
Modernizing the Amazon
Database Infrastructure

Migrating from Oracle to AWS

November 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Challenges with using Oracle Databases ... 1

Complex Database Engineering Required to Scale.. 1

Complex, Expensive, and Error-Prone Database Administration 2

Inefficient and Complex Hardware Provisioning ... 2

AWS Services .. 2

Purpose-Built Databases ... 2

Other AWS Services Used in Implementation .. 4

Picking the Right Database.. 4

Challenges During Migration ... 5

Diverse Application Architectures Inherited... 5

Distributed and Geographically Dispersed Teams .. 6

Interconnected and Highly Interdependent services ... 6

Gap in Skills.. 6

Competing Initiatives .. 7

People, Processes, and Tools .. 7

People ... 7

Processes and Mechanisms .. 8

Tools ... 11

Common Migration Patterns and Strategies ... 11

Migrating to Amazon DynamoDB – FLASH .. 11

Migration to Amazon DynamoDB – Items and Offers ... 18

Migrating to Aurora for PostgreSQL – Amazon Fulfillment Technologies (AFT) 25

Migrating to Amazon Aurora – Buyer Fraud Detection ... 32

Organization Wide Benefits ... 36

Post-Migration Operating Model ... 37

Distributed Ownership of Databases ... 37

Career Growth .. 37

Contributors ... 38

Document Revisions.. 38

Abstract

This whitepaper is intended to be read by existing and potential customers interested in

migrating their application databases from Oracle to open source databases hosted on

AWS. Specifically, the paper is for customers interested in migrating their Oracle

databases used by Online Transactional Processing (OLTP) applications to Amazon

DynamoDB, Amazon Aurora, or open source engines running on Amazon RDS.

The whitepaper draws upon the experience of Amazon engineers who recently migrated

thousands of Oracle application databases to Amazon Web Services (AWS) as part of a

large-scale refactoring program. The whitepaper begins with an overview of Amazon’s

scale and the complexity of its service oriented architecture and the challenges of

operating these services on on-premises Oracle databases. It covers the breadth of

database services offered by AWS and their benefits. The paper discusses existing

application designs, the challenges encountered when moving them to AWS, the

migration strategies employed, and the benefits of the migration. Finally, it shares

important lessons learned during the migration process and the post-migration

operating model.

The whitepaper is targeted at senior leaders at enterprises, IT decision makers,

software developers, database engineers, program managers, and solutions architects

who are executing or considering a similar transformation of their enterprise. The reader

is expected to have a basic understanding of application architectures, databases, and

AWS.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 1

Overview

The Amazon consumer facing business builds and operates thousands of services to

support its hundreds of millions of customers. These services enable customers to

accomplish a range of tasks such as browsing the Amazon website, placing orders,

submitting payment information, subscribing to services, and initiating returns. The

services also enable employees to perform activities such as optimizing inventory in

fulfillment centers, scheduling customer deliveries, reporting and managing expenses,

performing financial accounting, and analyzing data. Amazon engineers ensure that all

services operate at very high availability, especially those that impact the customer

experience. Customer facing services are expected to operate at over 99.90%

availability leaving them with a very small margin for downtime.

In the past, Amazon consumer businesses operated data centers and managed their

databases distinct from AWS. Prior to 2018, these services used Oracle databases for

their persistence layer which amounted to over 6,000 Oracle databases operating on

20,000 CPU cores. These databases were hosted in tens of data centers on-premises,

occupied thousands of square feet of space, and cost millions of dollars to maintain. In

2017, Amazon consumer facing entities embarked on a journey to migrate the

persistence layer of all these services from Oracle to open-source or license-free

alternatives on AWS. This migration was completed to leverage the cost effectiveness,

scale, and reliability of AWS and also to break free from the challenges of using Oracle

databases on-premises.

Challenges with using Oracle Databases

Amazon recently started facing a growing number of challenges with using Oracle

databases to scale its services. This section briefly describes three of the most critical

challenges faced.

Complex Database Engineering Required to Scale

Engineers spent hundreds of hours each year trying to scale the Oracle databases

horizontally to keep pace with the rapid growth in service throughputs and data

volumes. Engineers used database shards to handle the additional service throughputs

and manage the growing data volumes but in doing so increased the database

administration workloads. The design and implementation of these shards were

complex engineering exercises with new shards taking months to implement and test.

https://www.amazon.com/

Amazon Web Services Modernizing the Amazon Database Infrastructure

 2

Several services required hundreds of these shards to handle the required throughput

placing an exceptionally high administrative burden on database engineers and

database administrators.

Complex, Expensive, and Error-Prone Database

Administration

The second challenge was dealing with complicated, expensive, and error-prone

database administration. Database engineers spent hundreds of hours each month

monitoring database performance, upgrading software, performing database backups,

and patching the operating system (OS) for each instance and shard. This activity was

tedious, and it had the potential to cause downtime and trigger a cascade of failures.

Inefficient and Complex Hardware Provisioning

The third challenge was dealing with complex and inefficient hardware provisioning.

Each year database engineers and the infrastructure management team expended

substantial time forecasting demand and planning hardware capacity to meet it. After

forecasting, engineers spent hundreds of hours purchasing, installing, and testing the

hardware in multiple data centers around the world. Additionally, teams had to maintain

a sufficiently large pool of spare infrastructure to fix any hardware issues and perform

preventive maintenance. These challenges coupled with the high licensing costs were

just some of the compelling reasons for the Amazon consumer and digital business to

migrate the persistence layer of all its services to cloud native or open-source

databases hosted on AWS.

AWS Services

This section provides an overview of the key AWS database services used by Amazon

engineers to host the persistence layer of their services. It also briefly describes other

important AWS services used by Amazon engineers as part of this transition.

Purpose-Built Databases

Amazon expects all its services be globally available, operate with microsecond to

millisecond latency, handle millions of requests per second, operate with near zero

downtime, cost only what is needed, and be managed efficiently. AWS services meet

these requirements by offering a range of purpose-built databases thereby allowing

Amazon engineers to focus on innovating for their customers.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 3

Figure 1: Range of databases offered by AWS

Amazon’s engineers relied on three key database services to host the persistence layer

of their services—Amazon DynamoDB, Amazon Aurora, and Amazon RDS for

MySQL or PostgreSQL.

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit

millisecond performance at any scale. It is a fully managed, multi-region, multi-master

database with built-in security, backup and restore, and in-memory caching for internet-

scale applications. Amazon DynamoDB service can handle trillions of requests per day

and easily support over double-digit millions of requests per second across its entire

backplane. You can start small or large and DynamoDB will automatically scale capacity

up and down as needed.

Amazon Aurora

Amazon Aurora is a MySQL and PostgreSQL compatible relational database built for

the cloud that combines the performance and availability of traditional enterprise

databases with the simplicity and cost-effectiveness of open source databases. Amazon

Aurora is up to five times faster than standard MySQL databases and three times faster

than standard PostgreSQL databases. It provides the security, availability, and reliability

of commercial databases at 1/10th the cost.

https://aws.amazon.com/dynamodb
https://aws.amazon.com/aurora

Amazon Web Services Modernizing the Amazon Database Infrastructure

 4

Amazon Relational Database Service (Amazon RDS) for MySQL or
PostgreSQL

Amazon RDS is a database management service that makes it easier to set up,

operate, and scale a relational database in the cloud. It provides cost-efficient, resizable

capacity for an industry-standard relational database and manages common database

administration tasks.

Other AWS Services Used in Implementation

Amazon engineers also the following additional services in the implementation:

Amazon Simple Storage Service (Amazon S3): An object storage service that offers

industry-leading scalability, data availability, security, and performance.

AWS Database Migration Service: A service that helps customers migrate databases to

AWS quickly and securely. The source database remains fully operational during the

migration, minimizing downtime to applications that rely on the database. The AWS

Database Migration Service can migrate data to and from most widely used commercial

and open-source databases.

Amazon Elastic Compute Cloud (Amazon EC2): A web service that provides secure,

resizable compute capacity in the cloud designed to make web-scale cloud computing

easier.

Amazon EMR: A service that provides a managed Apache Hadoop framework that

makes it easy, fast, and cost-effective to process vast amounts of data across

dynamically scalable Amazon EC2 instances.

AWS Glue: A fully managed extract, transform, and load (ETL) service that makes it

easy for customers to prepare and load their data for analytics.

Picking the Right Database

Due to the wide range of purpose-built databases offered by AWS, each team could

pick the most appropriate database based on scale, complexity, and features of its

service. This approach was in stark contrast to the earlier use of Oracle databases

where the service was modified to use a monolithic database layer. The following

section describes the decision making process used to pick the right persistence layer

for a service.

https://aws.amazon.com/rds
https://aws.amazon.com/s3
https://aws.amazon.com/dms
https://aws.amazon.com/ec2
https://aws.amazon.com/emr
https://aws.amazon.com/glue

Amazon Web Services Modernizing the Amazon Database Infrastructure

 5

Amazon engineers ran preliminary analysis on their database query and usage patterns

and discovered that 70% of their workloads used single key-value operations that had

little use for the relational features that their Oracle databases were offering. The

access pattern for another 20% of the workloads was limited to a single table. Only 10%

of the workloads used features of relational databases by accessing data across

multiple keys. This discovery implied that most services were better served through a

NoSQL store such as Amazon DynamoDB. Amazon DynamoDB offers superior

performance at high throughputs and consumes less storage for sparse or semi-

structured data sets than relational databases. Given the benefits of using Amazon

DynamoDB, engineers running critical, high-throughput services decided to migrate

their persistence layer to it.

Business units running services that use relatively static schemas, perform complex

table lookups, and experience high service throughputs picked Amazon Aurora.

Amazon Aurora provides the security, availability, and reliability of commercial

databases at a fraction of their cost; and is fully managed by Amazon Relational

Database Service (Amazon RDS) which automates tasks like hardware provisioning,

database setup, patching, and backups.

Lastly, business units using operational data stores that had moderate read and write

traffic, and relied on the features of relational databases selected Amazon RDS for

PostgreSQL or MySQL for their persistence layer. Amazon RDS offers the choice of on-

demand pricing with no up-front or long-term commitments or Reserved Instance pricing

at lower rates—flexibility that was not previously available with Oracle. Amazon RDS

freed up these business units to focus on operating their services at scale without

incurring excessive administrative overhead.

Challenges During Migration

The following section highlights key challenges faced by Amazon during the

transformation journey. It also discusses mechanisms employed to successfully

overcome these challenges and their outcomes.

Diverse Application Architectures Inherited

Since its inception, Amazon has been defined by a culture of decentralized ownership

that offered engineers the freedom to make design decisions that would deliver value to

their customers. This freedom proliferated a wide range of design patterns and

frameworks across teams. In parallel, the rapid expansion of the capabilities of AWS

Amazon Web Services Modernizing the Amazon Database Infrastructure

 6

allowed the more recent services to launch cloud-native designs. Another source of

diversity was infrastructure management and its impact on service architectures. Teams

needing granular control of their database hardware operated autonomous data centers

whereas others relied on shared resources. This created the possibility of teams

operating different versions of Oracle in a multitude of configurations. This diversity

defied standard, repeatable migration patterns from Oracle to AWS databases. The

architecture of each service had to be evaluated and the most appropriate approach to

migration had to be determined.

Distributed and Geographically Dispersed Teams

Amazon operates in a range of customer business segments in multiple geographies

which operate independently. Managing the migration program across this distributed

workforce posed challenges including effectively communicating the program vision and

mission, driving goal alignment with business and technical leaders across these

business, defining and setting acceptable yet ambitious goals for each business units,

coordinating across a dozen time zones, and dealing with conflicts.

Interconnected and Highly Interdependent services

As described in the overview section, Amazon operates a vast set of microservices that

are interconnected and use common databases. To illustrate this point, the item master

databases maintains information about items sold on the Amazon website including

item description, item quantity, and item price. This database, its replicas, and the

service were frequently accessed by dozens of other microservices and ETLs. A single

service losing access to the database could trigger a cascade of customer issues

leading to unforeseen consequences. Migrating interdependent and interconnected

services and their underlying databases required finely coordinated movement between

teams.

Gap in Skills

As Amazon engineers used Oracle databases, they developed expertise over the years

in operating, maintaining, and optimizing them. As most of these databases were

hosted on-premises, the engineers also gained experience in maintaining these data

centers and managing specialty hardware. Most service teams shared databases that

were managed by a shared pool of database engineers and the migration to AWS was

a paradigm shift for them as they did not have expertise in:

• Open-source database technologies such as PostgreSQL or MySQL

Amazon Web Services Modernizing the Amazon Database Infrastructure

 7

• AWS native databases such as Amazon DynamoDB or Amazon Aurora

• NoSQL data modeling, data access patterns, and how to use them effectively

• Designing and building services that are cloud native

Competing Initiatives

Lastly, each business unit was grappling with competing initiatives. In certain situations,

competing priorities created resource conflicts that required intervention from the senior

leadership.

People, Processes, and Tools

The previous section discussed a few of the many challenges facing Amazon during the

migration journey. To circumvent these challenges, Amazon’s leadership decided to

invest significant time and resources to build a team, establish processes and

mechanisms, and develop tooling to accelerate the intended outcomes. The following

three sections discuss how three levers—people, processes, and tools—were engaged

to drive the project forward.

People

One of the pillars of success was founding the Center of Excellence (CoE). The CoE

was staffed with experienced enterprise program managers who led enterprise wide

initiatives at Amazon in the past. The leadership team ensured that these program

managers had a combination of technical knowledge and program management

capabilities. This unique combination of skills ensured that the program managers could

converse fluently with software developers and database engineers about the benefits

of application architectures and also engage with business leaders across geographies

and business units to resolve conflicts and ensure alignment.

Key objectives

The key objectives of the CoE were:

• Define the overall program vision, mission and goals

• Define the goals for business units and service teams

• Define critical milestones for each service team and tracking progress against

them

Amazon Web Services Modernizing the Amazon Database Infrastructure

 8

• Ensure business units receive resources and support from their leadership

• Manage exceptions and project delays

• Uncover technical and business risks, exposing them, and identifying mitigation

strategies

• Monitor the health of the program and preparing progress reports for senior

leadership

• Engage with the information security audit teams at Amazon to ensure that all

AWS services meet data protection requirements

• Publish configurations for each AWS service that meets these data protection

requirements; and perform audits of all deployments

• Schedule training for software developers and database engineers by leveraging

SMEs from a variety of subject areas

• Identify patterns in issues across teams and engage with AWS product teams to

find solutions

• Consolidate product feature requests across teams and engage with AWS

product teams to prioritize them

Processes and Mechanisms

This section elaborates on the processes and mechanisms established by the CoE and

their impact on the outcome of the project.

Goal Setting and Leadership Review

The program managers in the CoE realized early in the project that the migration would

require attention from senior leaders. To enable them to track progress, manage delays,

and mitigate risks the program managers established a monthly project review cadence.

They used the review meeting to highlight systemic risks, recurrent issues, and

progress. This visibility provided the leadership an opportunity to take remedial action

when necessary. The CoE also ensured that all business segments prioritized the

migration.

Establishing a Hub-and-Spoke Model

Due to the large number of services, teams, and geographical locations that were part

of the project, the CoE realized that it would be arduous and cumbersome to individually

Amazon Web Services Modernizing the Amazon Database Infrastructure

 9

track the status of each migration. Therefore, they established a hub-and-spoke model

where service teams nominated a team member, typically a technical program

manager, who acted as the spoke and the CoE program managers were the hub.

The spokes were responsible for:

• Preparing project plans for their teams

• Submitting these project plans to the CoE and receiving validation

• Tracking progress against this plan and reporting it

• Reporting major delays or issues

• Seeking assistance from the CoE to address recurrent issues

The hubs were responsible for:

• Validating the project plans of individual teams for accuracy and completeness

• Preparing and maintaining a unified database/service ramp down plan

• Maintaining open communications with each spoke to uncover recurrent issues

• Assisting service teams that require help

• Preparing project reports for leadership and escalate systemic risks

Training and Guidance

A key objective for the CoE was to ensure that Amazon engineers were comfortable

moving their services to AWS. To achieve this, it was essential to train these teams on

open source and AWS native databases, and cloud-based design patterns. The CoE

achieved this by

• Scheduling training sessions on open-source and AWS native databases

• Live streaming training sessions for employees situated in different time zones

• Scheduling design review sessions and workshops between subject matter

experts and service teams facing roadblocks

• Scheduling tech talks with AWS product managers on future roadmaps

• Connecting teams encountering similar challenges through informal channels to

encourage them to share knowledge

Amazon Web Services Modernizing the Amazon Database Infrastructure

 10

• Documenting frequently encountered challenges and solutions in a central

repository

Establishing Product Feedback Cycles with AWS

In the spirit of customer obsession, AWS constantly sought feedback from Amazon

engineers. This feedback mechanism was instrumental in helping AWS rapidly test and

release features to support internet scale workloads. This feedback mechanism also

enabled AWS to launch product features essential for its other customers operating

similar sized workloads.

Establishing Positive Reinforcement

In large scale enterprise projects, engineers and teams can get overwhelmed by the

volume and complexity of work. To ensure that teams make regular progress towards

goals, it is important to promote and reinforce positive behaviors, recognize teams, and

celebrate their progress. The CoE established multiple mechanisms to achieve this,

including the following initiatives:

• Broadcasting the success of teams that met program milestones and goals

• Opening communication channels between software developers, databases

engineers, and program managers to share ideas and learnings

• Ensuring that the leaders on all teams were recognized for making progress

Risk Management and Issue Tracking

Enterprise scale projects involving large numbers of teams across geographies are

bound to face issues and setbacks. The CoE discovered that managing these setbacks

effectively was crucial to project success. The following key mechanisms were used by

the CoE to manage issues and setbacks:

• Diving deep into issues faced by teams to identify root cause of issues

• Support these teams with the right resources and expertise by leverage AWS

support

• Ensure setbacks receive leadership visibility for remedial action

• Documenting these patterns in issues and their solutions.

• Disseminating these learnings across the company

Amazon Web Services Modernizing the Amazon Database Infrastructure

 11

Tools

In the spirit of frugality, the CoE wanted to achieve more with minimal resources. Due to

the complexity of the project management process, the CoE decided to invest in tools

that would automate the project management and tracking. Tooling was built to

• Track active Oracle instances hosted in data centers

• Track the activity of these instances and understand data flow using SQL activity

• Tag databases to teams and individuals that own them; and synchronize this

information with the HR database

• Track and manage database migration milestones using the tool in a single portal

• Prepare project status reports by aggregating the status of every service team

To meet these requirements, the CoE developed a web application tool that connects to

each active Oracle instance, gathers additional information about it including objects

and operations performed, and then displays this information to users through a web

browser. The tool also allowed users to communicate project status, prepare status

reports and manage exception approvals. It enhanced transparency, improved

accountability, and automated the tedious process of tracking databases and their

status, marking a huge leap in productivity for the CoE.

Common Migration Patterns and Strategies

The following section describes the migration journey of four systems used in Amazon

from Oracle to AWS. This section also provides insight on design challenges and

migration strategies to enable readers to perform a similar migration.

Migrating to Amazon DynamoDB – FLASH

Overview of FLASH

Amazon operates a set of critical services called the Financial Ledger and Accounting

Systems Hub (FLASH). FLASH services enable various business entities to post

financial transactions to Amazon’s sub-ledger. It supports four categories of

transactions compliant with Generally Accepted Accounting Principles (GAAP)—

account receivables, account payables, remittances, and payments. FLASH aggregates

these sub-ledger transactions and populates them to Amazon’s general ledger for

financial reporting, auditing, and analytics. Until 2018, FLASH used 90 Oracle

Amazon Web Services Modernizing the Amazon Database Infrastructure

 12

databases, 183 instances, and stored over 120 terabytes of data. FLASH used the

largest available Oracle-certified single instance hardware.

Figure 2: Data flow diagram of FLASH

Challenges with Operating FLASH Services on Oracle

As evident, FLASH is a high-throughput, complex, and critical system at Amazon. It

experienced many challenges while operating on Oracle databases.

Poor Latency

The first challenge was poor service latency despite having performed extensive

database optimization. The service latency was degrading every year due to the rapid

growth in service throughputs.

Escalating Database Costs

The second challenge related to yearly escalating database hosting costs. Each year,

the database hosting costs were growing by at least 10%, and the FLASH team was

unable to circumvent the excessive database administration overhead associated with

this growth.

Difficult to Achieve Scale

The third challenge was negotiating the complex interdependencies between FLASH

services when attempting to scale the system. As FLASH used a monolithic Oracle

database service, the interdependencies between the various components of the

FLASH system were preventing efficient scaling of the system.

These challenges encouraged the FLASH team to migrate the persistence layer of its

services to AWS and rearchitect the APIs to use more efficient patterns.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 13

Reasons to Choose Amazon DynamoDB as the Persistence Layer

Among the range of database services offered by AWS, the FLASH engineers picked

Amazon DynamoDB. The key reasons that the FLASH team picked DynamoDB follow.

Easier to Scale

As DynamoDB can scale to handle trillions of requests per day and can sustain millions

of requests per second, it was the ideal choice to handle the high throughput of FLASH.

DynamoDB was also ideal due to its near infinite scaling capability.

Easier Change Management

Relational databases also make it complicated to change tables and schema definitions

whereas NoSQL databases, such as DynamoDB, allow for increased flexibility. One

item has some shared values, but otherwise every item can have different attributes. In

addition, you can add attributes to items any time with no downtime like altering a table

in a relational database.

Speed of Transactions

Lastly, single key value pair lookups are faster and more efficient on Amazon

DynamoDB when compared to a relational database for a variety of reasons such as

lower memory usage and automatic partition management.

Easier Database Management

With DynamoDB, there are no servers to provision, patch, or manage, and no software

to install, maintain, or operate. The FLASH team could create full backups of hundreds

of terabytes of data instantly with no performance impact to their tables, and recover to

any point in time in the preceding 35 days with no downtime.

Challenges and Design Considerations During Refactoring

FLASH engineers realized that designing a robust architecture for FLASH on

DynamoDB was essential to achieve scalable performance. The FLASH team faced the

following challenges during the re-design of its services on DynamoDB: providing an

authoritative booking time for transactions, indexing transactions on a time ordered

queue, ensuring accessibility of data to downstream services, and migrating historical

data with no loss.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 14

Time Stamping Transactions and Indexed Ordering

A key requirement for all upstream services requesting transactions from FLASH is a

time stamp. These timestamps known as booking dates, help them keep a record of the

day and time of transaction. In the previous setup, a single Oracle server committed the

transaction and assigned a timestamp. In the distributed environment, the time-

stamping and the transaction commit were separated into two different systems. A set

of EC2 instances were used to time-stamp incoming transactions. The clock time across

these instances were synchronized using NTP consensus algorithms without the use of

expensive hardware. After a timestamp was assigned, these transactions were logged

in a S3 bucket for durable backup. DynamoDB Streams along with Amazon Kinesis

Client Libraries were used to ensure exactly-once, ordered indexing of records.

DynamoDB Streams is a powerful service that can combine with other AWS services to

solve the problem of ordered delivery and serialization. When enabled, DynamoDB

Streams captures a time-ordered sequence of item-level modifications in a DynamoDB

table and durably stores the information for up to 24 hours. Applications can access a

series of stream records, which contain an item change, from a DynamoDB stream in

near real time. DynamoDB Streams writes a stream record whenever one of the

following events occurs:

• A new item is added to the table: The stream captures an image of the entire

item, including all of its attributes.

• An item is updated: The stream captures the before and after image of any

attributes that were modified in the item.

• An item is deleted from the table: The stream captures an image of the entire

item before it was deleted.

After a transaction appears on the DynamoDB stream, it is routed to a Kinesis stream

and indexed. These indexes are written back to the records on DynamoDB. The FLASH

team used the fact that DynamoDB allows the creation of one or more secondary

indexes on a table. A secondary index lets applications query the data in the table using

an alternate key, in addition to queries against the primary key. DynamoDB does not

require that applications use indexes, but it provides them the flexibility when querying

data, especially when the data has many to many relationships. After creating a

secondary index on a table, FLASH can read data from the index in much the same way

as it does from the table. At the time of the implementation, each table in DynamoDB

had a default limit of five global secondary indexes and five local secondary indexes per

table.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 15

Providing Data to Downstream Services

A critical requirement of all accounting systems in general, and FLASH in particular, is

to enable financial analytics. Previously on Oracle, the same Oracle instances served

as compute clusters for analytics thus increasing the workloads on these nodes. FLASH

switched the model to an event-sourcing model where an S3 backup of commit logs

was created continuously. The team also eliminated the use of unstructured and

disparate tables for analytics and data processing as they increased the requirement for

processor capacity. The previous system exhibited non-determinism. The team created

a single source of truth and converged all the data models to the core event log/journal,

to ensure deterministic data processing. Amazon S3 was used as an audit trail of all

changes to the DynamoDB journal table. Amazon Simple Notification Service (Amazon

SNS) was used to publish these commit logs in batches for downstream consumption.

The artifact creation was coordinated using Amazon Simple Queue Service (SQS). The

entire system is SOX (Sarbanes-Oxley Act) compliant (SOX is also known as the

Corporate and Auditing Accountability, Responsibility, and Transparency Act). These

data batches were delivered to the general ledger for financial reporting and analysis.

Figure 3: Streaming aggregation pipeline

Archiving Historical Data

Archiving historical data across multiple Oracle databases was an important activity to

perform before decommissioning them. FLASH implemented a pay-as-you go system to

query historical data and maintaining a ‘hot’ database, that is queried rarely, was

determined to be too expensive. As a result, FLASH used a common data model and

columnar format for ease of access and migrated historical data to Amazon S3 buckets

that are accessible by Amazon Athena. Amazon Athena was ideal as it allows for a

Amazon Web Services Modernizing the Amazon Database Infrastructure

 16

query-as-you-go model which works well as this data is queried on average once every

two years. Also, because Amazon Athena is serverless, there is no requirement to

manage infrastructure.

Figure 4: Subledger convergence and archival

Performing Data Backfill

In one particular instance of service migration, the FLASH team needed to migrate

legacy data to the new persistence layer and had to pick the most effective strategy to

achieve this. The team used AWS Database Migration Service (AWS DMS) to ensure

reliable and secure data transfer. AWS DMS was simple to use as there was no need to

install any drivers or applications, and it did not require changes to the source database

in most cases. AWS DMS also supported an automated migration, easily converted

data from Oracle to non-Oracle database engines, and offered a one-click setup for

partition comparison and audits. It is also SOX compliant from source to target, provided

the team granular insights during the process, and cost a few hundred dollars for the

entire migration. To verify the accuracy of historical data transfer, AWS DMS was used

to perform a row-by-row validation.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 17

Figure 5: Lift and shift using AWS DMS and RDS

To ensure compliance with SOX, FLASH published recommendations to ensure its

engineers selected the right access control mechanisms and encryption parameters.

The team also evaluated the compliance and reliability of each AWS service and

prepared pre-configured AWS CloudFormation templates to each service team. The

team also established strict performance criteria to ensure high performance.

Performance metrics that are monitored include average latency, P99 latency,

read/write failures, free memory and CPU utilization. Before putting each service into

production, each service was tested for peak throughput expectancies.

Benefits

Rearchitecting the FLASH system to work on AWS database services significantly

improved its performance. Critical services that moved to DynamoDB saw a 40%

reduction in average latency despite handling twice the traffic. Although FLASH

provisioned more compute and larger storage, the database operating costs have

remained flat or reduced despite processing higher throughputs. This is possible due to

the automatic scaling capabilities of AWS services. Additionally, the migration has

reduced administrative overhead by over 70% enabling engineers to focus on

Amazon Web Services Modernizing the Amazon Database Infrastructure

 18

optimizing the application layer and worry less about the persistence layers. Automatic

scaling has also allowed the FLASH team to reduce costs by dynamically responding to

traffic spikes. Overall, the shift to AWS has liberated engineers to work more efficiently

and concentrate on innovating.

Migration to Amazon DynamoDB – Items and Offers

Overview of Items and Offers

Amazon offers hundreds of millions of unique products for sale to its customers. To

manage the lifecycle of these items and their associated offers, Amazon operates a set

of services collectively called Items and Offers. The Items and Offers system manages

three components associated with an item – item information, offer information, and

relationship information. Item information constitutes product title, product description

and product details; offer information constitutes item price and seller information; and

the relationships are the different variants of an item such as color, size, and quantity.

Figure 6: Overview of the Items and Offers service

A key service within the Items and Offers system is the Item Master Service which

updates the item information by ingesting updates from millions of sellers and uses

multiple workflows to process the three components – items, offers, and relationships.

Historically, Item Master Service used Oracle databases exclusively for its persistence

layer.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 19

Challenges Faced when Operating Item Master Service on Oracle
Databases

The Item Master Service team was facing many challenges when operating on Oracle

databases.

Challenging to Administer Partitions

For efficiency, the Item Master data was partitioned at the service level using hashing,

and partition maps were used to route requests to the correct partition. These

partitioned databases were becoming difficult to scale and manage. To keep pace with

the rapidly growing service throughputs, the team had to spend over twenty weeks each

year creating new partitions, updating the hash maps, and testing for scale.

Difficult to Achieve High Availability

To optimize space utilization by the databases, all tables were partitioned and stored

across 24 databases. This configuration exacerbated availability issues as failure of a

single database had the potential to create service failure leading to product information

becoming inaccessible or outdated for customers and sellers. The fear of suboptimal

customer experience failure forced teams to perform frequent maintenance activities

which was becoming an unmanageable overhead for the database administrators.

Reaching Scaling Limits

Due to the preceding challenges of operating the Items and Offers system on Oracle

databases, the team was not able to support the growing service throughputs.

Figure 7: Scale of the Item Master Service

Amazon Web Services Modernizing the Amazon Database Infrastructure

 20

Reasons for Choosing Amazon DynamoDB

In 2018, the Item Master Service unit decided to redesign the Item Master Service and

migrate its persistence layer to AWS. Among the range of databases offered by AWS,

Amazon DynamoDB was the best suited persistence layer for IMS. It offered an ideal

combination of features suited for easily operating a highly available and large-scale

distributed system like IMS.

Automated Database Management

One of the biggest benefits of DynamoDB was the fact that the complexity of running a

massively scalable, distributed database was managed by the service itself, allowing

software developers to focus on building and innovating the service rather than

managing infrastructure. DynamoDB also manages the sophisticated distributed

computing concepts allowing the developer to focus solely on how to best use the APIs

in the AWS SDK.

Automatic Scaling

DynamoDB delivers high throughput through horizontal scaling where data and

workloads are automatically partitioned over a number of shards by the service. The

service grows the partitions for you as the data volume and throughput increase. If the

automatic scaling parameters are set correctly and the schema is designed well, the

performance of DynamoDB remains consistent despite traffic growth.

Cost Effective and Secure

Other than being easy to scale, DynamoDB is cost effective and offers a choice of

reserved and on-demand capacity to manage throughput. DynamoDB also offers

support for end-to-end encryption and fine-grained access controls via AWS Identity

and Access Management.

The most distinctive features of DynamoDB for the Item Master Service team were the

low administrative overhead, high performance, and enterprise grade security and

availability.

After selecting DynamoDB as the new persistence layer, the Item Master Service team

started redesigning the data model to work on DynamoDB. To illustrate the redesign,

Figure 8 displays one of the index tables on Oracle that stored SKU to ASIN mappings.

As shown, it was a simple table containing two key columns along with state and audit

information. When modeling the table on DynamoDB, composite keys were used. A

composite primary key comprises two attributes—partition key and sort key. DynamoDB

uses the partition key value as input to an internal hash function; the output from the

https://aws.amazon.com/iam
https://aws.amazon.com/iam

Amazon Web Services Modernizing the Amazon Database Infrastructure

 21

hash function determines the partition (physical storage internal to DynamoDB) in which

the item is stored. All items with the same partition key values are stored together and

sorted by sort key value. Figure 9 shows the equivalent table represented in

DynamoDB. All other Item Master Service schemas were redesigned using similar

principles.

Figure 8: Table structure of Item Master Service on Oracle

Figure 9: Table structure of Item Master Service on DynamoDB

Execution

After building the new data model, the next challenge was performing the migration.

Item Master Service is a critical service that processes seller updates and therefore

must be fully available and operate at scale throughout the migration. The team had two

months to backfill historical data of approximately 100 TB before the next scaling cycle.

The Item Master Service team devised a two-phased approach to achieve the

migration—live migration and backfill.

Live Migration

The goal of the live migration phase was to transition the master store from Oracle to

DynamoDB without any failures and actively migrate all the data being processed by the

application. As is illustrated in Figure 10, the item Master Service team used three

stages to achieve the goal—copy mode, compatibility mode, and move mode.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 22

In the copy mode, the application was modified to write simultaneously to both Oracle

and DynamoDB stores and perform reads exclusively from Oracle. The purpose of this

mode was to validate the correctness, scale, and performance of DynamoDB. After

validating the scale, accuracy, and performance data was purged from the DynamoDB

store to start the live migration.

Figure 10: Copy mode

The next mode was compatibility mode which acted as the staging to prepare the

application for switching the master store. At this stage, the application was aware of

both data stores and could determine the master store. Compatibility mode allowed the

Item Master Service team to pause the migration should issues arise.

Figure 11: Compatibility mode

In the final mode, called the move mode, DynamoDB was designated as the master

store and reads were served by reading both the stores and combining the results. After

the move mode, the Item Master Serviceteam began the backfill phase of migration that

would make DynamoDB the single master database and deprecate Oracle.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 23

Figure 12: Move mode

Backfill

During the backfill phase, AWS Database Migration Service (AWS DMS) was used to

backfill records that were not migrated by the application write logic. The DMS service

was easy to set up and its execution involved creating and configuring replication

instances, tasks, and endpoints. Once AWS DMS was configured correctly, the next

step was to scale it up to achieve the desired throughput for migration. Oracle source

tables were partitioned across 24 databases and the destination store on DynamoDB

was elastically scalable. The Item Master Service business unit scaled the migration by

running multiple AWS DMS replication instances per table and each instance had

parallel loads configured. The business unit achieved a throughput of 100,000 to 150,00

TPS and migrated 600 billion records in about two months by running 70 DMS

instances in parallel. To handle AWS DMS replication errors, the Item Master Service

business unit automated the process by creating a library using the AWS DMS SDK. As

with any large-scale migration or change, there is a potential for issues. Therefore, the

team designed and tested fallback mechanisms for rollback and recovery.

The final step was to fine tune configurations on AWS DMS and Amazon DynamoDB to

maximize the throughput and minimize cost.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 24

Figure 13: Backfill process of IMS

Benefits

The overall migration to DynamoDB delivered all the benefits the business unit hoped

for and more. Previously, in preparation for peak-load events such as Prime Day, the

engineering team had to fine-tune and test database configurations which took on

average two weeks. DynamoDB has reduced this time to just a few hours. DynamoDB

also supports a simplified architecture using global secondary indexes to improve

reliability and availability for faster query processing and record retrieval. Additionally,

Amazon simplified the persistence layer for the application by eliminating the need to

maintain partition information and related logic to route data. After the migration, the

availability of Item Master Service has improved, ensuring consistent performance and

significantly reduced the operational workload for the team. After the migration, the

team used the point-in-time recovery feature to simplify backup and restore operations.

The team received these benefits at a lower overall cost than previously, due to

dynamic automatic scaling capacity feature. The team also had the flexibility to adjust

the provisioned read/write capacity based on actual usage instead of having a fixed

capacity based on peak loads. This allows the service to grow with little effort and

without extensive engineering. The reliable, consistent performance of DynamoDB and

virtually no limits on scalability means Amazon customers can enjoy the experience

they have come to expect as Amazon grows.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 25

Migrating to Aurora for PostgreSQL – Amazon

Fulfillment Technologies (AFT)

Overview of AFT

Amazon and its partners deliver hundreds of millions of orders each year to customers

and fulfillment centers (FC) are the backbone of this delivery network. Amazon

manages more than 150 FCs in North America and hundreds more around the world.

The largest fulfillment centers occupy over a million square feet, employ thousands of

associates, and process over a million orders each day. The Amazon Fulfillment

Technologies (AFT) business unit builds and maintains the dozens of services that

facilitate all fulfillment activities. A set of services called the Inventory Management

Services facilitate inventory movement and are used by all other major services to

perform critical functions within the FC. These functions include receiving inbound

shipments, dispatching outbound shipments, picking items, sorting and packaging items

and managing inventory state throughout. All of these functions are critical to customer

fulfillment and are expected to operate at near perfect availability. Since the inception of

Amazon.com, all of these services used Oracle databases as their persistence layer.

Prior to 2018, over 300 Oracle databases were used to support these operations with

the Oracle databases hosting terabytes of data on each database and supporting

dozens of critical services.

Challenges Faced Operating AFT on Oracle Databases

The AFT team faced many challenges operating its services on Oracle databases in the

past.

Difficult to Scale

All the services were becoming difficult to scale and were facing availability issues

during peak throughputs due to both hardware and software limitations.

Complex Hardware Management

Hardware management was also becoming a growing concern due to the custom

hardware requirements required from these Oracle clusters. As part of the migration

effort, each AFT service team had the freedom to pick the most appropriate database

service from the range of database services that AWS offers. The Inventory

Management Services team decided to migrate to Amazon Aurora for PostgreSQL.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 26

Figure 14: Databases services used by AFT

Reasons for choosing Amazon Aurora for PostgreSQL

The Inventory Management Services supports six key tasks at Amazon’s fulfillment

centers—receive, stow, pick, sort, pack, and ship. The team picked Amazon Aurora for

three primary reasons.

Static Schemas and Relational Lookups

Each of these tasks is supported by services that use static schemas and lookups that

use multiple keys across tables containing information such as customer addresses,

product codes, product descriptions, item location and seller information. Since inserts

and updates to these databases have to adhere to referential integrity constraints, the

team decided to migrate the persistence layer to relational database services on AWS.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 27

Ease of Scaling and Feature Parity

As Inventory Management Services deal with very high throughputs, Amazon Aurora for

PostgreSQL was an optimal choice. It delivers high performance and availability with up

to fifteen low-latency read replicas. PostgreSQL also has close feature parity with

Oracle.

Automated Administration

Amazon Aurora is managed by the Amazon RDS service that automates administrative

tasks including OS patching and software upgrades. This frees up time for the

engineers and allows them to focus on schema optimization and service performance

improvement.

Figure 15: Fulfillment center activities supported by the Inventory Management Services

Before starting the migration from Oracle to Amazon Aurora, the team decided to

replatform the services rather than rearchitect them. Replatforming accelerated the

migration by preserving the existing architecture while minimizing service disruptions. It

also allowed for over 200 external services their dependencies easily.

Migration Strategy and Challenges

The migration to Aurora was performed in three phases—preparation phase, migration

phase, and post-migration phase.

Preparation Phase

In the preparation phase, the goal was to arrive at a robust, scalable architecture for the

services. This involved making several operational and design decisions. Following

recommended best practices, separate production and non-production accounts on

AWS were defined to ensure secure and reliable deployment. One early architectural

decision made was to extensively use read replicas for horizontal scaling of read

workloads. Aurora offers fifteen near real-time read replicas while a master node

manages all writes. The ability to scale read workloads provides a substantial tool to

Amazon Web Services Modernizing the Amazon Database Infrastructure

 28

horizontally scale. As security is of upmost priority, the decision was to encrypt all data

at rest and in-transit which Aurora provides. Aurora uses SSL (AES-256) to secure

connections between the database instances and the application layer. Additionally, all

data is encrypted on disk using keys and key management through the AWS Key

Management Service (AWS KMS). Encryption at rest via KMS also ensures that all data

on Aurora instances are encrypted, as are its automated backups, snapshots, and

replicas in the same cluster. The team also researched differences between Oracle and

PostgreSQL in the preparation phase.

During preparation, an important difference to note is how Oracle and PostgreSQL treat

time zones differently. Oracle uses the server’s time zone when logging transactions,

whereas PostgreSQL depends on the client’s time zone. Proper preparation to analyze

and configure table column types was performed prior to data migration. Another

difference between Oracle and PostgreSQL 9.6 is different partitioning strategies and

their implementations. In versions of PostgreSQL earlier than 10.x, table partitioning

was only possible via inheritance. To partition tables using table inheritance, users have

to create a parent table and then create child tables for each partition by explicitly

defining the partition rules and constraints. In PostgreSQL 10.x, declarative partitioning

was launched which is easier to implement and supports RANGE and LIST partition

types. Another difference to consider is the default collation methods used by Oracle

and PostgreSQL. The collation specifies the sort order and character classification

behavior of data per-column, or even per-operation. This difference between the

collation methods could change the sort ordering of character columns. The team

planned for additional code testing to ensure that the different collation methods yielded

the same results. After identifying a few important differences, the team started

performing dependency analysis to inventory the artefacts such as tables, views and

sequences, cross-database materialized views and ETL feeds by querying historical

view, periodically sampling active views and monitoring logon information.

Migration Phase

After the preparation phase, the team established three criteria for a successful

migration –automation to the maximum extent possible, no operational impact on the

fulfillment centers, and superior key performance metrics of all services same or better

than the baseline on Oracle. The first goal of the migration phase was achieved by

automating a range of activities including the input of database information of the fleet-

wide metadata, creating Reserved Instances, creating databases, onboarding ETL

feeds, creating scheduled jobs, integrating Amazon CloudWatch metrics, enabling

database monitoring, creating application schemas, and initiating AWS DMS tasks for

migration. The automation of the data migration was achieved through full load and

https://aws.amazon.com/kms
https://aws.amazon.com/kms

Amazon Web Services Modernizing the Amazon Database Infrastructure

 29

ongoing replication by leveraging available continuous data validation and replication

monitoring with alarms. AWS Schema Conversion Tool (AWS SCT) was used to

convert the schemas from Oracle to PostgreSQL. Subsequently DMS performed a full

load and ongoing Change Data Capture (CDC) replication to move real-time

transactional data. During the data transfer phase, the team initiated Amazon Aurora

instances based on current throughput and compute requirements. During the migration

of each fulfillment center, services were moved over to the new Amazon Aurora

instances during a short downtime where the read and write services were pointed to

these new instances.

There were many learnings during the migration phases. First, AWS DMS expects all

source tables to have a primary or a unique key for data validation. Additionally, a

primary key is mandatory while migrating Large Objects (LOBs). LOBs are a set of

datatypes designed to hold large amounts of data. DMS uses two methods to balance

performance and convenience when migrating LOBs—Limited LOB mode and Full LOB

mode. Limited LOB mode migrates all LOB values up to a user-specified size limit. In

the Full LOB mode, DMS migrates all LOB data in your tables regardless of size. Full

LOB mode provides the convenience of moving all LOB data in your tables but the

process can have a significant impact on performance of the migration. The business

unit chose the appropriate LOB migration mode depending the LOB size in the source

tables with a strong preference for limited LOB mode.

Figure 16: Steps in the migration of schemas using AWS SCT and AWS DMS

Amazon Web Services Modernizing the Amazon Database Infrastructure

 30

Figure 17: Code snippet to identify max lob size in a table

Figure 18: Workflow of the migration of Inventory Management Services

Ongoing migrations or replications of high-throughput transaction systems using AWS

DMS can, at times, consume large amounts of CPU and memory. The R4 instance

types can be a good choice for these situations. Also, when performing migration of this

type, a large instance size and increasing the maxFileSize value can significantly

increase throughput. The maxFileSize parameter specifies the maximum size (in KB)

of any CSV file used to transfer data to PostgreSQL. The team observed that setting

maxFileSize to 1,048,576KB (1.1 GB) significantly improved migration speed. Since

version 2.x, AWS DMS has been able to increase this parameter to 30 GB. The R4

instance comes with four times the memory of the comparable C4 instance (c4.4xlarge).

Thus, it completes some of the smaller tables faster and lets the bigger table use the

extra memory available to complete the migration.

Post-Migration Phase

After the move to the Aurora databases was complete, the business unit began the next

phase of the project—post migration. Monitoring the health of the database becomes

Amazon Web Services Modernizing the Amazon Database Infrastructure

 31

paramount in this phase and AWS offers many tools to help. One important activity that

must occur in PostgreSQL is vacuuming. In PostgreSQL, whenever a row is updated, a

new version of the row, known as a tuple, is created and inserted into the table. The old

version of the row, referred to as a dead tuple, is not physically removed but is marked

as invisible for future transactions. Because every row can have multiple different

versions, PostgreSQL stores visibility information inside tuples to help determine

whether it is visible to a transaction or query based on its isolation level. If a dead tuple

is not visible to any transaction, the vacuum process can remove it by marking its space

as available for future reuse. Dead tuples not only decrease space utilization, but they

can also lead to database performance issues. When a table has a large number of

dead tuples, its size grows much more than it actually needs. A maximum of two billion

available Transaction IDs are available and if not cleaned up before this limit, a lengthy

single-threaded autovacuum process must run which impacts database availability.

Aurora PostgreSQL sets autovacuum settings according to instance size by default, but

one size does not always fit all different workloads, so it is important to ensure

autovacuum is working properly as expected. AWS provides the CloudWatch metric,

MaximumUsedTransactionIDs, to monitor and alarm if the number of used

Transaction IDs exceeds set thresholds.

Another parameter to consider which is highly dependent on workload is fillfactor.

The fillfactor for a table is set as a percentage between 10 and 100 with 100

(complete packing) being the default value. When a smaller fillfactor is specified,

INSERT operations pack table pages only to the indicated percentage; the remaining

space on each page is reserved for updating rows on that page. This gives UPDATE a

chance to place the updated copy of a row on the same page as the original, which is

more efficient than placing it on a different page. For a table whose entries are never

updated, complete packing is the best choice, but in heavily updated tables, a smaller

fillfactor is appropriate.

Monitoring other aspects of the database health is very important. The AFT business

unit relied on monitoring and alerting via the Amazon Aurora Amazon CloudWatch

metrics, events, and alarms provided to ensure the health of the DB cluster. Amazon

CloudWatch provides metrics for the database instance as well as the database itself,

such as CPU utilization, database connections, disk queue depth, replica lag, failover,

and dozens of others to provide a complete monitoring and alerting solution which can

be accessed via Amazon RDS in the AWS Management Console, API, or AWS

Command Line Interface (AWS CLI).

One additional tool to note is Amazon RDS Performance Insights which is a database

performance tuning and monitoring feature that helps you quickly assess the load on

Amazon Web Services Modernizing the Amazon Database Infrastructure

 32

your database, and determine when and where to act. It is a tool available in the AWS

Management Console that allows experts and non-experts to detect performance

problems with an easy-to-understand dashboard that visualizes database load.

Benefits

The elastic capacity of preconfigured database hosts on AWS eliminated much of the

administrative overhead required to scale the system. The transformation has been

significant. On Oracle, a simple change such as scaling from a medium to a large

database instance required planning for provisioning hardware, building and configuring

primary and standby databases, and managing failover during transitions, which could

take a full day for each instance. The business unit also used specialized hardware that

had to be ordered months in advance. After migrating to Amazon Aurora, provisioning

additional capacity is achieved through a few simple mouse clicks or API calls reducing

the scaling effort by as much as 95%.

High availability is another key benefit of Amazon Aurora as reprovisioning happens

automatically in just minutes, ensuring data is always fully protected. With the

performance of Amazon Aurora, the business unit is no longer limited by the

input/output operations the database instance can handle. Migrating Inventory

Management Services to Amazon Aurora resulted in a range of benefits—the most

important of which is dependable fulfillment for customers.

Migrating to Amazon Aurora – Buyer Fraud Detection

Overview

Amazon retail websites operate a set of services called Transaction Risk Management

Services (TRMS) to protect brands, sellers, and consumers from transaction fraud by

actively detecting and preventing it. One set of services called Buyer Fraud Services

protect Amazon from customers who engage in fraudulent activities including claiming

false refunds for damaged goods, purchasing goods via unauthorized payment

mechanisms such as stolen credit cards, or falsely claiming theft of received orders.

These buyers damage the reputation of brands, impact the ability of sellers to be

profitable and raise the transaction costs for Amazon retail consumers. The Buyer

Fraud Service applies machine learning algorithms over real-time and historical data to

detect and prevent fraudulent activity. It also relies on information provided by adjacent

services like the payments and orders to gather real-time information and block

potentially fraudulent buyers. The service operates in four regions globally. The two

largest regions—US and the EU—run three copies of the service to distribute load.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 33

Each copy of the service relied on an Oracle instance that was six terabytes in size. The

busiest service instances handle up to 225 transactions per second (TPS) peak traffic

and are expected to handle a regional peak throughput that are significantly higher for

events like Prime Day.

Challenges of Operating on Oracle

The Buyer Fraud Service team faced three challenges operating its services using on-

premises Oracle databases.

Complex Error-Prone Database Administration

The Buyer Fraud Service business unit shared an Oracle cluster of more than one

hundred databases with other fraud detection services at Amazon. This shared pool of

databases required three database engineers to perform database administration

activities including OS patching, maintenance, and upgrades. Each of these activities

had the potential to cause database downtime. Moving to Amazon Aurora abstracted

the management of the physical hardware away from engineers and minimized the

responsibility for OS patching, maintenance, and upgrades with minimal intervention

and impact.

Poor Latency

The next challenge was that the Buyer Fraud Service frequently experienced latency

issues at peak loads on the provisioned hardware. To maintain performance at scale,

Oracle databases were horizontally partitioned. As application code required new

database shards to handle the additional throughput, each shard added incremental

workload on the infrastructure business unit in terms of backups, patching, and

database performance monitoring. The design and implementation of shards was a

complex, multi-year engineering exercise. The elastic capacity of preconfigured

database hosts on Amazon Aurora eliminated some of the administrative overhead to

scale. Amazon Aurora has abstracted the hardware away from the engineers, allowing

them to focus on optimizing configurations.

Complication Hardware Provisioning

In 2017 the TRMS business unit estimated that the database engineers on each service

business unit spent hundreds of hours forecasting and planning database capacity.

After capacity planning, the hardware business unit coordinated suppliers, vendors, and

Amazon finance business units to purchase the hardware and prepare for installation

and testing. After migrating to AWS, provisioning of additional capacity is achieved

through a few simple mouse clicks.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 34

Application Design and Migration Strategy

In January 2018, the Buyer Fraud Service business unit decided to migrate its

databases from Oracle to Amazon Aurora. The migration exercise took six months and

was completed in July 2018. Since Buyer Fraud Service is a critical service, required

relational functionality, and is expected to operate at a high availability, Amazon Aurora

was the logical choice for a database. The team chose to re-factor the service to

accelerate the migration and minimize service disruption. The migration was

accomplished in two phases—preparation and execution.

Preparation Phase

In the first phase, Amazon Aurora clusters were launched to replicate the existing

Oracle databases. Subsequently, the service business unit built a shim layer to perform

simultaneous read/write operations to both database engines. The shim layer

interpreted service calls and performed simultaneous read/write operations on both

Oracle and Amazon Aurora. Once the shim layer was successfully tested to correctly

read and write to both databases, the business unit migrated the initial data, and used

AWS Database Migration Service (AWS DMS) to establish active replication from

Oracle to Aurora. The business unit then activated the shim layer to take over reading

and writing to both databases. Once the migration was complete, AWS DMS was used

to perform a row-by-row validation and a sum count to ensure that the replication was

accurate.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 35

Figure19: Dual write mode of the Buyer Fraud Service using SHIM layer

Execution Phase

In the second phase, Buyer Fraud Service began load testing the Amazon Aurora

databases to evaluate read/write latencies and simulate peak throughput events such

as Prime Day. Results from these load tests indicated that Amazon Aurora could handle

twice the throughput of the legacy infrastructure. Multiple other criteria including

average latency, P99 latency, read/write success and failure rates, change data

comparison, and count of operations were also evaluated to ensure accurate

replication. Standard database utilization metrics such as CPU usage and free memory

were also closely monitored and minor tuning was performed to optimize performance.

Finally, the Oracle databases were decommissioned after testing was complete.

Benefits

The benefits of migrating Buyer Fraud Service from Oracle to Aurora include

performance, scalability, availability, hardware management, cloud based automation,

and cost. AWS manages patching, maintenance, backups, and upgrades allowing

Amazon Web Services Modernizing the Amazon Database Infrastructure

 36

engineers to improve application performance. When operating on Oracle, the team

needed three database engineers to keep Oracle updated, and perform activities like

database repartitioning and index tuning. After migrating to Aurora, the database

administration overhead had dropped by more than half.

The migration has also lowered the cost of delivering the same performance as before.

Load tests of the new service at 900 transactions per second (TPS) has shown that

Amazon Aurora can scale with minimal CPU usage. In similar loads, the historical

Oracle database faced performance issues and led to the deterioration of service

throughput. The improved performance of the service on Amazon Aurora has allowed

the business unit to handle high throughput events like Prime Day with ease.

In terms of scaling, Buyer Fraud service was able to scale its largest workloads, support

strict latency requirements with no impact to snapshot backups. Scaling up or down only

takes a few minutes and services experience seamless horizontal scaling.

In terms of availability, the business units saw faster rollovers and most hardware

failures were mitigated in minutes with the service going up and running. Hardware

management has gotten exponentially easier with new hardware being commissioned in

minutes instead of months. This also makes it better for DBA resources to manage.

Lastly, no more licenses and open source support translates to lower costs.

Organization Wide Benefits

Amazon saw multiple benefits from this migration including improved service

performance, lower operating costs, reduced database administration overhead and

ease of scaling. Services that migrated to Amazon DynamoDB, saw significant

performance improvements such as a 40% drop in 99th percentile latency. The

shutdown of data centers eliminated hardware, freed up real estate, eliminated power

and cooling costs and reduced physical security threats. Amazon RDS has allowed

engineers to spend time on improving service performance by abstracting away the

management of physical hardware and performing maintenance activities including OS

patching, database maintenance and software upgrades. Additionally, the elastic

capacity of preconfigured database hosts on AWS has eliminated administrative

overhead to scale by allowing for capacity provisioning through simple mouse clicks

thereby eliminating arduous capacity planning, hardware procurement and installation

activities. Eliminating these undifferentiated activities has allowed Amazon to focus on

improving customer experience and service quality.

Amazon Web Services Modernizing the Amazon Database Infrastructure

 37

Post-Migration Operating Model

After migrating to AWS, the Amazon consumer facing business segments instituted new

mechanisms, processes, and tools to ensure ongoing success with the new model. The

section that follows discusses key changes in the operating model for service teams

and its benefits.

Distributed Ownership of Databases

Moving to AWS has decentralized the concept of database ownership. In the past

years, most teams in Amazon relied on shared database infrastructure that was

purchased, installed, operated and maintained by a shared team of database engineers.

This team of engineers estimated hardware capacity by inquiring about requirements

from each service team and aggregating the demand. In an ideal world, they should

also have allocated the cost of hardware, software, and database administration

amongst all teams but this exercise was so cumbersome and complicated that it was

hard to execute. The migration to AWS transformed this operating model completely to

one focused on distributed ownership. Individual teams now control every aspect of

their infrastructure including capacity provisioning, forecasting and cost allocation. This

eliminated the need to pool capacity requests and perform complex cost allocations.

Each team also had the option to launch Reserved or On-Demand Instances to optimize

costs based on the nature of demand. For DynamoDB, it was even easier as the

capacity management can be automatic within a window you set. Typically, business

segments experiencing unpredictable or highly cyclical loads picked a higher proportion

of On-Demand instances to scale with peak capacity. The CoE developed heuristics to

identify the optimal ratio of On-Demand to Reserved Instances based on service

growth, cyclicality, and price discounts. The CoE also built tools to monitor the usage of

hundreds of AWS fleets centrally.

The teams were able to focus on innovation on behalf of customers instead of the

burden of specialized database management.

Career Growth

The migration presented an excellent opportunity to advance the career paths of scores

of database engineers. These engineers who exclusively managed Oracle databases in

data centers were offered new avenues of growth and development in the rapidly

growing field of cloud services, NoSQL databases, and open source databases. As

basic database administrative tasks such as patching, upgrades, and backups were

Amazon Web Services Modernizing the Amazon Database Infrastructure

 38

automated, these engineers could now leverage their skills and expertise in improving

the service tier by optimizing query plans, monitoring performance, and testing new

services. These learning and growth opportunities allowed them to advance their

careers, refresh their skills, and directly improve customer experience.

Contributors

Contributors to this document include:

• Venkata Akella, Sr. Product Manager, Database Freedom

• John Winford, Principal Product Manager, Database Freedom

• Chris Brack, Software Development Manager, Financial Ledger and Accounting

Services

• Phani Bhadimpati, Sr. Manager, Financial Ledger and Accounting Services

• Brent Bigonger, Sr. Database Engineer, Operations – Tech Services

• Gowri Balasubramaniam, Principal Database Solution Architect, AWS Solution

Architecture

• Josh Gage, Sr. Software Development Engineer, Transaction Risk Management

• Kirk Kirkconnell, Sr. Technologist, Amazon DynamoDB

• Michael Stearns, Product Marketing Manager, AWS Databases Services

Document Revisions

Date Description

November 2019 First publication.

	Overview
	Challenges with using Oracle Databases
	Complex Database Engineering Required to Scale
	Complex, Expensive, and Error-Prone Database Administration
	Inefficient and Complex Hardware Provisioning

	AWS Services
	Purpose-Built Databases
	Amazon DynamoDB
	Amazon Aurora
	Amazon Relational Database Service (Amazon RDS) for MySQL or PostgreSQL

	Other AWS Services Used in Implementation
	Picking the Right Database

	Challenges During Migration
	Diverse Application Architectures Inherited
	Distributed and Geographically Dispersed Teams
	Interconnected and Highly Interdependent services
	Gap in Skills
	Competing Initiatives

	People, Processes, and Tools
	People
	Key objectives

	Processes and Mechanisms
	Goal Setting and Leadership Review
	Establishing a Hub-and-Spoke Model
	Training and Guidance
	Establishing Product Feedback Cycles with AWS
	Establishing Positive Reinforcement
	Risk Management and Issue Tracking

	Tools

	Common Migration Patterns and Strategies
	Migrating to Amazon DynamoDB – FLASH
	Overview of FLASH
	Challenges with Operating FLASH Services on Oracle
	Poor Latency
	Escalating Database Costs
	Difficult to Achieve Scale

	Reasons to Choose Amazon DynamoDB as the Persistence Layer
	Easier to Scale
	Easier Change Management
	Speed of Transactions
	Easier Database Management

	Challenges and Design Considerations During Refactoring
	Time Stamping Transactions and Indexed Ordering

	Providing Data to Downstream Services
	Archiving Historical Data
	Performing Data Backfill
	Benefits

	Migration to Amazon DynamoDB – Items and Offers
	Overview of Items and Offers
	Challenges Faced when Operating Item Master Service on Oracle Databases
	Challenging to Administer Partitions
	Difficult to Achieve High Availability
	Reaching Scaling Limits

	Reasons for Choosing Amazon DynamoDB
	Automated Database Management
	Automatic Scaling
	Cost Effective and Secure

	Execution
	Live Migration
	Backfill

	Benefits

	Migrating to Aurora for PostgreSQL – Amazon Fulfillment Technologies (AFT)
	Overview of AFT
	Challenges Faced Operating AFT on Oracle Databases
	Difficult to Scale
	Complex Hardware Management

	Reasons for choosing Amazon Aurora for PostgreSQL
	Static Schemas and Relational Lookups
	Ease of Scaling and Feature Parity
	Automated Administration

	Migration Strategy and Challenges
	Preparation Phase
	Migration Phase
	Post-Migration Phase

	Benefits

	Migrating to Amazon Aurora – Buyer Fraud Detection
	Overview
	Challenges of Operating on Oracle
	Complex Error-Prone Database Administration
	Poor Latency
	Complication Hardware Provisioning

	Application Design and Migration Strategy
	Preparation Phase
	Execution Phase

	Benefits

	Organization Wide Benefits
	Post-Migration Operating Model
	Distributed Ownership of Databases
	Career Growth

	Contributors
	Document Revisions

