

 public

ApplicationDbContext(DbContextOptions<ApplicationDbContext>

options)

 : base(options)

 {

 }

 protected override void OnModelCreating(ModelBuilder

builder)

 {

 base.OnModelCreating(builder);

 }

 }

Amazon Web Services Modernize .NET Applications with Linux Containers

 39

Refactor registration and login

In this section, you migrate the business logic and views for registration and login. The

business logic is implemented in AccountController.cs, and markup is implemented

as normal Razor views. You refactor the code to replace:

• The Membership API with ASP.NET Core Identity to manage users

• Forms authentication with ASP.NET Core Identity to manage authentication

• HttpContextBase with IHttpContextAccessor to manage session data

1. In Controllers/AccountController.cs, remove using

System.Web.Security and add a new constructor with dependency to

UserManager<User>, ShoppingCart, IHttpContextAccessor, and

SignInManager<User>.

• UserManager<User> class manages users, passwords, profile data, etc.

• SignInManager<TUser> manages authentication cookie and handles login /

logout functionality

• IHttpContextAccessor allows access to HttpContent and Session

• ShoppingCart manages the cart business logic

using MvcMusicStore.Models;

using System;

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Http;

using System.Threading.Tasks;

namespace MvcMusicStore.Controllers

{

public class AccountController : Controller

{

private readonly UserManager<User> userManager;

private readonly ShoppingCart shoppingCart;

private readonly IHttpContextAccessor httpContextAccessor;

private readonly SignInManager<User> signInManager;

public AccountController(UserManager<User> userManager,

ShoppingCart shoppingCart,

IHttpContextAccessor httpContextAccessor,

SignInManager<User> signInManager)

{

this.userManager = userManager;

this.shoppingCart = shoppingCart;

this.httpContextAccessor = httpContextAccessor;

Amazon Web Services Modernize .NET Applications with Linux Containers

 40

this.signInManager = signInManager;

}

[...]

}

}

2. Now that you have ShoppingCart and HttpContextAccessor injected through the

constructor, fix the MigrateShoppingCart method:

private void MigrateShoppingCart(string UserName)

{

// Associate shopping cart items with logged-in user

var cart = shoppingCart;

cart.MigrateCart(UserName);

httpContextAccessor.HttpContext.Session.SetString(ShoppingCart.C

artSessionKey, UserName);

}

3. Add reusable methods for redirecting the user back to the local return URL and add

error messages to ModelState:

private ActionResult RedirectToLocal(string returnUrl)

{

if (Url.IsLocalUrl(returnUrl))

{

return Redirect(returnUrl);

}

else

{

return RedirectToAction("Index", "Home");

}

}

private void AddErrors(IdentityResult result)

{

foreach (var error in result.Errors)

{

ModelState.AddModelError("", error.Description);

}

}

Amazon Web Services Modernize .NET Applications with Linux Containers

 41

4. Update the LogOn method’s POST action method to validate user credentials and

create an authentication cookie. SignInManager.PasswordSignInAsync replaces

Membership.ValidateUser and FormAuthentication.SetAuthCookie:

[HttpPost]

public async Task<ActionResult> LogOn(LogOnModel model, string

returnUrl)

{

if (ModelState.IsValid)

{

var result = await

signInManager.PasswordSignInAsync(model.UserName,

model.Password, model.RememberMe, lockoutOnFailure: true);

if (result.Succeeded)

{

MigrateShoppingCart(model.UserName);

return RedirectToLocal(returnUrl);

}

else

{

ModelState.AddModelError("", "The user name or password provided

is incorrect.");

}

}

// If we got this far, something failed, redisplay form

return View(model);

}

5. Update the LogOff method to replace FormsAuthentication.SignOut with

SignInManager.SignOutAsync and HttpContextAccessor, which allows access

to Session.

public async Task<ActionResult> LogOff()

{

await signInManager.SignOutAsync();

httpContextAccessor.HttpContext.Session.Clear();

return RedirectToAction("Logon", "Account");

}

Amazon Web Services Modernize .NET Applications with Linux Containers

 42

6. Update the Register POST method to create a new user and set the authentication

cookie. Note that UserManager.CreateAsync replaces

Membership.CreateUser, and SignInManager.SignInAsync replaces

FormsAuthentication.SetAuthCookie.

[HttpPost]

public async Task<ActionResult> Register(RegisterModel model)

{

if (ModelState.IsValid)

{

var user = new User()

{

UserName = model.UserName,

Email = model.Email,

PasswordQuestion = "question",

PasswordAnswer = "answer",

IsApproved = true

};

IdentityResult result = await userManager.CreateAsync(user,

model.Password);

if (result.Succeeded)

{

MigrateShoppingCart(model.UserName);

await signInManager.SignInAsync(user, isPersistent: true);

return RedirectToAction("Index", "Home");

}

else

{

AddErrors(result);

}

}

// If we got this far, something failed, redisplay form

return View(model);

}

7. Update the ChangePassword POST method to update user credentials. Note that

UserManager.FindByNameAsync replaces Membership.GetUser and

UserManager.ChangePasswordAsync replaces

MembershipUser.ChangePassword.

Amazon Web Services Modernize .NET Applications with Linux Containers

 43

[Authorize]

[HttpPost]

public async Task<ActionResult>

ChangePassword(ChangePasswordModel model)

{

if (ModelState.IsValid)

{

// ChangePassword will throw an exception rather

// than return false in certain failure scenarios.

bool changePasswordSucceeded;

try

{

var user = await

userManager.FindByNameAsync(User.Identity.Name);

var result = await userManager.ChangePasswordAsync(user,

model.OldPassword, model.NewPassword);

changePasswordSucceeded = result.Succeeded;

}

catch (Exception)

[...]

}

[...]

}

8. Delete the ErrorCodeToString method, as it is no longer needed.

9. In Views/Account/ChangePassword.cshtml and

Views/Account/Register.cshtml, change the reference to

@Membership.MinRequiredPasswordLength to 6, as that is the default in

ASP.NET Core Identity.

Set up membership crypto

Password criteria and password salts don’t migrate between Membership and Identity.

After the migration, existing users will not be able to log in with their existing password.

To allow existing users to log in without changing their password, you need to migrate

the PasswordSalt and PasswordFormat fields from the Membership database, and

create a new implementation of the IPasswordHasher interface provided by ASP.NET

Identity.

Amazon Web Services Modernize .NET Applications with Linux Containers

 44

1. The ASP.NET Core Identity API uses the different crypto algorithm than the one

used by Membership API. To allow the existing users to log in without changing

their password, you need to create a new implementation of the

IPasswordHasher interface provided by ASP.NET Core Identity. This class

allows the existing user to validate their password using the membership crypto

algorithm, and new users to verify their password using ASP.NET Core Identity

default crypto algorithm. Add the code from this file to a new class called

SQLPasswordHasher.cs in the Models folder.

2. Add the dependency injection for IPasswordHasher in Startup.cs in the

ConfigureServices method:

public void ConfigureServices(IServiceCollection services)

{

[...]

services.AddScoped<IPasswordHasher<User>,

SQLPasswordHasher<User>>();

}

Refactor checkout functionality

In this section, you will migrate the checkout functionality. The business logic for

checkout is implemented in CheckoutController.cs, and the markup is implemented

as normal Razor views.

The following components do not exist in ASP.NET Core:

• System.Web namespace

• FormCollection

• TryUpdateModel

1. In Controllers/CheckoutControllers.cs, add a new constructor with a

dependency to MusicStoreEntites and ShoppingCart:

https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/Models/SQLPasswordHasher.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 45

using MvcMusicStore.Models;

using System;

using System.Linq;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Http;

using System.Threading.Tasks;

namespace MvcMusicStore.Controllers

{

[Authorize]

public class CheckoutController : Controller

{

const string PromoCode = "FREE";

private readonly MusicStoreEntities storeDB;

private readonly ShoppingCart shoppingCart;

public CheckoutController(MusicStoreEntities musicStoreEntities,

ShoppingCart shoppingCart)

{

storeDB = musicStoreEntities;

this.shoppingCart = shoppingCart;

}

[...]

}

}

2. The FormCollection object and TryUpdateModel method are replaced by

IFormCollection and TryUpdateModelAsync in ASP.NET Core. Update the code

for AddressAndPayment method as in the following code example.

Amazon Web Services Modernize .NET Applications with Linux Containers

 46

[HttpPost]

public async Task<ActionResult>

AddressAndPayment(IFormCollection values)

{

var order = new Order();

await TryUpdateModelAsync(order);

try

{

if (string.Equals(values["PromoCode"], PromoCode,

StringComparison.OrdinalIgnoreCase) == false)

{

return View(order);

}

else

{

order.Username = User.Identity.Name;

order.OrderDate = DateTime.Now;

//Save Order

storeDB.Orders.Add(order);

storeDB.SaveChanges();

//Process the order

var cart = shoppingCart;

cart.CreateOrder(order);

return RedirectToAction("Complete",

new { id = order.OrderId });

}

}

catch

{

//Invalid - redisplay with errors

return View(order);

}

}

3. Update ShoppingCart.GetCart(this.HttpContext) with the shoppingCart

object injected in through constructor.

Amazon Web Services Modernize .NET Applications with Linux Containers

 47

Refactor sample data

The Porting Assistant automatically changed EF to EntityFrameworkCore. You must
undo those changes in Models/SampleData.cs for the project to build:

• In Models/SampleData.cs, replace using

Microsoft.EntityFrameworkCore with using System.Data.Entity

Refactor the application to be stateless

To take full advantage of containers, it’s important to either make the application

stateless or move the state management out-of-process. Stateless applications allow

seamless scaling-out and horizontal deployment across multiple servers.

ASP.NET supports different ways to maintain state information on the server-side. One

of the popular state management techniques is Session State. Session state is a

mechanism to store information in the form of a key-value pair that’s persisted between

multiple web requests. The MvcMusicStore application uses server-side sessions to

maintain login and shopping cart state.

Before containerizing the application, follow the instructions to use Microsoft SQL

Server for storing application session state. These steps migrate the schema in the

database to support the added tables. This allows horizontal scaling of the application

containers without disrupting existing user sessions.

To use Microsoft SQL Server for storing application session state:

1. Add the required NuGet packages to the project:

Install-Package Microsoft.Extensions.Caching.SqlServer

Install-Package

Microsoft.AspNetCore.DataProtection.EntityFrameworkCore

Install-Package Microsoft.Bcl.AsyncInterfaces

Install-Package Microsoft.EntityFrameworkCore.Design

2. Add a new class CacheTable.cs in the Models folder and copy-paste the code

from this file. CacheTable defines the schema to store session state in SQL

Server cache.

3. Modify Models/ApplicationDbContext.cs to include CacheTable and

DataProtectionKeys DbSet. This enables the application to use Entity

Framework Core to store data protection keys in a database. You can do this by

replacing the existing code in ApplicationDbContext.cs with code in this file.

https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/Models/CacheTable.cs
https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/Models/ApplicationDBContext.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 48

4. Modify Startup.cs to use AddDistributedSqlServerCache in place of

AddDistributedMemoryCache service, to maintain the state cache as an

external service to the application container that accesses it. You can do this by

replacing the existing code in Startup.cs with the code in this file, and

replacing namespace MvcMusicStoreCore with namespace MvcMusicStore.

5. Code changes to move session state to SQL Server are completed. Run

following commands from .NET CLI in the MvcMusicStore project directory to

apply the database changes:

dotnet tool install --global dotnet-ef

dotnet ef migrations add stateless

dotnet ef database update

6. Run this script on your SQL Server instance to migrate the existing data.

7. Update PasswordHash in the dbo.AspNetUser table with the PasswordSalt,

PasswordFormat and PasswordHash fields separated by the ‘|’ character

from the dbo.aspnet_Membership table. Note you may have to run CTRL +

SHIFT + R to refresh the SQL Management Studio cache:

UPDATE dbo.AspNetUsers

SET

PasswordHash =

(aspnet_Membership.Password+'|'+CAST(aspnet_Membership.PasswordFormat

as varchar)+'|'+aspnet_Membership.PasswordSalt)

FROM dbo.AspNetUsers

LEFT OUTER JOIN dbo.aspnet_Membership

ON AspNetUsers.Id = aspnet_Membership.UserId

WHERE AspNetUsers.PasswordHash = ''

Build and run the project

Now you will build and run the project to make sure everything is functioning correctly.

1. In Visual Studio, on the IIS Express menu, choose MvcMusicStore to enable

Console app mode launch.

https://github.com/aws-samples/dotnet-modernization-music-store/blob/framework-to-core-completed/MvcMusicStore/Startup.cs
https://github.com/aws-samples/dotnet-modernization-music-store/tree/framework-to-core-completed/static/membership-to-identity.sql

Amazon Web Services Modernize .NET Applications with Linux Containers

 49

Visual Studio hosting configuration

2. Remove the SSL debugging endpoint: First, right click on the project, go to

Properties, then choose Debug. Then, for App URL change the prefix https:// to

http://.

Amazon Web Services Modernize .NET Applications with Linux Containers

 50

Visual Studio debug properties configuration

3. Click the Debug menu, and click Start Debugging to start the application in

debug mode. You have successfully refactored the application from .NET

Framework to .NET 5.

Replatforming from Windows VMs to Linux containers

Now that you have successfully refactored the MvcMusicStore application from .NET

Framework to .NET 5, it’s time to containerize it and deploy it to Amazon ECS backed

by AWS Fargate, so you don’t have to worry about managing the underlying

infrastructure. The starting branch for this step of the walkthrough is framework-to-

core-completed. The target branch is core-ecs-cdk-completed. You can follow

along in GitHub. You can also jump directly to the completed branch if you want to

deploy and run the application without going through the steps.

For this section of the walkthrough, there are four stages:

1. Prerequisites

https://github.com/aws-samples/dotnet-modernization-music-store/tree/framework-to-core-completed/static/membership-to-identity.sql
https://github.com/aws-samples/dotnet-modernization-music-store/tree/framework-to-core-completed/static/membership-to-identity.sql
https://github.com/aws-samples/dotnet-modernization-music-store/tree/core-ecs-cdk-completed

Amazon Web Services Modernize .NET Applications with Linux Containers

 51

1. Containerize the application

2. Create the infrastructure as code

3. Create the CI/CD pipeline

Prerequisites

• Install Docker. See Docker Desktop.

• Install the AWS CDK. See AWS CDK Toolkit (cdk command).

• Install the AWS CLI. See AWS Command Line Interface.

Containerize the application

Before you deploy the application to AWS, you will containerize it locally and ensure

that it builds.

1. Create a file with the following content and name it Dockerfile. Save it in the

same folder as the MvcMusicStore.csproj file.

FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base

WORKDIR /app

EXPOSE 80

EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build

WORKDIR /src

COPY ["MvcMusicStore.csproj", ""]

RUN dotnet restore "./MvcMusicStore.csproj"

COPY . .

WORKDIR "/src/."

RUN dotnet build "MvcMusicStore.csproj" -c Release -o /app/build

FROM build AS publish

RUN dotnet publish "MvcMusicStore.csproj" -c Release -o

/app/publish

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

ENTRYPOINT ["dotnet", "MvcMusicStore.dll"]

2. Ensure Docker is started locally, and from the command line, set the working

directory to the folder containing the above Dockerfile.

https://www.docker.com/products/docker-desktop
https://aws.amazon.com/cli/

Amazon Web Services Modernize .NET Applications with Linux Containers

 52

3. Run the following command to ensure that the application container image

builds successfully.

docker build . -t music-store

4. Run the docker images command from the command line. You should see a

newly created mvcmusicstore Docker image in the output:

REPOSITORY TAG IMAGE ID CREATED SIZE

music-store latest 19fa5c6fb0c3 2 minutes ago 233MB

Your application is now containerized and ready for deployment.

Create the infrastructure as code

There are multiple options to run containers on AWS. If you are new to containers on

AWS, consider using Amazon ECS and AWS Fargate. There are various ways to create

a Fargate service, such as using AWS Management Console, AWS CLI , AWS

CloudFormation template, and AWS Cloud Development Kit (AWS CDK). AWS CDK is

an open-source software development framework to define your cloud application

resources using familiar programming languages. In the following section of the guide,

you will use AWS CDK for .NET to create AWS Cloud infrastructure as code and

provision it through CloudFormation.

Review the infrastructure you will build using the AWS CDK:

https://aws.amazon.com/blogs/compute/building-deploying-and-operating-containerized-applications-with-aws-fargate/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_AWSCLI_Fargate.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://aws.amazon.com/cdk/

Amazon Web Services Modernize .NET Applications with Linux Containers

 53

Common CI/CD deployment

• Infrastructure — AWS services used to host the MvcMusicStore application

include Amazon VPC, AWS Fargate for Amazon Elastic Container Service

(ECS) to run the application Docker containers, and Amazon Elastic Container

Registry (ECR) to store and share Docker container images. Amazon

Application Load Balancer routes traffic to AWS Fargate.

• Pipeline — The CI/CD pipeline, which triggers on code change. It builds a new

container image on code push, pushes that image to Amazon ECR, and

updates the Fargate service with a newer version of the container image.

In the next section, you create the code to define the pipeline and infrastructure.

Create the CI/CD pipeline

One of the advantages of containerizing your applications is to automate software

delivery, reducing the total time-to-market. In the following section you will create a

continuous integration and continuous delivery (CI/CD) pipeline. These steps include

initiating automatic builds, pushing the container image to Amazon ECR, and updating

the Fargate service when there is a code change.

1. Create a new folder called MusicStoreInfra in the top-level directory for the

project.

2. Move to that directory as the working directory.

Amazon Web Services Modernize .NET Applications with Linux Containers

 54

3. Run the following command to create a new AWS CDK application in that folder.

cdk init app --language csharp

4. After running the previous command, you should see a src folder in the

MusicStoreInfra folder. Open the solution in that folder in Visual Studio and

install the following packages using the NuGet Package Manager Console:

Install-Package Amazon.CDK.AWS.CodeBuild

Install-Package Amazon.CDK.AWS.CodeCommit

Install-Package Amazon.CDK.AWS.CodePipeline

Install-Package Amazon.CDK.AWS.CodePipeline.Actions

Install-Package Amazon.CDK.AWS.IAM

5. Rename the MusicStoreInfraStack.cs file to BuildInfraStack.cs and

add the code from this file to define the CI/CD pipeline as code.

6. Replace the existing code in Program.cs with the following code, so you can

reference this stack by name when you run the cdk command.

using Amazon.CDK;

namespace MusicStoreInfra

{

 sealed class Program

 {

 public static void Main(string[] args)

 {

 var app = new App();

 new BuildInfraStack(app, "BuildInfraStack");

 app.Synth();

 }

 }

}

7. Deploy the CI/CD pipeline using the AWS CDK. From the AWS-Pipeline

directory, run the following command to produce or synthesize an AWS

CloudFormation template for the stack defined in your application. The output of

this command is a CloudFormation template.

https://github.com/aws-samples/dotnet-modernization-music-store/blob/core-ecs-cdk-completed/MusicStoreInfra/src/MusicStoreInfra/BuildInfraStack.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 55

cdk synth

8. Run the following command to bootstrap the stack in your environment.

Bootstrap is required the first time you deploy an AWS CDK app in your AWS

environment (account and Region). You are now ready to deploy your AWS

CodePipeline.

cdk bootstrap

9. Run the following command to deploy.

cdk deploy BuildInfraStack

10. Press y when prompted for confirmation to proceed. AWS CDK apps are

deployed through AWS CloudFormation. You can see the progress of your

deployment from the CloudFormation console in the AWS Management

Console. This will take several minutes to complete.

11. When the process completes, you should see an output similar to the following:

✅ BuildInfraStack

Stack ARN:

arn:aws:cloudformation:us-east-1:<account-

id>:stack/BuildInfraStack/98a70620-af66-11eb-b017-0ed5356bca17

12. With the pipeline deployed, you are ready to push your application through the

automated deployment. Push the MvcMusicStore app code to the CodeCommit

repo from the application root folder. If you are using CodeCommit HTTPS for

the first time, refer to Setup for HTTPS users using Git credentials to set up

GitHub credentials.

13. Replace <CLONE_URL> in the following command with the HTTPS Clone URL

available at AWS Management Console > Developer Tools > CodeCommit >

Repositories > music-store.

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html?icmpid=docs_acc_console_connect_np
https://us-west-1.console.aws.amazon.com/codesuite/codecommit/start?region=us-west-1
https://us-west-1.console.aws.amazon.com/codesuite/codecommit/repositories?region=us-west-1

Amazon Web Services Modernize .NET Applications with Linux Containers

 56

git init

git add .

git commit -m "first commit"

git remote add codecommit <CLONE_URL>

git push --set-upstream codecommit net48-upgrade-completed:main

14. Navigate to the AWS Management Console > CodePipeline console. You

should see that the Checkout-Source-Code and Build-container-image

stages succeeded and that the Recycle-ECS-tasks stage failed. This is

expected because you have not yet deployed your infrastructure, which you will

do in the next section.

Create the infrastructure

1. Open the MusicStoreInfra solution in Visual Studio and install the following

packages:

Install-Package Amazon.CDK.AWS.ECS

Install-Package Amazon.CDK.AWS.RDS

Install-Package Amazon.CDK.AWS.ECS.Patterns

Install-Package Amazon.CDK.AWS.IAM

Install-Package Amazon.CDK.ECR.Assets

2. Create a new class called HostingInfraStack.cs and add the code from this

file to HostingInfraStack.cs. This creates a new VPC, an empty ECS

Cluster, an ECR repository, an ECS task definition, a Fargate instance for ECS

service, an RDS SQL Server instance, and a public Application Load Balancer to

route user requests to the Fargate containers.

3. Update Program.cs with the following code:

using Amazon.CDK;

namespace MusicStoreInfra

{

 sealed class Program

 {

 public static void Main(string[] args)

 {

 var app = new App();

 new BuildInfraStack(app, "BuildInfraStack");

https://github.com/aws-samples/dotnet-modernization-music-store/blob/core-ecs-cdk-completed/MusicStoreInfra/src/MusicStoreInfra/HostingInfraStack.cs
https://github.com/aws-samples/dotnet-modernization-music-store/blob/core-ecs-cdk-completed/MusicStoreInfra/src/MusicStoreInfra/HostingInfraStack.cs

Amazon Web Services Modernize .NET Applications with Linux Containers

 57

 new HostingInfraStack(app, “HostingInfraStack”);

 app.Synth();

 }

 }

}

4. From the MusicStoreInfra directory, run the following command to produce or

synthesize an AWS CloudFormation template for the stack defined in your

application. The output of this command is a CloudFormation template.

cdk synth HostingInfraStack

5. Run the following command to bootstrap the stack in your environment.

Bootstrap is required the first time you deploy an AWS CDK app in your AWS

environment (account and Region).

cdk bootstrap

6. You are now ready to deploy your AWS Infrastructure. Run the following

command to deploy:

cdk deploy HostingInfraStack

7. Press y when prompted for confirmation to proceed. AWS CDK apps are

deployed through AWS CloudFormation. You can see the progress of your

deployment from the CloudFormation console in the AWS Management Console.

This takes several minutes to complete.

8. When the process completes, you should see an output similar to the following:

✅ HostingInfraStack

Outputs:

HostingInfraStack.msuicstoreecsserviceLoadBalancerDNS87D6E21D =

Music-Store-ALB-862894238.us-east-1.elb.amazonaws.com

HostingInfraStack.msuicstoreecsserviceServiceURL99C1C434 =

http://Music-Store-ALB-862894238.us-east-1.elb.amazonaws.com

Stack ARN:

Amazon Web Services Modernize .NET Applications with Linux Containers

 58

arn:aws:cloudformation:us-east-1:<account-

id>:stack/HostingInfraStack/15239b80-af7d-11eb-b064-1214c28caebf

You now have a containerized .NET Core application running on Amazon ECS and

Fargate backed by a CI/CD pipeline.

To view the website, choose the Public Load Balancer link from the cdk deploy step.

In this example it is http://Music-Store-ALB-862894238.us-east-

1.elb.amazonaws.com.

You can see the entire CodePipeline in action by going to AWS Management Console

> Developer Tools > CodePipeline > Pipelines and triggering a new build. Each time

a new commit is pushed to the repository, the new build is automatically deployed to the

Amazon ECS Fargate cluster.

Note: Remember to remove your deployed AWS resources by running
cdk destroy from the directory of the MusicStoreInfra AWS CDK

application.

Logging and monitoring

Monitoring is an important part of maintaining the reliability, availability, and

performance of your applications running on Amazon ECS. You should collect

monitoring data from all of the parts of your AWS stack so that you can more easily

debug a multi-point failure if one occurs. AWS provides several tools for monitoring your

Amazon ECS resources and responding for potential incidents. See the following table

for details on each service.

Amazon Web Services Modernize .NET Applications with Linux Containers

 59

Table 8 — Service details

Service Description

Amazon CloudWatch Alarms

For clusters with tasks or services using the EC2 launch

type, you can use CloudWatch Alarms to scale in and scale

out the container instances based on CloudWatch metrics,

such as cluster memory reservation.

Amazon CloudWatch Logs Monitor, store, and access the log files from the containers

in your Amazon ECS tasks by specifying the awslogs log

driver in your task definitions. This is the only supported

method for accessing logs for tasks using the Fargate

launch type, but it also works with tasks using the EC2

launch type.

Amazon CloudWatch Events Match events and route them to one or more target

functions or streams to make changes, capture state

information, and take corrective action.

AWS CloudTrail CloudTrail provides a record of actions taken by a user, role,

or an AWS service in Amazon ECS. Using the information

collected by CloudTrail, you can determine the request that

was made to Amazon ECS, the IP address from which the

request was made, who made the request, when it was

made, and additional details.

AWS Trusted Advisor Trusted Advisor draws upon best practices learned from

serving hundreds of thousands of AWS customers. Trusted

Advisor inspects your AWS environment and then makes

recommendations when opportunities exist to save money,

improve system availability and performance, or help close

security gaps.

Amazon ECS events and

EventBridge

Use Amazon ECS events for EventBridge to receive near

real-time notifications regarding the current state of your

Amazon ECS clusters. If your tasks use the Fargate launch

type, you can see the state of your tasks. If your tasks use

the EC2 launch type, you can see the state of both the

container instances and the current state of all tasks running

on those container instances. For services, you can see

events related to the health of your service.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html

Amazon Web Services Modernize .NET Applications with Linux Containers

 60

Service Description

AWS X-Ray AWS X-Ray helps developers analyze and debug

production distributed applications, such as those built using

a microservices architecture. With AWS X-Ray, you can

understand how your application and its underlying services

are performing to identify and troubleshoot the root cause of

performance issues and errors. You can use the AWS X-

Ray SDK and AWS service integration to instrument

requests to your applications that are running locally or on

AWS compute services such as Amazon EC2, AWS Elastic

Beanstalk, Amazon ECS, and AWS Lambda.

Security

Security is and will always be the top priority at AWS. We have a shared responsibility

model with the customer: AWS manages and controls the components from the host

operating system and virtualization layer down to the physical security of the facilities in

which the services operate, and AWS customers are responsible for building secure

applications.

This section of the guide details the primary areas for you to understand when

deploying and running .NET applications in containers on Amazon ECS to meet your

security and compliance objectives:

• User to application authentication and authorization

• Application to database authentication and authorization

• Identity and access management for Amazon ECS

• Compliance validation for Amazon ECS

• In-flight data protection using encryption

User to application authentication and authorization

During the walkthrough section, you migrated the .NET Framework Membership APIs

and Form authentication to ASP.NET Core Identity to manage users, passwords, roles,

and the other aspects of login functionality for the application. While the application in

this guide stores user management data in SQL Server, Amazon also provides an

ASP.NET Core Identity Provider for Amazon Cognito, which allows ASP.NET Core

https://aws.amazon.com/xray/

Amazon Web Services Modernize .NET Applications with Linux Containers

 61

applications to easily integrate with Amazon Cognito in their web applications for user

authentication and authorization. The following integrations are also supported:

• User authentication through an identity provider (IdP) that is OpenID Connect

(OICD) compliant

• User authentication through well-known IdPs such as Amazon, Facebook, and

Google through Amazon Cognito user pools

• User authentication through corporate identities using SAML, LDAP, or

Microsoft Active Directory through Amazon Cognito user pools

Application to database authentication and

authorization

Amazon RDS supports both Windows and SQL Server authentication modes when

connecting an application to the database.

Windows Authentication

Windows (or Integrated) Authentication is the common mechanism for clients and

applications to connect to SQL Server databases. Typically, these applications are

joined to the same domain as the SQL Server database, but because individual

containers are ephemeral, joining them to a domain is not optimal. The best practice is

to use a separate Amazon ECS task as a ticket renewal “sidecar,” which stores the

Kerberos ticket in Fargate task storage for the application, which reads the ticket from

Fargate task storage and connects to the database using Windows Authentication. For

more information on this process, reference Using Windows Authentication with Linux

Containers on Amazon ECS, and the following diagram.

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://aws.amazon.com/blogs/containers/using-windows-authentication-with-linux-containers-on-amazon-ecs/
https://aws.amazon.com/blogs/containers/using-windows-authentication-with-linux-containers-on-amazon-ecs/

Amazon Web Services Modernize .NET Applications with Linux Containers

 62

Fargate deployment with ticket renewal sidecar

SQL Server Authentication

For .NET applications running in Linux containers on AWS, you can also use SQL

Authentication mode. When using SQL Server Authentication, logins are created in SQL

Server that are not based on Windows user accounts. Both the user name and the

password are created by using SQL Server, and stored in SQL Server.

The MvcMusicStore application used in the walkthrough of this guide uses SQL Server

authentication, and stores the connection strings as environment variables at the Task-

level. While this technique is used for simplicity of the demonstration, it’s a best practice

to store the password as an AWS Secrets Manager-encrypted secret, and to make it a

standalone configuration setting so the passwords can be recycled dynamically.

An example of storing just the password component of the connection string as an AWS

Secret Manager encrypted secret can be found in the UnicornStore sample application

in the Fargate Stack definition.

If you are considering migrating away from SQL Server as part of your modernization

strategy, note that Amazon IAM is the primary mechanism to authenticate applications

to Amazon purpose-built database services such as Amazon Aurora and you should

plan your authentication and authorization modernization strategy accordingly.

https://github.com/aws-samples/modernization-unicorn-store/blob/cdk-module-completed/infra-as-code/ProdEnvInfraAsCode/src/UnicornStoreFargateStack.cs#L91

Amazon Web Services Modernize .NET Applications with Linux Containers

 63

Identity and access management for Amazon ECS

With containerized applications running on Amazon ECS, your application, Amazon

ECS, and the Amazon ECS Container Agent will carry out multiple activities which

require access to other AWS services and resources. As an administrator, AWS Identity

and Access Management (IAM) is the AWS service to help security control access from

the cluster you are responsible for to other AWS services and resources. The following

diagram shows the types of roles that Amazon ECS supports. This paper details the

purpose of each role in the following sections.

ECS roles conceptual diagram

Service-linked role

There are multiple activities that the Amazon ECS service runs as it orchestrates your

container workloads. Amazon ECS uses a service-linked role for the permissions it

requires to call other AWS services on your behalf. These include services like Amazon

EC2 to manage elastic network interfaces, ELB to manage targets, and Amazon Route

53 for creating health checks, amongst others. A more detailed list can be found in the

Service-linked role for Amazon ECS page.

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html

Amazon Web Services Modernize .NET Applications with Linux Containers

 64

Service-linked role conceptual diagram

Container Instance role

The container instance role is the IAM role used as the Instance role by Amazon EC2

instances running your containers. This role is also leveraged by the Amazon ECS

container agent to make calls to AWS services and connect with the Amazon ECS

service to register container instances, report status, and get commands. Other

examples include the agent starting a telemetry session, or creating the Amazon ECS

cluster if one does not already exist. A more detailed list can be found on the Amazon

ECS container instance IAM role page.

Container instance role conceptual diagram

Task execution role

The task execution role grants the Amazon ECS container agent permission to make

AWS API calls on your behalf when an Amazon ECS task is started. An example of an

activity that the Amazon ECS Agent runs during this time is pulling container images

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html#welcome-task-sched

Amazon Web Services Modernize .NET Applications with Linux Containers

 65

from a private repository, in which case private registry authentication needs to be

configured.

Another use case where this role is required is that of injecting sensitive data into your

containers. You may choose to store sensitive data (such as database connection

strings) in either AWS Secrets Manager or AWS Systems Manager Parameter Store,

and reference them in your container definition. Sensitive data is injected into your

container as environment variables when the container is initially started without having

to write code to retrieve the values.

Note that if the secret or Parameter Store parameter is subsequently updated or

rotated, the container will not receive the updated value automatically. You must either

launch a new task, or if your task is part of a service, you can update the service and

use the Force new deployment option to force the service to launch a fresh task.

Task execution role conceptual diagram

Task role

Task role is the IAM role assigned to the containers instances created as part of the

Amazon ECS Task. This role provides applications with the AWS credentials they need

to make API requests to other AWS services. For example, you can set the policy

associated with the Task role to allow your application to read or write items from/to

Amazon DynamoDB, publish an event to an Amazon EventBridge bus, or start the

running of a AWS Step Functions workflow.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html#task-execution-secrets
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html#task-execution-secrets
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

Amazon Web Services Modernize .NET Applications with Linux Containers

 66

Task role conceptual diagram

Compliance validation for Amazon ECS

Your compliance responsibility when using Amazon ECS is determined by the

sensitivity of your data, your company's compliance objectives, and applicable laws and

regulations. Based on your specific requirements, you could apply the respective

security controls such as the IAM roles detailed above, encryption in-transit, and

encryption at-rest which is supported in Amazon ECR for the container images. Images

can also be scanned for vulnerabilities to ensure that there are no security risks in the

images themselves.

Image scanning

Amazon ECR image scanning helps identify software vulnerabilities in your container

images. Amazon ECR uses the Common Vulnerabilities and Exposures (CVEs)

database from the open-source Clair project, and provides a list of scan findings.

Amazon ECR uses the severity for a CVE from the upstream distribution source if

available. If not available, ECR uses the Common Vulnerability Scoring System (CVSS)

score. The CVSS score can be used to obtain the NVD vulnerability severity rating. For

more information, see NVD Vulnerability Severity Ratings.

You can manually scan container images stored in Amazon ECR. Alternatively, you can

configure your repositories to scan images when you push them to a repository. For

more information on image scanning, see the Amazon ECR documentation.

In-flight data protection using encryption

By default, API calls to the Amazon ECS service travel through the public internet. In

order to keep that traffic within the AWS global network, you can configure Amazon

https://github.com/quay/clair
https://nvd.nist.gov/vuln-metrics/cvss
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html

Amazon Web Services Modernize .NET Applications with Linux Containers

 67

ECS to use an interface VPC endpoint. Interface endpoints are powered by AWS

PrivateLink, a technology that enables you to privately access Amazon ECS APIs by

using private IP addresses. PrivateLink restricts all network traffic between your VPC

and Amazon ECS to the Amazon network. You don't need an internet gateway, a NAT

device, or a virtual private gateway.

You can create VPC endpoints for Amazon ECS, Amazon ECS Container Agent, and

Amazon ECS Telemetry in the Region where your containers are deployed. VPC

endpoints currently do not support cross-Region requests, so if you have a multi-Region

deployment, consider following the recommendations in Integrating cross VPC ECS

cluster for enhanced security with AWS App Mesh.

For more information on building a scalable, multi-Region architecture on AWS, see

Building a Scalable and Secure Multi-VPC AWS Network Infrastructure. If you are using

Amazon ECS integration with Secrets Manager or Systems Manager Parameter Store

for sensitive data, you will also need to configure VPC endpoints for each of these

services.

In addition to securing network traffic by restricting it to the AWS network, you can

encrypt data in transit between your application and AWS services by enforcing the use

of TLS 1.2 when using the AWS SDK for .NET. In the following sections, we review the

various approaches to using encryption in transit for applications running on Amazon

ECS.

Ending TLS at the load balancer

It’s a best practice to enforce ending TLS at the load balancer. Both Application Load

Balancers and Network Load Balancers support ending TLS. Ending TLS connections

at the Load Balancer frees up your backend containers from the work of encrypting and

decrypting your traffic.

Your containers handle plain HTTP requests, while offloading the complexity of

managing HTTPS connections to the Load Balancers. This approach also simplifies

certificate management, because the certificates are now deployed to the Load

Balancers instead of backend containers.

Additionally, you can use AWS Certificate Manager (ACM) at no charge to securely

store, expire, rotate, and update your certificates. This process involves adding a TLS

listener to your load balancer, configuring the backend container to listen on an

unencrypted port such as part 80 (HTTP), and configuring the listener on the load

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-vpc-create
https://aws.amazon.com/blogs/containers/appmesh-integrating-cross-vpc-ecs-cluster-for-enhanced-security/
https://aws.amazon.com/blogs/containers/appmesh-integrating-cross-vpc-ecs-cluster-for-enhanced-security/
https://d1.awsstatic.com/whitepapers/building-a-scalable-and-secure-multi-vpc-aws-network-infrastructure.pdf
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-secrets
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-secrets
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/enforcing-tls.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/enforcing-tls.html

Amazon Web Services Modernize .NET Applications with Linux Containers

 68

balancer to forward traffic to the unencrypted port used by your container. See TLS

Termination for Network Load Balancers for more information.

TLS termination at load balancer

End-to-end encryption

Terminating TLS connections at the Load Balancer and using HTTP on the backend

may be sufficient for your application. However, if you are developing an application that

needs to comply with strict external regulations, you may be required to secure all

network connections. You can configure the load balancer to either pass TLS traffic

through untouched (end TLS at container), or decrypt and re-encrypt for end-to-end

encryption.

Ending TLS at the container-level

This process involves adding an unencrypted listener to your load balancer, configuring

backend containers to listen on the secure port and end HTTPS connections, and

configuring the listener on the load balancer to forward traffic to the secure port used by

the backend containers.

Ending TLS at the container level

Decrypt and re-encrypt

This process involves adding a TLS listener to your load balancer, configuring backend

containers to listen on the secure port, ending HTTPS connections, using a self-signed

https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/
https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/

Amazon Web Services Modernize .NET Applications with Linux Containers

 69

certificate, and configuring the listener on the load balancer to forward traffic to the

secure port used by the backend containers.

Encrypted traffic diagram

Source code

The source code used in this guide is hosted on GitHub at aws-samples/dotnet-

modernization-music-store. The starting point for the Refactoring section of the

walkthrough is the net48-upgrade-completed branch and the target is the

framework-to-core-completed branch. The starting point for the Replatforming

section of the guide is the framework-to-core-completed branch, and the target is

the core-ecs-cdk-completed branch.

Conclusion

This guide describes the business and technical aspects of modernizing existing .NET

Framework applications to the latest, cross-platform version of .NET and Linux

containers. Anyone tasked with evaluating modernization of Windows applications can

use this guide to better understand how to approach and run a refactoring and

replatforming strategy to accelerate innovation, lower TCO, and increase developer

productivity for their organization.

Contributors

Contributors to this document include:

• Daniel Maldonado, Specialist Solutions Architect, Amazon Web Services

• Runeet Vashisht, Specialist Solutions Architect, Amazon Web Services

• Sathish Arumugam, Partner Solutions Architect, Amazon Web Services

• Sanjay Gulati, Sr. Partner Solutions Architect, Amazon Web Services

https://github.com/aws-samples/dotnet-modernization-music-store/tree/main
https://github.com/aws-samples/dotnet-modernization-music-store/tree/main
https://github.com/aws-samples/dotnet-modernization-music-store/tree/net48-upgrade-completed
https://github.com/aws-samples/dotnet-modernization-music-store/tree/framework-to-core-completed
https://github.com/aws-samples/dotnet-modernization-music-store/tree/core-ecs-cdk-completed

Amazon Web Services Modernize .NET Applications with Linux Containers

 70

• Vlad Hrybok, Sr. Partner Solutions Architect, Amazon Web Services

• Chris Splinter, Sr. Product Manager, Amazon Web Services

Document revisions

Date Description

August 5,

2021

First published

Notes

1 Developer Economics: State of the Developer Nation 19th Edition

2 Gartner Forecasts Strong Revenue Growth for Global Container Management

Software and Services Through 2024

3 Container Infrastructure Software Market Assessment: x86 Containers Forecast,

2018–2023

4 Guidebook: Containers and Kubernetes on AWS

https://www.slashdata.co/free-resources/developer-economics-state-of-the-developer-nation-19th-edition
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://www.idc.com/getdoc.jsp?containerId=US46185620
https://www.idc.com/getdoc.jsp?containerId=US46185620
https://nucleusresearch.com/research/single/guidebook-containers-and-kubernetes-on-aws/

	Overview
	Before you begin
	Understand your drivers
	Build your action plan
	Choosing container orchestration
	Tools and libraries

	Cost considerations
	Cloud computing
	AWS pricing model
	AWS container services
	Summary by service and operating system
	Self-managed containers on Amazon EC2
	Amazon EKS
	Amazon ECS
	AWS Fargate

	Operational costs (staffing)

	Architecture overview
	Walkthrough
	Refactoring from .NET Framework to .NET 5
	Prerequisites
	Assessment
	Refactoring
	Use Porting Assistant to initiate the refactor
	Add dependencies required for the refactor
	Set up configuration
	Migrate static content and layout
	Set up EntityFramework for MusicStoreEntities
	Remove EntityFramework functionality that is not supported in .NET Core
	Refactor the landing page functionality
	Refactor the store functionality
	Refactor the shopping cart functionality
	Create view components
	Configure identity and authentication
	Refactor registration and login
	Set up membership crypto
	Refactor checkout functionality
	Refactor sample data
	The Porting Assistant automatically changed EF to EntityFrameworkCore. You must undo those changes in Models/SampleData.cs for the project to build:
	Refactor the application to be stateless
	Build and run the project

	Replatforming from Windows VMs to Linux containers
	Prerequisites
	Containerize the application
	Create the infrastructure as code
	Create the CI/CD pipeline
	Create the infrastructure

	Logging and monitoring
	Security
	User to application authentication and authorization
	Application to database authentication and authorization
	Windows Authentication
	SQL Server Authentication

	Identity and access management for Amazon ECS
	Service-linked role
	Container Instance role
	Task execution role
	Task role

	Compliance validation for Amazon ECS
	Image scanning

	In-flight data protection using encryption
	Ending TLS at the load balancer
	End-to-end encryption
	Ending TLS at the container-level
	Decrypt and re-encrypt

	Source code
	Conclusion
	Contributors
	Document revisions

