
Modernizing the Amazon
Database Infrastructure

Migrating from Oracle to AWS

November 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided ñas isò

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Challenges with using Oracle Databases ... 1

Complex Database Engineering Required to Scale.. 1

Complex, Expensive, and Error-Prone Database Administration 2

Inefficient and Complex Hardware Provisioning ... 2

AWS Services .. 2

Purpose-Built Databases ... 2

Other AWS Services Used in Implementation .. 4

Picking the Right Database.. 4

Challenges During Migration ... 5

Diverse Application Architectures Inherited... 5

Distributed and Geographically Dispersed Teams .. 6

Interconnected and Highly Interdependent services ... 6

Gap in Skills.. 6

Competing Initiatives .. 7

People, Processes, and Tools .. 7

People ... 7

Processes and Mechanisms .. 8

Tools ... 11

Common Migration Patterns and Strategies ... 11

Migrating to Amazon DynamoDB ï FLASH .. 11

Migration to Amazon DynamoDB ï Items and Offers ... 18

Migrating to Aurora for PostgreSQL ï Amazon Fulfillment Technologies (AFT) 25

Migrating to Amazon Aurora ï Buyer Fraud Detection ... 32

Organization Wide Benefits ... 36

Post-Migration Operating Model ... 37

Distributed Ownership of Databases ... 37

Career Growth .. 37

Contributors ... 38

Document Revisions.. 38

Abstract

This whitepaper is intended to be read by existing and potential customers interested in

migrating their application databases from Oracle to open source databases hosted on

AWS. Specifically, the paper is for customers interested in migrating their Oracle

databases used by Online Transactional Processing (OLTP) applications to Amazon

DynamoDB, Amazon Aurora, or open source engines running on Amazon RDS.

The whitepaper draws upon the experience of Amazon engineers who recently migrated

thousands of Oracle application databases to Amazon Web Services (AWS) as part of a

large-scale refactoring program. The whitepaper begins with an overview of Amazonôs

scale and the complexity of its service oriented architecture and the challenges of

operating these services on on-premises Oracle databases. It covers the breadth of

database services offered by AWS and their benefits. The paper discusses existing

application designs, the challenges encountered when moving them to AWS, the

migration strategies employed, and the benefits of the migration. Finally, it shares

important lessons learned during the migration process and the post-migration

operating model.

The whitepaper is targeted at senior leaders at enterprises, IT decision makers,

software developers, database engineers, program managers, and solutions architects

who are executing or considering a similar transformation of their enterprise. The reader

is expected to have a basic understanding of application architectures, databases, and

AWS.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 1

Overview

The Amazon consumer facing business builds and operates thousands of services to

support its hundreds of millions of customers. These services enable customers to

accomplish a range of tasks such as browsing the Amazon website, placing orders,

submitting payment information, subscribing to services, and initiating returns. The

services also enable employees to perform activities such as optimizing inventory in

fulfillment centers, scheduling customer deliveries, reporting and managing expenses,

performing financial accounting, and analyzing data. Amazon engineers ensure that all

services operate at very high availability, especially those that impact the customer

experience. Customer facing services are expected to operate at over 99.90%

availability leaving them with a very small margin for downtime.

In the past, Amazon consumer businesses operated data centers and managed their

databases distinct from AWS. Prior to 2018, these services used Oracle databases for

their persistence layer which amounted to over 6,000 Oracle databases operating on

20,000 CPU cores. These databases were hosted in tens of data centers on-premises,

occupied thousands of square feet of space, and cost millions of dollars to maintain. In

2017, Amazon consumer facing entities embarked on a journey to migrate the

persistence layer of all these services from Oracle to open-source or license-free

alternatives on AWS. This migration was completed to leverage the cost effectiveness,

scale, and reliability of AWS and also to break free from the challenges of using Oracle

databases on-premises.

Challenges with using Oracle Databases

Amazon recently started facing a growing number of challenges with using Oracle

databases to scale its services. This section briefly describes three of the most critical

challenges faced.

Complex Database Engineering Required to Scale

Engineers spent hundreds of hours each year trying to scale the Oracle databases

horizontally to keep pace with the rapid growth in service throughputs and data

volumes. Engineers used database shards to handle the additional service throughputs

and manage the growing data volumes but in doing so increased the database

administration workloads. The design and implementation of these shards were

complex engineering exercises with new shards taking months to implement and test.

https://www.amazon.com/

Amazon Web Services Modernizing the Amazon Database Infrastructure

 2

Several services required hundreds of these shards to handle the required throughput

placing an exceptionally high administrative burden on database engineers and

database administrators.

Complex, Expensive , and Error -Prone Database

Administration

The second challenge was dealing with complicated, expensive, and error-prone

database administration. Database engineers spent hundreds of hours each month

monitoring database performance, upgrading software, performing database backups,

and patching the operating system (OS) for each instance and shard. This activity was

tedious, and it had the potential to cause downtime and trigger a cascade of failures.

Inefficient and Complex Hardware Provisioning

The third challenge was dealing with complex and inefficient hardware provisioning.

Each year database engineers and the infrastructure management team expended

substantial time forecasting demand and planning hardware capacity to meet it. After

forecasting, engineers spent hundreds of hours purchasing, installing, and testing the

hardware in multiple data centers around the world. Additionally, teams had to maintain

a sufficiently large pool of spare infrastructure to fix any hardware issues and perform

preventive maintenance. These challenges coupled with the high licensing costs were

just some of the compelling reasons for the Amazon consumer and digital business to

migrate the persistence layer of all its services to cloud native or open-source

databases hosted on AWS.

AWS Services

This section provides an overview of the key AWS database services used by Amazon

engineers to host the persistence layer of their services. It also briefly describes other

important AWS services used by Amazon engineers as part of this transition.

Purpose -Built Databases

Amazon expects all its services be globally available, operate with microsecond to

millisecond latency, handle millions of requests per second, operate with near zero

downtime, cost only what is needed, and be managed efficiently. AWS services meet

these requirements by offering a range of purpose-built databases thereby allowing

Amazon engineers to focus on innovating for their customers.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 3

Figure 1: Range of databases offered by AWS

Amazonôs engineers relied on three key database services to host the persistence layer

of their servicesðAmazon DynamoDB , Amazon Aurora , and Amazon RDS for

MySQL or PostgreSQL.

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit

millisecond performance at any scale. It is a fully managed, multi-region, multi-master

database with built-in security, backup and restore, and in-memory caching for internet-

scale applications. Amazon DynamoDB service can handle trillions of requests per day

and easily support over double-digit millions of requests per second across its entire

backplane. You can start small or large and DynamoDB will automatically scale capacity

up and down as needed.

Amazon Aurora

Amazon Aurora is a MySQL and PostgreSQL compatible relational database built for

the cloud that combines the performance and availability of traditional enterprise

databases with the simplicity and cost-effectiveness of open source databases. Amazon

Aurora is up to five times faster than standard MySQL databases and three times faster

than standard PostgreSQL databases. It provides the security, availability, and reliability

of commercial databases at 1/10th the cost.

https://aws.amazon.com/dynamodb
https://aws.amazon.com/aurora

Amazon Web Services Modernizing the Amazon Database Infrastructure

 4

Amazon Relational Database Service (Amazon RDS) for MySQL or
PostgreSQL

Amazon RDS is a database management service that makes it easier to set up,

operate, and scale a relational database in the cloud. It provides cost-efficient, resizable

capacity for an industry-standard relational database and manages common database

administration tasks.

Other AWS Services Used in Implementation

Amazon engineers also the following additional services in the implementation:

Amazon Simple Storage Service (Amazon S3): An object storage service that offers

industry-leading scalability, data availability, security, and performance.

AWS Database Migration Service: A service that helps customers migrate databases to

AWS quickly and securely. The source database remains fully operational during the

migration, minimizing downtime to applications that rely on the database. The AWS

Database Migration Service can migrate data to and from most widely used commercial

and open-source databases.

Amazon Elastic Compute Cloud (Amazon EC2): A web service that provides secure,

resizable compute capacity in the cloud designed to make web-scale cloud computing

easier.

Amazon EMR: A service that provides a managed Apache Hadoop framework that

makes it easy, fast, and cost-effective to process vast amounts of data across

dynamically scalable Amazon EC2 instances.

AWS Glue: A fully managed extract, transform, and load (ETL) service that makes it

easy for customers to prepare and load their data for analytics.

Picking the Right Database

Due to the wide range of purpose-built databases offered by AWS, each team could

pick the most appropriate database based on scale, complexity, and features of its

service. This approach was in stark contrast to the earlier use of Oracle databases

where the service was modified to use a monolithic database layer. The following

section describes the decision making process used to pick the right persistence layer

for a service.

https://aws.amazon.com/rds
https://aws.amazon.com/s3
https://aws.amazon.com/dms
https://aws.amazon.com/ec2
https://aws.amazon.com/emr
https://aws.amazon.com/glue

Amazon Web Services Modernizing the Amazon Database Infrastructure

 5

Amazon engineers ran preliminary analysis on their database query and usage patterns

and discovered that 70% of their workloads used single key-value operations that had

little use for the relational features that their Oracle databases were offering. The

access pattern for another 20% of the workloads was limited to a single table. Only 10%

of the workloads used features of relational databases by accessing data across

multiple keys. This discovery implied that most services were better served through a

NoSQL store such as Amazon DynamoDB. Amazon DynamoDB offers superior

performance at high throughputs and consumes less storage for sparse or semi-

structured data sets than relational databases. Given the benefits of using Amazon

DynamoDB, engineers running critical, high-throughput services decided to migrate

their persistence layer to it.

Business units running services that use relatively static schemas, perform complex

table lookups, and experience high service throughputs picked Amazon Aurora.

Amazon Aurora provides the security, availability, and reliability of commercial

databases at a fraction of their cost; and is fully managed by Amazon Relational

Database Service (Amazon RDS) which automates tasks like hardware provisioning,

database setup, patching, and backups.

Lastly, business units using operational data stores that had moderate read and write

traffic, and relied on the features of relational databases selected Amazon RDS for

PostgreSQL or MySQL for their persistence layer. Amazon RDS offers the choice of on-

demand pricing with no up-front or long-term commitments or Reserved Instance pricing

at lower ratesðflexibility that was not previously available with Oracle. Amazon RDS

freed up these business units to focus on operating their services at scale without

incurring excessive administrative overhead.

Challenges During Migration

The following section highlights key challenges faced by Amazon during the

transformation journey. It also discusses mechanisms employed to successfully

overcome these challenges and their outcomes.

Diverse Application Architectures Inherited

Since its inception, Amazon has been defined by a culture of decentralized ownership

that offered engineers the freedom to make design decisions that would deliver value to

their customers. This freedom proliferated a wide range of design patterns and

frameworks across teams. In parallel, the rapid expansion of the capabilities of AWS

Amazon Web Services Modernizing the Amazon Database Infrastructure

 6

allowed the more recent services to launch cloud-native designs. Another source of

diversity was infrastructure management and its impact on service architectures. Teams

needing granular control of their database hardware operated autonomous data centers

whereas others relied on shared resources. This created the possibility of teams

operating different versions of Oracle in a multitude of configurations. This diversity

defied standard, repeatable migration patterns from Oracle to AWS databases. The

architecture of each service had to be evaluated and the most appropriate approach to

migration had to be determined.

Distributed and Geographically Dispersed Teams

Amazon operates in a range of customer business segments in multiple geographies

which operate independently. Managing the migration program across this distributed

workforce posed challenges including effectively communicating the program vision and

mission, driving goal alignment with business and technical leaders across these

business, defining and setting acceptable yet ambitious goals for each business units,

coordinating across a dozen time zones, and dealing with conflicts.

Interconnected and Highly Interdependent services

As described in the overview section, Amazon operates a vast set of microservices that

are interconnected and use common databases. To illustrate this point, the item master

databases maintains information about items sold on the Amazon website including

item description, item quantity, and item price. This database, its replicas, and the

service were frequently accessed by dozens of other microservices and ETLs. A single

service losing access to the database could trigger a cascade of customer issues

leading to unforeseen consequences. Migrating interdependent and interconnected

services and their underlying databases required finely coordinated movement between

teams.

Gap in Skills

As Amazon engineers used Oracle databases, they developed expertise over the years

in operating, maintaining, and optimizing them. As most of these databases were

hosted on-premises, the engineers also gained experience in maintaining these data

centers and managing specialty hardware. Most service teams shared databases that

were managed by a shared pool of database engineers and the migration to AWS was

a paradigm shift for them as they did not have expertise in:

¶ Open-source database technologies such as PostgreSQL or MySQL

Amazon Web Services Modernizing the Amazon Database Infrastructure

 7

¶ AWS native databases such as Amazon DynamoDB or Amazon Aurora

¶ NoSQL data modeling, data access patterns, and how to use them effectively

¶ Designing and building services that are cloud native

Competing Initiatives

Lastly, each business unit was grappling with competing initiatives. In certain situations,

competing priorities created resource conflicts that required intervention from the senior

leadership.

People, Processes, and Tools

The previous section discussed a few of the many challenges facing Amazon during the

migration journey. To circumvent these challenges, Amazonôs leadership decided to

invest significant time and resources to build a team, establish processes and

mechanisms, and develop tooling to accelerate the intended outcomes. The following

three sections discuss how three leversðpeople, processes, and toolsðwere engaged

to drive the project forward.

People

One of the pillars of success was founding the Center of Excellence (CoE). The CoE

was staffed with experienced enterprise program managers who led enterprise wide

initiatives at Amazon in the past. The leadership team ensured that these program

managers had a combination of technical knowledge and program management

capabilities. This unique combination of skills ensured that the program managers could

converse fluently with software developers and database engineers about the benefits

of application architectures and also engage with business leaders across geographies

and business units to resolve conflicts and ensure alignment.

Key objectives

The key objectives of the CoE were:

¶ Define the overall program vision, mission and goals

¶ Define the goals for business units and service teams

¶ Define critical milestones for each service team and tracking progress against

them

Amazon Web Services Modernizing the Amazon Database Infrastructure

 8

¶ Ensure business units receive resources and support from their leadership

¶ Manage exceptions and project delays

¶ Uncover technical and business risks, exposing them, and identifying mitigation

strategies

¶ Monitor the health of the program and preparing progress reports for senior

leadership

¶ Engage with the information security audit teams at Amazon to ensure that all

AWS services meet data protection requirements

¶ Publish configurations for each AWS service that meets these data protection

requirements; and perform audits of all deployments

¶ Schedule training for software developers and database engineers by leveraging

SMEs from a variety of subject areas

¶ Identify patterns in issues across teams and engage with AWS product teams to

find solutions

¶ Consolidate product feature requests across teams and engage with AWS

product teams to prioritize them

Processes and Mechanisms

This section elaborates on the processes and mechanisms established by the CoE and

their impact on the outcome of the project.

Goal Setting and Leadership Review

The program managers in the CoE realized early in the project that the migration would

require attention from senior leaders. To enable them to track progress, manage delays,

and mitigate risks the program managers established a monthly project review cadence.

They used the review meeting to highlight systemic risks, recurrent issues, and

progress. This visibility provided the leadership an opportunity to take remedial action

when necessary. The CoE also ensured that all business segments prioritized the

migration.

Establishing a Hub-and-Spoke Model

Due to the large number of services, teams, and geographical locations that were part

of the project, the CoE realized that it would be arduous and cumbersome to individually

Amazon Web Services Modernizing the Amazon Database Infrastructure

 9

track the status of each migration. Therefore, they established a hub-and-spoke model

where service teams nominated a team member, typically a technical program

manager, who acted as the spoke and the CoE program managers were the hub.

The spokes were responsible for:

¶ Preparing project plans for their teams

¶ Submitting these project plans to the CoE and receiving validation

¶ Tracking progress against this plan and reporting it

¶ Reporting major delays or issues

¶ Seeking assistance from the CoE to address recurrent issues

The hubs were responsible for:

¶ Validating the project plans of individual teams for accuracy and completeness

¶ Preparing and maintaining a unified database/service ramp down plan

¶ Maintaining open communications with each spoke to uncover recurrent issues

¶ Assisting service teams that require help

¶ Preparing project reports for leadership and escalate systemic risks

Training and Guidance

A key objective for the CoE was to ensure that Amazon engineers were comfortable

moving their services to AWS. To achieve this, it was essential to train these teams on

open source and AWS native databases, and cloud-based design patterns. The CoE

achieved this by

¶ Scheduling training sessions on open-source and AWS native databases

¶ Live streaming training sessions for employees situated in different time zones

¶ Scheduling design review sessions and workshops between subject matter

experts and service teams facing roadblocks

¶ Scheduling tech talks with AWS product managers on future roadmaps

¶ Connecting teams encountering similar challenges through informal channels to

encourage them to share knowledge

Amazon Web Services Modernizing the Amazon Database Infrastructure

 10

¶ Documenting frequently encountered challenges and solutions in a central

repository

Establishing Product Feedback Cycles with AWS

In the spirit of customer obsession, AWS constantly sought feedback from Amazon

engineers. This feedback mechanism was instrumental in helping AWS rapidly test and

release features to support internet scale workloads. This feedback mechanism also

enabled AWS to launch product features essential for its other customers operating

similar sized workloads.

Establishing Positive Reinforcement

In large scale enterprise projects, engineers and teams can get overwhelmed by the

volume and complexity of work. To ensure that teams make regular progress towards

goals, it is important to promote and reinforce positive behaviors, recognize teams, and

celebrate their progress. The CoE established multiple mechanisms to achieve this,

including the following initiatives:

¶ Broadcasting the success of teams that met program milestones and goals

¶ Opening communication channels between software developers, databases

engineers, and program managers to share ideas and learnings

¶ Ensuring that the leaders on all teams were recognized for making progress

Risk Management and Issue Tracking

Enterprise scale projects involving large numbers of teams across geographies are

bound to face issues and setbacks. The CoE discovered that managing these setbacks

effectively was crucial to project success. The following key mechanisms were used by

the CoE to manage issues and setbacks:

¶ Diving deep into issues faced by teams to identify root cause of issues

¶ Support these teams with the right resources and expertise by leverage AWS

support

¶ Ensure setbacks receive leadership visibility for remedial action

¶ Documenting these patterns in issues and their solutions.

¶ Disseminating these learnings across the company

Amazon Web Services Modernizing the Amazon Database Infrastructure

 11

Tools

In the spirit of frugality, the CoE wanted to achieve more with minimal resources. Due to

the complexity of the project management process, the CoE decided to invest in tools

that would automate the project management and tracking. Tooling was built to

¶ Track active Oracle instances hosted in data centers

¶ Track the activity of these instances and understand data flow using SQL activity

¶ Tag databases to teams and individuals that own them; and synchronize this

information with the HR database

¶ Track and manage database migration milestones using the tool in a single portal

¶ Prepare project status reports by aggregating the status of every service team

To meet these requirements, the CoE developed a web application tool that connects to

each active Oracle instance, gathers additional information about it including objects

and operations performed, and then displays this information to users through a web

browser. The tool also allowed users to communicate project status, prepare status

reports and manage exception approvals. It enhanced transparency, improved

accountability, and automated the tedious process of tracking databases and their

status, marking a huge leap in productivity for the CoE.

Common Migration Patterns and Strategies

The following section describes the migration journey of four systems used in Amazon

from Oracle to AWS. This section also provides insight on design challenges and

migration strategies to enable readers to perform a similar migration.

Migrating to Amazon DynamoDB ï FLASH

Overview of FLASH

Amazon operates a set of critical services called the Financial Ledger and Accounting

Systems Hub (FLASH). FLASH services enable various business entities to post

financial transactions to Amazonôs sub-ledger. It supports four categories of

transactions compliant with Generally Accepted Accounting Principles (GAAP)ð

account receivables, account payables, remittances, and payments. FLASH aggregates

these sub-ledger transactions and populates them to Amazonôs general ledger for

financial reporting, auditing, and analytics. Until 2018, FLASH used 90 Oracle

Amazon Web Services Modernizing the Amazon Database Infrastructure

 12

databases, 183 instances, and stored over 120 terabytes of data. FLASH used the

largest available Oracle-certified single instance hardware.

Figure 2: Data flow diagram of FLASH

Challenges with Operating FLASH Services on Oracle

As evident, FLASH is a high-throughput, complex, and critical system at Amazon. It

experienced many challenges while operating on Oracle databases.

Poor Latency

The first challenge was poor service latency despite having performed extensive

database optimization. The service latency was degrading every year due to the rapid

growth in service throughputs.

Escalating Database Costs

The second challenge related to yearly escalating database hosting costs. Each year,

the database hosting costs were growing by at least 10%, and the FLASH team was

unable to circumvent the excessive database administration overhead associated with

this growth.

Difficult to Achieve Scale

The third challenge was negotiating the complex interdependencies between FLASH

services when attempting to scale the system. As FLASH used a monolithic Oracle

database service, the interdependencies between the various components of the

FLASH system were preventing efficient scaling of the system.

These challenges encouraged the FLASH team to migrate the persistence layer of its

services to AWS and rearchitect the APIs to use more efficient patterns.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 13

Reasons to Choose Amazon DynamoDB as the Persistence Layer

Among the range of database services offered by AWS, the FLASH engineers picked

Amazon DynamoDB. The key reasons that the FLASH team picked DynamoDB follow.

Easier t o Scale

As DynamoDB can scale to handle trillions of requests per day and can sustain millions

of requests per second, it was the ideal choice to handle the high throughput of FLASH.

DynamoDB was also ideal due to its near infinite scaling capability.

Easier Change Management

Relational databases also make it complicated to change tables and schema definitions

whereas NoSQL databases, such as DynamoDB, allow for increased flexibility. One

item has some shared values, but otherwise every item can have different attributes. In

addition, you can add attributes to items any time with no downtime like altering a table

in a relational database.

Speed of Transactions

Lastly, single key value pair lookups are faster and more efficient on Amazon

DynamoDB when compared to a relational database for a variety of reasons such as

lower memory usage and automatic partition management.

Easier Database Management

With DynamoDB, there are no servers to provision, patch, or manage, and no software

to install, maintain, or operate. The FLASH team could create full backups of hundreds

of terabytes of data instantly with no performance impact to their tables, and recover to

any point in time in the preceding 35 days with no downtime.

Challenges and Design Consi derations During Refactoring

FLASH engineers realized that designing a robust architecture for FLASH on

DynamoDB was essential to achieve scalable performance. The FLASH team faced the

following challenges during the re-design of its services on DynamoDB: providing an

authoritative booking time for transactions, indexing transactions on a time ordered

queue, ensuring accessibility of data to downstream services, and migrating historical

data with no loss.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 14

Time Stamping Transactions and Indexed Ordering

A key requirement for all upstream services requesting transactions from FLASH is a

time stamp. These timestamps known as booking dates, help them keep a record of the

day and time of transaction. In the previous setup, a single Oracle server committed the

transaction and assigned a timestamp. In the distributed environment, the time-

stamping and the transaction commit were separated into two different systems. A set

of EC2 instances were used to time-stamp incoming transactions. The clock time across

these instances were synchronized using NTP consensus algorithms without the use of

expensive hardware. After a timestamp was assigned, these transactions were logged

in a S3 bucket for durable backup. DynamoDB Streams along with Amazon Kinesis

Client Libraries were used to ensure exactly-once, ordered indexing of records.

DynamoDB Streams is a powerful service that can combine with other AWS services to

solve the problem of ordered delivery and serialization. When enabled, DynamoDB

Streams captures a time-ordered sequence of item-level modifications in a DynamoDB

table and durably stores the information for up to 24 hours. Applications can access a

series of stream records, which contain an item change, from a DynamoDB stream in

near real time. DynamoDB Streams writes a stream record whenever one of the

following events occurs:

¶ A new item is added to the table: The stream captures an image of the entire

item, including all of its attributes.

¶ An item is updated: The stream captures the before and after image of any

attributes that were modified in the item.

¶ An item is deleted from the table: The stream captures an image of the entire

item before it was deleted.

After a transaction appears on the DynamoDB stream, it is routed to a Kinesis stream

and indexed. These indexes are written back to the records on DynamoDB. The FLASH

team used the fact that DynamoDB allows the creation of one or more secondary

indexes on a table. A secondary index lets applications query the data in the table using

an alternate key, in addition to queries against the primary key. DynamoDB does not

require that applications use indexes, but it provides them the flexibility when querying

data, especially when the data has many to many relationships. After creating a

secondary index on a table, FLASH can read data from the index in much the same way

as it does from the table. At the time of the implementation, each table in DynamoDB

had a default limit of five global secondary indexes and five local secondary indexes per

table.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 15

Providing Data to Downstream Services

A critical requirement of all accounting systems in general, and FLASH in particular, is

to enable financial analytics. Previously on Oracle, the same Oracle instances served

as compute clusters for analytics thus increasing the workloads on these nodes. FLASH

switched the model to an event-sourcing model where an S3 backup of commit logs

was created continuously. The team also eliminated the use of unstructured and

disparate tables for analytics and data processing as they increased the requirement for

processor capacity. The previous system exhibited non-determinism. The team created

a single source of truth and converged all the data models to the core event log/journal,

to ensure deterministic data processing. Amazon S3 was used as an audit trail of all

changes to the DynamoDB journal table. Amazon Simple Notification Service (Amazon

SNS) was used to publish these commit logs in batches for downstream consumption.

The artifact creation was coordinated using Amazon Simple Queue Service (SQS). The

entire system is SOX (Sarbanes-Oxley Act) compliant (SOX is also known as the

Corporate and Auditing Accountability, Responsibility, and Transparency Act). These

data batches were delivered to the general ledger for financial reporting and analysis.

Figure 3: Streaming aggregation pipeline

Archiving Historical Data

Archiving historical data across multiple Oracle databases was an important activity to

perform before decommissioning them. FLASH implemented a pay-as-you go system to

query historical data and maintaining a óhotô database, that is queried rarely, was

determined to be too expensive. As a result, FLASH used a common data model and

columnar format for ease of access and migrated historical data to Amazon S3 buckets

that are accessible by Amazon Athena. Amazon Athena was ideal as it allows for a

Amazon Web Services Modernizing the Amazon Database Infrastructure

 16

query-as-you-go model which works well as this data is queried on average once every

two years. Also, because Amazon Athena is serverless, there is no requirement to

manage infrastructure.

Figure 4: Subledger convergence and archival

Performing Data Backfill

In one particular instance of service migration, the FLASH team needed to migrate

legacy data to the new persistence layer and had to pick the most effective strategy to

achieve this. The team used AWS Database Migration Service (AWS DMS) to ensure

reliable and secure data transfer. AWS DMS was simple to use as there was no need to

install any drivers or applications, and it did not require changes to the source database

in most cases. AWS DMS also supported an automated migration, easily converted

data from Oracle to non-Oracle database engines, and offered a one-click setup for

partition comparison and audits. It is also SOX compliant from source to target, provided

the team granular insights during the process, and cost a few hundred dollars for the

entire migration. To verify the accuracy of historical data transfer, AWS DMS was used

to perform a row-by-row validation.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 17

Figure 5: Lift and shift using AWS DMS and RDS

To ensure compliance with SOX, FLASH published recommendations to ensure its

engineers selected the right access control mechanisms and encryption parameters.

The team also evaluated the compliance and reliability of each AWS service and

prepared pre-configured AWS CloudFormation templates to each service team. The

team also established strict performance criteria to ensure high performance.

Performance metrics that are monitored include average latency, P99 latency,

read/write failures, free memory and CPU utilization. Before putting each service into

production, each service was tested for peak throughput expectancies.

Benefits

Rearchitecting the FLASH system to work on AWS database services significantly

improved its performance. Critical services that moved to DynamoDB saw a 40%

reduction in average latency despite handling twice the traffic. Although FLASH

provisioned more compute and larger storage, the database operating costs have

remained flat or reduced despite processing higher throughputs. This is possible due to

the automatic scaling capabilities of AWS services. Additionally, the migration has

reduced administrative overhead by over 70% enabling engineers to focus on

Amazon Web Services Modernizing the Amazon Database Infrastructure

 18

optimizing the application layer and worry less about the persistence layers. Automatic

scaling has also allowed the FLASH team to reduce costs by dynamically responding to

traffic spikes. Overall, the shift to AWS has liberated engineers to work more efficiently

and concentrate on innovating.

Migration to Amazon DynamoDB ï Items and Offers

Overview of Items and Offers

Amazon offers hundreds of millions of unique products for sale to its customers. To

manage the lifecycle of these items and their associated offers, Amazon operates a set

of services collectively called Items and Offers. The Items and Offers system manages

three components associated with an item ï item information, offer information, and

relationship information. Item information constitutes product title, product description

and product details; offer information constitutes item price and seller information; and

the relationships are the different variants of an item such as color, size, and quantity.

Figure 6: Overview of the Items and Offers service

A key service within the Items and Offers system is the Item Master Service which

updates the item information by ingesting updates from millions of sellers and uses

multiple workflows to process the three components ï items, offers, and relationships.

Historically, Item Master Service used Oracle databases exclusively for its persistence

layer.

