

Optimizing Enterprise Economics
with Serverless Architectures

October 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Understanding Serverless Applications 2

Serverless Application Use Cases 3

Is Serverless Always Appropriate? 5

Evaluating a Cloud Vendor’s Serverless Platform 6

The AWS Serverless Platform 9

AWS Serverless Platform Capabilities 10

Case Studies 13

Serverless Websites, Web Apps, and Mobile Backends 14

IoT Backends 15

Data Processing 15

Big Data 17

IT Automation 17

Additional Use Cases 18

Conclusion 18

Contributors 18

Further Reading 19

Reference Architectures 19

Document Revisions 19

Abstract
This whitepaper is intended to help Chief Information Officers (CIOs), Chief
Technology Officers (CTOs), and senior architects gain insight into serverless
architectures and their impact on time to market, team agility, and IT
economics. By eliminating idle, underutilized servers at the design level and
dramatically simplifying cloud-based software designs, serverless approaches
are rapidly changing the IT landscape.

This whitepaper covers the basics of serverless approaches and the AWS
serverless portfolio, and includes a number of case studies that illustrate how
existing companies are already gaining significant agility and economic benefits
from adopting serverless approaches. This paper illustrates how organizations
of all sizes can use serverless architectures to architect reactive, event-based
systems and quickly deliver cloud-native microservices at a fraction of
conventional costs.

Optimizing Enterprise Economics with Serverless Architectures

Page 1

Introduction
Many companies are already gaining benefits from running applications in the
public cloud, including cost savings from pay-as-you-go billing and improved
agility through the use of on-demand IT resources. Multiple studies across
application types and industries have demonstrated that migrating existing
application architectures to the cloud lowers total cost of ownership (TCO) and
improves time to market.1

Relative to on-premises and private cloud solutions, the public cloud makes it
significantly simpler to build, deploy, and manage fleets of servers and the
applications that run on them. However, companies today have additional
options beyond classic server or VM-based architectures to take advantage of
the public cloud. Although the cloud eliminates the need for companies to
purchase and maintain their own hardware, any server-based architecture still
requires them to architect for scalability and reliability. Plus, companies need to
own the challenges of patching and deploying to those server fleets as their
applications evolve. Moreover, they must scale their server fleets to account for
peak load and then attempt to scale them down when and where possible to
lower costs—all while protecting the experience of end users and the integrity of
internal systems. Idle, underutilized servers prove to be costly and wasteful.
Analysts estimate that as many as 85 percent of servers in practice have
underutilized capacity.2

Serverless compute services like AWS Lambda are designed to address these
challenges by offering companies a different way of approaching application
design, one with inherently lower costs and faster time to market. AWS Lambda
eliminates the complexity of dealing with servers at all levels of the technology
stack, and introduces a pay-per-request billing model where there are no more
costs from idle compute capacity. Additionally, Lambda functions enable
organizations to easily adopt microservices architectures. Eliminating
infrastructure and moving to a Lambda model offers dual economic advantages:

• Problems like idle servers simply cease to exist, along with their
economic consequences. A serverless compute service like AWS Lambda
is never “cold” because charges only accrue when useful work is being
performed, with millisecond-level billing granularity.

Optimizing Enterprise Economics with Serverless Architectures

Page 2

• Fleet management (including the security patching, deployments, and
monitoring of servers) is no longer necessary. This means that it isn’t
necessary to maintain the associated tools, processes, and on-call
rotations required to support 24x7 server fleet uptime. Using Lambda to
build microservices helps organizations be more agile. Without the
burden of server management, companies can direct their scarce IT
resources to what matters—their business.

With greatly reduced infrastructure costs, more agile and focused teams, and
faster time to market, companies that have already adopted serverless
approaches are gaining a key advantage over their competitors.

Understanding Serverless Applications
The advantage of the serverless approach cited above is appealing, but what are
the considerations for practical implementation? What separates a serverless
app from its conventional server-based counterpart?

Serverless apps are architected such that developers can focus on their core
competency—writing the actual business logic. Many of the app’s boilerplate
components, such as web servers, and all of the undifferentiated heavy lifting,
such as software to handle reliability and scaling, are completely abstracted
away from the developer. What’s left is a clean, functional approach where the
business logic is triggered only when required: a mobile user sending a message,
an image uploaded to the cloud, records arriving in a stream, and so forth. An
asynchronous, event-based approach to application design—while not
required—is very common in serverless applications, because it dovetails
perfectly with the concept of code that runs (and incurs cost) only when there is
work to be done.

A serverless application runs in the public cloud, on a service such as AWS
Lambda, which takes care of receiving events or client invocations and then
instantiates and runs the code. This model offers a number of advantages
compared with conventional server-based application design:

• There is no need to provision, deploy, update, monitor, or otherwise
manage servers. All of the actual hardware and server software is
handled by the cloud provider.

Optimizing Enterprise Economics with Serverless Architectures

Page 3

• The application scales automatically, triggered by its actual use. This is
inherently different from conventional applications, which require a
receiver fleet and explicit capacity management to scale to peak load.

• In addition to scaling, availability and fault tolerance are built in. No
coding, configuration, or management is required to gain the benefit of
these capabilities.

• There are no charges for idle capacity. There is no need (and in fact, no
ability) to pre-provision or over-provision capacity. Instead, billing is
pay-per-request and based on the duration it takes for code to run.

Serverless Application Use Cases
The serverless application model is generic, and applies to almost any type of
application from a startup’s web app to a Fortune 100 company’s stock trade
analysis platform. Here are a few examples:

• Web apps and websites – Eliminating servers makes it possible to
create web apps that cost almost nothing when there is no traffic, while
simultaneously scaling to handle peak loads, even unexpected ones.

• Mobile backends – Serverless mobile backends offer a way for
developers who focus on client development to easily create secure,
highly available, and perfectly scaled backends without becoming experts
in distributed systems design.

• Media and log processing – Serverless approaches offer natural
parallelism, making it simpler to process compute-heavy workloads
without the complexity of building multithreaded systems or manually
scaling compute fleets.

• IT automation – Serverless functions can be attached to alarms and
monitors to provide customization when required. Cron jobs and other
IT infrastructure requirements are made substantially simpler to
implement by removing the requirement to own and maintain servers for
their use, especially when these jobs and requirements are infrequent or
variable in nature.

• IoT backends – The ability to bring any code, including native libraries,
simplifies the process of creating cloud-based systems that can
implement device-specific algorithms.

Optimizing Enterprise Economics with Serverless Architectures

Page 4

• Chatbots (including voice-enabled assistants) and other
webhook-based systems – Serverless approaches are a perfect fit for
any webhook-based system, like a chatbot. Their ability to perform
actions (like running code) only when needed (such as when a user
requests information from a chatbot) makes them a straightforward and
typically lower-cost approach for these architectures. For example, the
majority of Alexa Skills for Amazon Echo are implemented using AWS
Lambda.

• Clickstream and other near real-time streaming data processes
– Serverless solutions offer the flexibility to scale up and down with the
flow of data, enabling them to match throughput requirements without
the complexity of building a scalable compute system for each
application. When paired with a technology like Amazon Kinesis, AWS
Lambda can offer high-speed processing of records for clickstream
analysis, NoSQL data triggers, stock trade information, and more.

In addition to the highly adopted use cases discussed earlier, companies are also
applying serverless approaches to the following domains:

• Big data, such as map-reduce problems, high speed video transcoding,
stock trade analysis, and compute-intensive Monte Carlo simulations for
loan applications. Developers have discovered that it’s much easier to
parallelize with a serverless approach,3 especially when triggered through
events, leading them to increasingly apply serverless techniques to a wide
range of big data problems without the need for infrastructure
management.

• Low latency, custom processing for web applications and assets delivered
through content delivery networks. By moving serverless event handing
to the edge of the internet, developers can take advantage of lower
latency, and the ability to customize retrievals and content fetches easily.
This enables a new spectrum of use cases that are latency-optimized
based on the client’s location.

• Connected devices, enabling serverless capabilities such as AWS Lambda
functions to run inside commercial, residential, and hand-held Internet
of Things (IoT) devices. Serverless solutions such as Lambda functions
offer a natural abstraction from the underlying physical (and even
virtual) hardware, enabling them to more easily transition from the data

Optimizing Enterprise Economics with Serverless Architectures

Page 5

center to the edge, and from one hardware architecture to another,
without disrupting the programming model.

• Custom logic and data handling in on-premises appliances such as AWS
Snowball Edge. Because they decouple business logic from the details of
the execution environment, serverless applications can easily function in
a wide variety of environments, including on an appliance.

Typically, serverless applications are built using a microservices architecture in
which an application is separated into independent components that perform
discrete jobs. These components, which are made up of individual Lambda
functions along with APIs, message queues, database, and other components,
can be independently deployed, tested, and scaled. In fact, serverless
applications are a natural fit for microservices because of their function-based
model. By avoiding monolithic designs and architectures, organizations can
become more agile because developers can deploy incrementally and replace or
upgrade individual components, such as the database tier, if needed.

In many cases, simply isolating the business logic of an application is all that’s
required to convert it into a serverless app. Services like AWS Lambda support
popular programming languages and enable the use of custom libraries. Long-
running tasks are expressed as workflows composed of individual functions that
operate within reasonable time frames, which enables the system to restart or
parallelize individual units of computation as required.

Is Serverless Always Appropriate?
Almost all modern applications can be modified to run successfully, and in most
cases in a more economical and scalable fashion, on a serverless platform.
However, there are a few times when serverless is not the best choice:

• When the goal is explicitly to avoid making any changes to an
application.

• When fine-grained control over the environment is required, such as
specifying particular operating system patches or accessing low-level
networking operations, in order for the code to run properly.

• When an on-premises application hasn’t been migrated to the public
cloud.

Optimizing Enterprise Economics with Serverless Architectures

Page 6

Evaluating a Cloud Vendor’s Serverless
Platform
When architecting a serverless application, companies and organizations need
to consider more than the serverless compute functionality that executes the
app’s code. Complete serverless apps require a broad array of services, tools,
and capabilities spanning storage, messaging, diagnostics, and more. An
incomplete or fragmented serverless portfolio from a cloud vendor can be
problematic for serverless developers, who might have to return to server-based
architectures if they can’t successfully code at a consistent level of abstraction.

A serverless platform consists of the set of services that comprise the serverless
app, such compute and storage components, as well as the tools needed to
author, build, deploy, and diagnose serverless apps. Running a serverless
application in production requires a reliable, flexible, and trustworthy platform
that can handle the demands of small startups to global, world-wide
corporations. The platform must scale all of an application’s elements and
provide end-to-end reliability. Just as with conventional apps, helping
developers succeed in creating and delivering serverless solutions is a multi-
dimensional challenge. To meet the needs of large-scale enterprises across a
variety of industries, a serverless platform should offer the capabilities in the
following illustration.

Figure 1: Capabilities of a serverless platform

Optimizing Enterprise Economics with Serverless Architectures

Page 7

• A high-performance, scalable, and reliable cloud logic layer.

• Responsive first-party event and data sources and simple connectivity to
third-party systems.

• Integration libraries that enable developers to get started easily, and to
add new patterns quickly and safely to existing solutions.

• A vibrant developer ecosystem that helps developers discover and apply
solutions in a variety of domains, and for a wide set of third-party
systems and use cases.

• A collection of fit-for-purpose application modeling frameworks.

• Orchestration offering state and workflow management.

• Global scale and broad reach that includes assurance program
certification.

• Built-in reliability and at-scale performance, without the need to
provision capacity at any level of scale.

• Built-in security along with flexible access control for both first-party
and third-party resources and services.

At the core of any serverless platform is the cloud logic layer responsible for
running the functions that represent business logic. Because these functions are
often executed in response to events, simple integration with both first-party
and third-party event sources is essential to making solutions simple to express
and enabling them to scale automatically in response to varying workloads. For
example, serverless functions may need to execute each time an object is created
in an object store or for each update made to a serverless NoSQL database.
Serverless architectures eliminate all of the scaling and management code
typically required to integrate such systems, shifting that operational burden to
the cloud vendor.

Developing successfully on a serverless platform requires that a company be
able to get started easily, including finding ready-made templates for common
use cases, whether they involve first-party or third-party services. These
integration libraries are essential to convey successful patterns—such as
processing streams of records or implementing webhooks—especially during the
period when developers are migrating from server-based to serverless
architectures. A closely related need is a broad and diverse ecosystem that

Optimizing Enterprise Economics with Serverless Architectures

Page 8

surrounds the core platform. A large, vibrant ecosystem helps developers
readily discover and use solutions from the community and makes it easy to
contribute new ideas and approaches. Given the variety of toolchains in use for
application lifecycle management, a healthy ecosystem is also necessary to
ensure that every language, IDE, and enterprise build technology has the
runtimes, plugins, and open source solutions necessary to integrate the building
and deploying of serverless apps into existing approaches. It’s also critical for
serverless apps to leverage existing investments, including developers’
knowledge of frameworks such as Express and Flask and popular programming
languages. A broad ecosystem provides important acceleration across domains
and enables developers to repurpose existing code more readily in a serverless
architecture.

Application modeling frameworks, such as the open specification AWS
Serverless Application Model (AWS SAM) enable a developer to express the
components that make up a serverless app, and enable the tools and workflows
required to build, deploy, and monitor those applications. Another framework
that is key to the success of a serverless platform is orchestration and state
management. The largely stateless nature of serverless computing requires a
complementary mechanism for enabling long-running workflows. Orchestration
solutions enable developers to coordinate the multiple, related application
components that are typical in a serverless application, while still enabling those
applications to be composed of small and short-lived functions. Orchestration
services also simplify error handling and provide integration with legacy
systems and workflows, including those that run for longer than serverless
functions themselves generally permit.

To support customers worldwide, including multinational corporations with
global reach, a serverless platform must offer global scale, including data
centers and edge locations located worldwide. Edge locations are key to bringing
low-latency serverless computing close to end users. Because the platform,
rather than the application developer, is responsible for supplying the scalability
and high availability of serverless apps, its intrinsic reliability is critical.
Features like built-in retries and dead-letter queues for unprocessed events help
developers to construct robust systems with end-to-end reliability using
serverless approaches. Performance is equally key, especially low latency
(overhead), given that language runtimes and customer code are instantiated on
demand in a serverless app.

Optimizing Enterprise Economics with Serverless Architectures

Page 9

Finally, the platform must have a broad array of security and access controls,
including support for virtual private networks, role-based and access-based
permissions, robust integration with API-based authentication and access
control mechanisms (including third-party and legacy systems), and support for
encrypting application elements, such as environment variable settings.
Serverless systems, by their design, offer an inherently higher level of security
and control for the following reasons:

• First-class fleet management, including security patching – In a
system like AWS Lambda, the servers that execute requests are
constantly monitored, cycled, and security scanned. They can be patched
within hours of key security update availability, as opposed to many
enterprise compute fleets that can have much looser SLAs for patching
and updating.

• Limited server lifetimes – Every machine that executes customer
code in AWS Lambda is cycled multiple times per day, limiting its
exposure to attack and ensuring constantly up-to-date operating system
and security patching.

• Per-request authentication, access control, and auditing –
Every compute request executed on AWS Lambda, regardless of its
source, is individually authenticated, authorized to access specified
resources, and fully audited. Requests arriving from outside of AWS data
centers via Amazon API Gateway provide additional internet-facing
defense systems, including DoS attack defenses. Companies migrating to
serverless architectures can use AWS CloudTrail to gain detailed insight
into which users are accessing which systems with what privileges, and
they can use AWS Lambda to process the audit records
programmatically.

The AWS Serverless Platform
Since the introduction of Lambda in 2014, AWS has created a complete
serverless platform. It has a broad collection of fully managed services that
enable organizations to create serverless apps that can integrate seamlessly with
other AWS services and third-party services. Figure 2 illustrates a subset of the
components in the AWS serverless platform and their relationships.

Optimizing Enterprise Economics with Serverless Architectures

Page 10

Figure 2: AWS serverless platform components

AWS Serverless Platform Capabilities
AWS provides all the core capabilities identified in the previous section as
requirements for a complete serverless platform. The cloud logic layer is
provided by AWS Lambda, a high-scale, provision-free serverless compute
offering based on functions. AWS Lambda is complemented by AWS
Lambda@Edge, which provides similar support for executing extremely low-
latency Lambda functions using edge-optimized routing, and AWS Greengrass,
which enables Lambda functions to execute on connected devices, including
appliances such as AWS Snowball.

Lambda functions can be easily triggered by a variety of first-party and third-
party events, enabling developers to build reactive, event-driven systems (see
Figure 3) without the conventional hassle of setting up and managing
infrastructure. When there are multiple, simultaneous events, Lambda simply

Optimizing Enterprise Economics with Serverless Architectures

Page 11

runs more copies of the function in parallel, responding to each individual
trigger. Lambda functions scale precisely with the size of the workload, down to
the individual request. As a result, there is no possibility of an idle server or
container. The problem of wasted infrastructure expenditures is eliminated by
design in architectures that use Lambda functions.

FaaS, or Function as a Service,
is one approach to building
event-driven computing systems
that relies on functions as the
unit of deployment and
execution. Serverless FaaS is a
type of FaaS where no virtual
machines or containers are
present in the programming
model and where the vendor
provides provision-free
scalability and built-in
reliability.

Figure 3: The relationship between event-driven computing, FaaS, and Serverless

The AWS serverless compute capabilities provided by Lambda are a key element
of the following managed services offered by AWS, all of which integrate
seamlessly with one another:

• Amazon API Gateway – HTTP endpoints for Lambda functions,
including a full range of API proxy and API management capabilities.

• Amazon S3 – Lambda functions can be used as automatic event triggers
when an object is created, copied, or deleted.

• Amazon DynamoDB – Lambda functions can be used to process any or
all of the changes made to a database table.

• Amazon SNS – Messages can be routed to Lambda functions for
processing, adding the ability to dynamically respond to published
content.

Optimizing Enterprise Economics with Serverless Architectures

Page 12

• Amazon SQS – Messages in queues can be easily processed by Lambda
functions.

• Amazon Kinesis Streams – In-order record processing of streaming data
is provided by Lambda functions, making it easy to build near real-time
analytics engines.

• Amazon Kinesis Firehose – Lambda functions can be applied
automatically to the records ingested by a Firehose, making it easy to add
transformation, filtering, and analysis capabilities to a data stream.

• Amazon Athena –Lambda functions can be automatically triggered for
each object in a query’s result set.

• AWS Step Functions – Multiple Lambda functions can be orchestrated to
create long-running workflows for both human-centric and automated
processes.

• Amazon CloudWatch Events – Lambda functions can be used to
automatically respond to events, including third-party events.

• Amazon Aurora – Database triggers can be written as Lambda functions.

Lambda provides an integration library with blueprints for a wide variety of
third-party services, including Slack, Algorithmia, Twilio, Loggly, Splunk,
SumoLogic, Box, and others, enabling developers to build responsive
applications that include analytics, advanced algorithms, communications, and
more with just a few lines of code. A wide variety of web application
frameworks, including Express (for NodeJS applications) and Flask (for Python
applications) have been enhanced to work well with Lambda functions. Open
source web application projects include the Serverless Framework, Sparta,
Chalice, and many others.

Serverless apps are typically composed of several pieces: one or more functions,
a serverless database such as Amazon DynamoDB, and either an API for clients
to call or an event source that triggers the app. To keep these pieces organized,
AWS uses SAM, the open specification Serverless Application Model. With
SAM, developers can easily describe the functions, APIs, event sources,
database tables, and other parts of a serverless app. Using SAM also helps
developers manage all of the steps in the software development lifecycle, and
AWS offers a range of tools and services to help. This includes native support for
local testing and debugging in their IDE of choice (or via command line) via

Optimizing Enterprise Economics with Serverless Architectures

Page 13

SAM Local, deploying SAM apps using AWS CloudFormation, support for
building SAM apps in AWS CodeBuild, and support for GitHub-based CI/CD for
SAM apps built into AWS CodePipeline. In addition to first-party support, a
number of open source frameworks, CI/CD providers, and performance
management vendors offer support for SAM and Lambda functions, including
Serverless Framework, Claudia, CloudBees, Datadog, and many more. For
additional examples, see Serverless Application Developer Tooling.4

After a Lambda function (or in the case of a SAM app, potentially several
Lambda functions operating together) has been created, developers can easily
monitor it using automatically created metrics and logs available in Amazon
CloudWatch and CloudWatch Logs. AWS also offers AWS X-Ray, a cross-service
request tracing and performance analysis solution that enables developers to
trace the operation and behavior of individual functions and the events that they
process.

AWS serverless platform offerings have a global reach, with support for AWS
Lambda and Amazon API Gateway in virtually all of the AWS worldwide
Regions. Lambda@Edge is available in all edge locations.5 Lambda offers a
range of features to help customers improve the reliability of their applications,
including automatic retries for asynchronous and ordered events and dead-
letter queues to capture events that were not processed successfully by the
application. The deep integration with Amazon Virtual Private Cloud (Amazon
VPC) and the flexible range of authentication and access control capabilities
provided by AWS Lambda enable organizations to create secure applications
that adhere to best practices, such as the principle of least privilege. End user
security and management is equally easy – Amazon Cognito offers authorization
and authentication that can be easily combined with Amazon API Gateway and
AWS Lambda, enabling serverless user registration and sign-in capabilities,
including integration with social providers like Facebook and corporate
directories.

Case Studies
Companies have applied serverless architectures to use cases from stock trade
validation to e-commerce website construction to natural language processing.
AWS Lambda and the rest of the AWS serverless portfolio offer the flexibility to
create a wide array of applications, including those requiring assurance
programs such as PCI or HIPAA compliance. The following sections illustrate

https://aws.amazon.com/serverless/developer-tools
https://aws.amazon.com/lambda/edge/

Optimizing Enterprise Economics with Serverless Architectures

Page 14

some of the most common use cases, but are not a comprehensive list. For a
complete list of customer references and use case documentation, see Serverless
Computing.6

Serverless Websites, Web Apps, and Mobile
Backends
Serverless approaches are ideal for applications where load can vary
dynamically. Using a serverless approach means no compute costs are incurred
when there is no end user traffic, while still offering instant scale to meet high
demand, such as a flash sale on an e-commerce site or a social media mention
that drives a sudden wave of traffic. Compared to traditional infrastructure
approaches, it is also often significantly less expensive to develop, deliver, and
operate a web or mobile backend when it has been architected in a serverless
fashion.

AWS provides the services developers need to rapidly construct these
applications:

• Amazon S3 offers a simple hosting solution for static content.

• AWS Lambda, in conjunction with Amazon API Gateway, provides
support for dynamic API requests using functions.

• Amazon DynamoDB offers a simple storage solution for session and per-
user state.

• Amazon Cognito provides an easy way to handle end-user registration,
authentication, and access control to resources.

• AWS SAM can be used by developers to describe the various elements of
an application.

• AWS CodeStar can set up a CI/CD toolchain with just a few clicks.

To learn more, see the whitepaper AWS Serverless Multi-Tier Architectures,
which provides a detailed examination of patterns for building serverless web
applications.7 For complete reference architectures, see Serverless Reference
Architecture for creating a Web Application8 and Serverless Reference
Architecture for creating a Mobile Backend9 on GitHub.

https://aws.amazon.com/serverless/
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-mobilebackend

Optimizing Enterprise Economics with Serverless Architectures

Page 15

Customer Example – Bustle.com
Bustle.com is a news, entertainment, lifestyle, and fashion website catering to
women. It experienced approximately 84 percent cost savings by moving to a
serverless architecture based on AWS Lambda and Amazon API Gateway.
Bustle’s engineers gained additional agility, enabling them to focus on building
new product features instead of dealing with infrastructure management and
scaling. Bustle’s team is now more efficient, using half the people normally
required to build and operate sites of Bustle’s scale. Bustle’s serverless backend
also supports the iOS apps for two of its web properties (Bustle and Romper).
For more information, see the Bustle case study.10

IoT Backends
The benefits that a serverless architecture brings to web and mobile apps also
makes it easy to construct IoT backends and device-based analytic processing
systems that seamlessly scale with the number of devices. For an example
reference architecture, see Serverless Reference Architecture for creating an IoT
Backend on GitHub.11

Customer Example – iRobot
iRobot, which makes robots such as the Roomba cleaning robot, uses AWS
Lambda in conjunction with the AWS IoT service to create a serverless backend
for its IoT platform. By using a serverless architecture, iRobot’s engineering
team doesn’t have to worry about managing infrastructure or manually writing
code to handle availability and scaling. This enables them to innovate faster and
stay focused on customers. For more information, see the slides for their AWS
re:Invent 2016 presentation Serverless IoT Back Ends (IOT401)12 or watch the
video.13

Data Processing
The largest serverless applications process massive volumes of data, much of it
in real time. Typical serverless data processing architectures use a combination
of Amazon Kinesis and AWS Lambda to process streaming data, or they
combine Amazon S3 and AWS Lambda to trigger computation in response to
object creation or update events. When workloads require more complex
orchestration than a simple trigger, developers can use AWS Step Functions to
create stateful or long-running workflows that invoke one or more Lambda

https://aws.amazon.com/solutions/case-studies/bustle/
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-iotbackend
https://www.slideshare.net/AmazonWebServices/aws-reinvent-2016-serverless-iot-back-ends-iot401
https://www.youtube.com/watch?v=gKMaf5E-z7Q
https://www.youtube.com/watch?v=gKMaf5E-z7Q

Optimizing Enterprise Economics with Serverless Architectures

Page 16

functions as they progress. To learn more about serverless data processing
architectures, see the following on GitHub:

• Serverless Reference Architecture for Real-time Stream Processing14

• Serverless Reference Architecture for Real-time File Processing15

• Image Recognition and Processing Backend reference architecture16

Customer Example – FINRA
The Financial Industry Regulatory Authority (FINRA) used AWS Lambda to
build a serverless data processing solution that enables them to perform half a
trillion data validations on 37 billion stock market events daily. In his talk at
AWS re:Invent 2016 entitled The State of Serverless Computing (SVR311),17 Tim
Griesbach, Senior Director at FINRA, said “We found that Lambda was going to
provide us the best solution for this serverless cloud solution. With Lambda, the
system was faster, cheaper, and more scalable. So at the end of the day, we’ve
reduced our costs by over 50 percent and we can track it daily, even hourly.”

Customer Example – Thomson Reuters
Thomson Reuters, a media and information firm, built a serverless business
analytics solution that enables their product teams to easily analyze product
usage data. The solution combines AWS Lambda, Amazon Kinesis Streams, and
Amazon Kinesis Firehose to collect and process streaming event data for
analysis. The result, called Product Insight, launched two months ahead of
schedule and has exceeded technical expectations.

Anders Fritz, senior manager of product innovation at Thomson Reuters, said
“Our initial goal was to accommodate 2,000 events per second. Our tests show
that Product Insight on AWS can process up to 4,000 events per second, and
within a year we expect to increase that to more than 10,000 events per
second.” This figure represents more than 25 billion events per month. Even
with this high throughput, the system has not lost any data since its inception.
“Because of the robust failover architecture and the technical capabilities of
AWS, we have not lost a single event since we started collecting data,” says Fritz.
For more information, see the Thomson Reuters Case Study18 or watch the AWS
re:Invent 2016 presentation Real-time Data Processing Using AWS Lambda
(SVR301).19

https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://youtu.be/AcGv3qUrRC4?t=1153
https://aws.amazon.com/solutions/case-studies/thomson-reuters/
https://youtu.be/VFLKOy4GKXQ?t=1449
https://youtu.be/VFLKOy4GKXQ?t=1449

Optimizing Enterprise Economics with Serverless Architectures

Page 17

Big Data
AWS Lambda is a perfect match for many high-volume, parallel processing
workloads. For an example of a reference architecture using MapReduce, see
Reference architecture for running serverless MapReduce jobs.20

Customer Example – Fannie Mae
Fannie Mae, a leading source of financing for mortgage lenders, uses AWS
Lambda to run an “embarrassingly parallel” workload for its financial modeling.
Fannie Mae uses Monte Carlo simulation processes to project future cash flows
of mortgages that help it manage mortgage risk. The company found that its
existing HPC grids were no longer meeting its growing business needs. Fannie
Mae built their new platform on Lambda, and the system successfully scaled up
to 15,000 concurrent function executions during testing. The new system ran
one simulation on 20 million mortgages that completed in 2 hours, which is
three times faster than the old system. Using a serverless architecture, Fannie
Mae can now run large-scale Monte Carlo simulations cost effectively because it
doesn’t pay for idle compute resources. It can also speed up its computations by
running multiple Lambda functions concurrently. Fannie Mae also experienced
shorter than typical time-to-market because they were able to dispense with
server management and monitoring, along with the ability to eliminate much of
the complex code previously required to manage application scaling and
reliability. For more information, see the Fannie Mae AWS Summit 2017
presentation SMC303: Real-time Data Processing Using AWS Lambda.21

IT Automation
Serverless approaches eliminate the overhead of managing servers, making
most infrastructure tasks, including provisioning, configuration, management,
alarms/monitors, and timed cron jobs much easier to create and manage.

Customer Example – Autodesk
Autodesk, which makes 3D design and engineering software, uses AWS Lambda
to automate its AWS account creation and management processes across its
engineering organization. Autodesk estimates that it realized cost savings of 98
percent (factoring in estimated savings in labor hours spent provisioning
accounts). It can now provision accounts in just 10 minutes instead of the 10
hours it took to provision with the previous, infrastructure-based process. The

https://github.com/awslabs/lambda-refarch-mapreduce
https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28

Optimizing Enterprise Economics with Serverless Architectures

Page 18

serverless solution enables Autodesk to automatically provision accounts,
configure and enforce standards, and run audits with increased automation and
fewer manual touchpoints. For more information, see the Autodesk AWS
Summit 2017 presentation SMC301: The State of Serverless Computing.22 Visit
GitHub to see the Autodesk Tailor service.23

Additional Use Cases
The use cases described in the previous section only scratch the surface of
what’s possible with Lambda and the other AWS serverless offerings. Other use
cases include powerful human language understanding through chatbots built
using Amazon Lex and AWS Lambda, low-latency global Edge Computing using
Lambda@Edge with Amazon CloudFront, and powerful on-premises file
processing with Lambda functions inside an AWS Snowball. These are just
some of the exciting capabilities of this versatile approach. To learn more, see
AWS Lambda.24

Conclusion
Serverless approaches are designed to tackle two classic IT management
problems: idle servers that drain a company’s balance sheet without offering
value, and the cost of building and operating fleets of servers, and server
software, that distract and detract from the business of creating differentiated
customer value. AWS Lambda and the other AWS serverless offerings solve
these longstanding problems by eliminating the servers, containers, disks, and
other infrastructure-level resources from the programming and billing model.
As a result, developers can work with a clean application model that helps them
deliver faster and organizations only pay for useful work. The easiest and fastest
way to architect reactive, event-based systems and to deliver cloud-native
microservices is through the use of serverless architectures. To learn more and
read whitepapers on related topics, see Serverless Computing and
Applications.25

Contributors
The following individuals and organizations contributed to this document:

https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://github.com/alanwill/aws-tailor
https://aws.amazon.com/lambda
https://aws.amazon.com/serverless
https://aws.amazon.com/serverless

Optimizing Enterprise Economics with Serverless Architectures

Page 19

• Tim Wagner, General Manager of AWS Serverless Applications, Amazon
Web Services

Further Reading
For additional information, see the following:

• Serverless Reference Architectures with AWS Lambda by Werner Vogels,
CTO at Amazon.com26

• AWS re:Invent 2016: The State of Serverless Computing (slide
presentation) by Tim Wagner, General Manager of AWS Serverless
Applications27

• The economics of serverless cloud computing by Owen Rogers, Research
Director at 451 Research28

Reference Architectures
• Web Applications29

• Mobile Backends 30

• IoT Backends31

• File Processing32

• Stream Processing33

• Image Recognition Processing34

• MapReduce35

Document Revisions
Date Description

October 2017 First publication

http://www.allthingsdistributed.com/2016/06/aws-lambda-serverless-reference-architectures.html
https://www.youtube.com/watch?v=AcGv3qUrRC4
https://451research.com/report-short?entityId=92764
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://github.com/awslabs/lambda-refarch-mapreduce

Optimizing Enterprise Economics with Serverless Architectures

Page 20

1 https://www.forbes.com/sites/moorinsights/2016/04/11/tco-analysis-
demonstrates-how-moving-to-the-cloud-can-save-your-company-money/

 http://www.cloudstrategymag.com/articles/86033-understanding-tco-cloud-
economics

2 In 2012, Gartner estimated data center utilization ran from 7 to 12%
(http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-
amounts-of-energy-belying-industry-image.html). A 2008 McKinsey study
placed it at 6% (https://www.sallan.org/pdf-
docs/McKinsey_Data_Center_Efficiency.pdf). An Accenture paper analyzing
a set of EC2-based applications found approximately 7% utilization
(http://ieeexplore.ieee.org/document/6118751/). A 2014 study from NRDC
and Anthesis found that, in 2013, over 30% of servers were fully “comatose”
(plugged in, but doing nothing of value) (http://anthesisgroup.com/wp-
content/uploads/2015/06/Case-
Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf).

3 Occupy the Cloud: Eric Jonas et al., Distributed Computing for the 99%,
https://arxiv.org/abs/1702.04024.

4 https://aws.amazon.com/serverless/developer-tools

5 https://aws.amazon.com/lambda/edge/

6 https://aws.amazon.com/serverless/

7 https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-
Tier_Architectures.pdf

8 https://github.com/awslabs/lambda-refarch-webapp

9 https://github.com/awslabs/lambda-refarch-mobilebackend

10 https://aws.amazon.com/solutions/case-studies/bustle/

11 https://github.com/awslabs/lambda-refarch-iotbackend

12 https://www.slideshare.net/AmazonWebServices/aws-reinvent-2016-
serverless-iot-back-ends-iot401

13 https://www.youtube.com/watch?v=gKMaf5E-z7Q

14 https://github.com/awslabs/lambda-refarch-streamprocessing

15 https://github.com/awslabs/lambda-refarch-fileprocessing

Notes

https://www.forbes.com/sites/moorinsights/2016/04/11/tco-analysis-demonstrates-how-moving-to-the-cloud-can-save-your-company-money/
https://www.forbes.com/sites/moorinsights/2016/04/11/tco-analysis-demonstrates-how-moving-to-the-cloud-can-save-your-company-money/
http://www.cloudstrategymag.com/articles/86033-understanding-tco-cloud-economics
http://www.cloudstrategymag.com/articles/86033-understanding-tco-cloud-economics
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
https://www.sallan.org/pdf-docs/McKinsey_Data_Center_Efficiency.pdf
https://www.sallan.org/pdf-docs/McKinsey_Data_Center_Efficiency.pdf
http://ieeexplore.ieee.org/document/6118751/
http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf
http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf
http://anthesisgroup.com/wp-content/uploads/2015/06/Case-Study_DataSupports30PercentComatoseEstimate-FINAL_06032015.pdf
https://arxiv.org/abs/1702.04024
https://aws.amazon.com/serverless/developer-tools
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/serverless/
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://aws.amazon.com/solutions/case-studies/bustle/
https://github.com/awslabs/lambda-refarch-iotbackend
https://www.slideshare.net/AmazonWebServices/aws-reinvent-2016-serverless-iot-back-ends-iot401
https://www.slideshare.net/AmazonWebServices/aws-reinvent-2016-serverless-iot-back-ends-iot401
https://www.youtube.com/watch?v=gKMaf5E-z7Q
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-fileprocessing

Optimizing Enterprise Economics with Serverless Architectures

Page 21

16 https://github.com/awslabs/lambda-refarch-imagerecognition

17
https://www.youtube.com/watch?v=AcGv3qUrRC4&feature=youtu.be&t=115
3

18 https://aws.amazon.com/solutions/case-studies/thomson-reuters/

19
https://www.youtube.com/watch?v=VFLKOy4GKXQ&feature=youtu.be&t=1
449

20 https://github.com/awslabs/lambda-refarch-mapreduce

21 https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-
processing-using-aws-lambda/28

22 https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-
serverless-computing-75290821/22

23 https://github.com/alanwill/aws-tailor

24 https://aws.amazon.com/lambda/

25 https://aws.amazon.com/serverless/

26 http://www.allthingsdistributed.com/2016/06/aws-lambda-serverless-
reference-architectures.html

27 https://www.youtube.com/watch?v=AcGv3qUrRC4

28 https://451research.com/report-short?entityId=92764

29 https://github.com/awslabs/lambda-refarch-webapp

30 https://github.com/awslabs/lambda-refarch-mobilebackend

31 https://github.com/awslabs/lambda-refarch-iotbackend

32 https://github.com/awslabs/lambda-refarch-fileprocessing

33 https://github.com/awslabs/lambda-refarch-streamprocessing

34 https://github.com/awslabs/lambda-refarch-imagerecognition

35 https://github.com/awslabs/lambda-refarch-mapreduce

https://github.com/awslabs/lambda-refarch-imagerecognition
https://www.youtube.com/watch?v=AcGv3qUrRC4&feature=youtu.be&t=1153
https://www.youtube.com/watch?v=AcGv3qUrRC4&feature=youtu.be&t=1153
https://aws.amazon.com/solutions/case-studies/thomson-reuters/
https://www.youtube.com/watch?v=VFLKOy4GKXQ&feature=youtu.be&t=1449
https://www.youtube.com/watch?v=VFLKOy4GKXQ&feature=youtu.be&t=1449
https://github.com/awslabs/lambda-refarch-mapreduce
https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28
https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28
https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://github.com/alanwill/aws-tailor
https://aws.amazon.com/lambda/
https://aws.amazon.com/serverless/
http://www.allthingsdistributed.com/2016/06/aws-lambda-serverless-reference-architectures.html
http://www.allthingsdistributed.com/2016/06/aws-lambda-serverless-reference-architectures.html
https://www.youtube.com/watch?v=AcGv3qUrRC4
https://451research.com/report-short?entityId=92764
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://github.com/awslabs/lambda-refarch-mapreduce

	Introduction
	Understanding Serverless Applications
	Serverless Application Use Cases
	Is Serverless Always Appropriate?

	Evaluating a Cloud Vendor’s Serverless Platform
	The AWS Serverless Platform
	AWS Serverless Platform Capabilities

	Case Studies
	Serverless Websites, Web Apps, and Mobile Backends
	Customer Example – Bustle.com

	IoT Backends
	Customer Example – iRobot

	Data Processing
	Customer Example – FINRA
	Customer Example – Thomson Reuters

	Big Data
	Customer Example – Fannie Mae

	IT Automation
	Customer Example – Autodesk

	Additional Use Cases

	Conclusion
	Contributors
	Further Reading
	Reference Architectures
	Document Revisions

