
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics

with Serverless Architectures

September 2021

https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/optimizing-enterprise-economics-with-serverless.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Notices

Customers are responsible for making their own independent assessment of

the information in this document. This document: (a) is for informational

purposes only, (b) represents current AWS product offerings and practices,

which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors.

AWS products or services are provided “as is” without warranties,

representations, or conditions of any kind, whether express or implied. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any

agreement between AWS and its customers.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Contents

Introduction ... 1

Understanding Serverless Architectures ... 2

Is Serverless Always Appropriate? .. 2

Serverless Use Cases ... 3

AWS Serverless Capabilities .. 6

Service Offerings ... 6

Developer Support ... 9

Security .. 11

Partners ... 12

Case Studies .. 13

Serverless Websites, Web Apps, and Mobile Backends 13

IoT Backends ... 14

Data Processing .. 15

Big Data ... 16

IT Automation .. 17

Machine Learning .. 17

Conclusion .. 18

Contributors .. 19

Further Reading .. 19

Reference Architectures ... 19

Document Revisions ... 20

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Abstract

This whitepaper is intended to help Chief Information Officers (CIOs), Chief

Technology Officers (CTOs), and senior architects gain insight into serverless

architectures and their impact on time to market, team agility, and IT

economics. By eliminating idle, underutilized servers at the design level and

dramatically simplifying cloud-based software designs, serverless approaches

rapidly change the IT landscape.

This whitepaper covers the basics of serverless approaches and the AWS

serverless portfolio. It includes several case studies illustrating how existing

companies are gaining significant agility and economic benefits from adopting

serverless strategies. In addition, it describes how organizations of all sizes can

use serverless architectures to architect reactive, event-based systems and

quickly deliver cloud-native microservices at a fraction of conventional costs.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 1

Introduction

Many companies are already gaining benefits from running applications in the

public cloud, including cost savings from pay-as-you-go billing and improved

agility through the use of on-demand IT resources. Multiple studies across

application types and industries have demonstrated that migrating existing

application architectures to the cloud lowers the Total Cost of Ownership (TCO)

and improves time to market.1

Relative to on-premises and private cloud solutions, the public cloud makes it

significantly simpler to build, deploy, and manage fleets of servers and the

applications that run on them. The public cloud has established itself as the new

normal, with double-digit year-over-year growth since its inception.2

However, companies today have options beyond classic server or virtual

machine (VM) based architectures to take advantage of the public cloud.

Although the cloud eliminates the need for companies to purchase and maintain

their hardware, any server-based architecture still requires them to architect for

scalability and reliability. Plus, companies need to own the challenges of

patching and deploying to those server fleets as their applications evolve.

Moreover, they must scale their server fleets to account for peak load and then

attempt to scale them down when and where possible to lower costs—all while

protecting the experience of end-users and the integrity of internal systems.

Idle, underutilized servers prove to be costly and wasteful. Researchers

calculated the average server utilization to be around only 18 percent for

enterprises.3

Using serverless services, developers and architects can design and develop

complex application architectures, focusing just on business logic without

dealing with the complexity of servers.

As a result, product owners can achieve faster time to market with shorter

development, deployment, and testing cycles. In addition, the reduction of

server management overheads reduces the TCO, which ultimately results in

competitive advantages for the companies.

With significantly reduced infrastructure costs, more agile and focused teams,

and faster time to market, companies that have already adopted serverless

approaches are gaining a key advantage over their competitors.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 2

Understanding Serverless Architectures

The advantages of the serverless approaches cited above are appealing, but

what are the considerations for practical implementation? What separates a

serverless application from its conventional server-based counterpart?

Serverless uses managed services where the cloud provider handles

infrastructure management tasks like capacity provisioning and patching. This

allows your workforce to focus on business logic serving your customers while

minimizing infrastructure management, configuration, operations, and idle

capacity. In addition, Serverless is a way to describe the services, practices,

and strategies that enable you to build more agile applications so you can

innovate and respond to change faster.

Serverless applications are designed to run whole or parts of the application in

the public cloud using serverless services. AWS offers many serverless

services in domains like compute, storage, application integration, orchestration

and databases. The serverless model provides the following advantages

compared to conventional server-based design:

• There is no need to provision, manage and monitor the underlying

infrastructure. All of the actual hardware and platform server software

packages are managed by the cloud provider. You need to just deploy

your application and its configuration.

• Serverless services have fault tolerance built-in by default. Serverless

applications require minimal configuration and management from the

user to achieve high availability.

• Reduced operational overhead allows your teams to release quickly, get

feedback, and iterate to get to market faster.

• With a pay-for-value billing model, you do not pay for over-provisioning,

and your resource utilization is optimized on your behalf

• Serverless applications have built-in service integrations, so you can

focus on building your application instead of configuring it.

Is Serverless Always Appropriate?

Almost all modern applications can be modified to run successfully, and in most

cases, in a more economical and scalable fashion, on a serverless platform.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 3

The choice between serverless and the alternatives do not need to be an all-or-

nothing proposition. Individual components could be run on servers, using

containers, or using serverless architectures within an application stack.

However, here are a few scenarios when serverless may not be the best

choice:

• When the goal is explicitly to avoid making any changes to existing

application architecture.

• For the code to run correctly, fine-grained control over the environment is

required, such as specifying particular operating system patches or

accessing low-level networking operations.

• Applications with ultra low latency requirements for all incoming

requests.

• When an on-premises application hasn’t been migrated to the public

cloud.

• When certain aspects of the application component don’t fit within the

limits of the serverless services - for example, if a function takes more

time to execute than the AWS Lambda function’s execution timeout limit,

or the backend application takes more time to run than Amazon API

Gateway’s timeout.

Serverless Use Cases

The serverless application model is generic and applies to almost any

application, from a startup’s web app to a Fortune 100 company’s stock trade

analysis platform. Here are several examples:

• Data processing – Developers have discovered that it’s much easier to

parallelize with a serverless approach,4 mainly when triggered through

events, leading them to increasingly apply serverless techniques to a

wide range of big data problems without the need for infrastructure

management. These include map-reduce problems, high-speed video

transcoding, stock trade analysis, and compute-intensive Monte Carlo

simulations for loan applications.

• Web applications – Eliminating servers makes it possible to create web

applications that cost almost nothing when there is no traffic while

simultaneously scaling to handle peak loads, even unexpected ones.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 4

• Batch processing – Serverless architectures can be used in a run multi-

step flow-chart like use cases like ETL jobs.

• IT automation – Serverless functions can be attached to alarms and

monitors to provide customization when required. Cron jobs (used to

schedule and automate tasks that need to be carried out periodically)

and other IT infrastructure requirements are made substantially simpler

to implement by removing the need to own and maintain servers for their

use, especially when these jobs and conditions are infrequent or variable

in nature.

• Mobile backends – Serverless mobile backends offer a way for

developers who focus on client development to quickly create secure,

highly available, and perfectly-scaled backends without becoming

experts in distributed systems design.

• Media and log processing – Serverless approaches offer natural

parallelism, making it simpler to process compute-heavy workloads

without the complexity of building multithreaded systems or manually

scaling compute fleets.

• IoT backends – The ability to bring any code, including native libraries,

simplifies the process of creating cloud-based systems that can

implement device-specific algorithms.

• Chatbots (including voice-enabled assistants) and other webhook-

based systems – Serverless approaches are perfect for any webhook-

based system, like a chatbot. In addition, their ability to perform actions

(like running code) only when needed (such as when a user requests

information from a chatbot) makes them a straightforward and typically

lower-cost approach for these architectures. For example, the majority of

Alexa Skills for Amazon Echo are implemented using AWS Lambda.

• Clickstream and other near real-time streaming data processes –

Serverless solutions offer the flexibility to scale up and down with the

flow of data, enabling them to match throughput requirements without the

complexity of building a scalable compute system for each application.

For example, when paired with technology like Amazon Kinesis, AWS

Lambda can offer high-speed records processing for clickstream

analysis, NoSQL data triggers, stock trade information, and more.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 5

• Machine learning inference – Machine learning models can be hosted

on serverless functions to support inference requests, eliminating the

need for owning or maintaining servers for supporting intermittent

inference requests.

• Content delivery at the edge –By moving serverless events handing to

the edge of the internet, developers can take advantage of lower latency

and customize retrievals and content fetches quickly, enabling a new

spectrum of use cases that are latency-optimized based on the client’s

location.

• IoT at the edge – Enabling serverless capabilities such as AWS Lambda

functions to run inside commercial, residential, and hand-held Internet of

Things (IoT) devices enables these devices to respond to events in near

real-time. Devices can take actions such as aggregating and filtering

data locally, performing machine learning inference, or sending alerts.

Typically, serverless applications are built using a microservices architecture in

which an application is separated into independent components that perform

discrete jobs. These components, made up of a compute layer and APIs,

message queues, database, and other components can be independently

deployed, tested, and scaled.

The ability to scale individual components needing additional capacity rather

than entire applications can save substantial infrastructure costs. It would allow

an application to run lean with minimal idle server capacity without the need for

right-sizing activities.5

Serverless applications are a natural fit for microservices because of their

decoupled nature. Organizations can become more agile by avoiding monolithic

designs and architectures because developers can deploy incrementally and

replace or upgrade individual components, such as the database tier if needed.

In many cases, not all layers of the architecture need to be moved to serverless

services to reap its benefits. For instance, simply isolating the business logic of

an application to deploy onto the AWS Lambda, serverless compute service, is

all that’s required to reduce server management tasks, idle compute capacity

and operational overhead immediately.

Serverless architecture also has significant economic advantages over server-

based architectures when considering disaster recovery scenarios.

https://aws.amazon.com/aws-cost-management/aws-cost-optimization/right-sizing/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 6

For most serverless architectures, the price for managing a disaster recovery

site is near zero, even for warm or hot sites. Serverless architectures only incur

a charge when traffic is present and resources are being consumed. Storage

cost is one exception, as many applications require readily accessible data.

Nonetheless, serverless architectures truly shine when planning disaster

recovery sites, especially when compared to traditional data centers. Running a

disaster recovery on-premises often doubles infrastructure costs as many

servers are idle waiting for disaster to happen.

Serverless disaster recovery sites can be set up quickly as well. Once

serverless architectures have been defined with infrastructure as code using

AWS native services such as AWS CloudFormation, an entire architecture can

be duplicated in a separate region by running a few commands.

AWS Serverless Capabilities

Like any other traditional server and VM-based architecture, serverless

provides core capabilities such as compute, storage, messaging and more to its

users. However, serverless services are distributed across multiple managed

services rather than spread across software-installed virtual machines.

As a result, AWS provides a complete serverless application that requires a

broad array of services, tools, and capabilities spanning storage, messaging

diagnostics, and more. Each of these services is available in the developer’s

toolbox to build a practical application.

Service Offerings

Since the introduction of Lambda in 2014, AWS has introduced a wide variety of

fully-managed serverless services that enable organizations to create

serverless apps that can integrate seamlessly with other AWS services and

third-party services.

The launched serverless services include, but are not limited to, Amazon API

Gateway (2015), Amazon EventBridge (2019), and Amazon Aurora Serverless

v2 (2020). The pace of innovation has not stopped for individual services, as

Lambda has had more than 100 major feature releases since its launch.6 Figure

1 illustrates a subset of the components in the AWS serverless platform and

their relationships.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 7

Figure 1: AWS serverless platform components

AWS’s serverless offering consists of services that span across all

infrastructure layers, including compute, storage, and orchestration. In addition,

AWS provides tools needed to author, build, deploy, and diagnose serverless

architectures.

Running a serverless application in production requires a reliable, flexible, and

trustworthy platform that can handle the demands of small startups to global,

worldwide corporations. The platform must scale all of an application’s elements

and provide end-to-end reliability.

Just as with conventional applications, helping developers create and deliver

serverless solutions is a multi-dimensional challenge. To meet the needs of

large-scale enterprises across various industries, the AWS serverless platform

offers the following capabilities through a diverse set of services.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 8

• A high-performance, scalable, and reliable serverless compute

layer - The serverless compute layer is at the core of any serverless

architecture, such as AWS Lambda or AWS Fargate, responsible for

running the business logic. Because these services are run in response

to events, simple integration with both first-party and third-party event

sources is essential to making solutions simple to express and enabling

them to scale automatically in response to varying workloads. In addition,

serverless architectures eliminate all of the scaling and management

code typically required to integrate such systems, shifting that

operational burden to AWS.

• Highly available, durable, and scalable storage layer – AWS offers

fully managed storage layers that offload the overhead of ever-increasing

storage requirements to support the serverless compute layer. Instead of

manually adding more servers and storage, services such as Amazon

Aurora Serverless v2, Amazon DynamoDB, and Amazon Simple Storage

Service (Amazon S3) scales based on usage and users are only billed

for the consumed resources. In addition, AWS offers purpose-built

storage services to meet diverse customer needs, from DynamoDB for

key-value storage, Amazon S3 for object storage, and Aurora Serverless

v2 for relational data storage.

• Support for loosely coupled and scalable decoupled serverless

workloads – As applications mature and grow, they become more

challenging to maintain or add new features, and some transform into

monolithic applications. As a result, they make it challenging to

implement changes and slow down the development pace. What is

needed is individual components that are decoupled and can scale

independently. Amazon Simple Queue Service (Amazon SQS), Amazon

Simple Notification Service (Amazon SNS), Amazon EventBridge, and

Amazon Kinesis enable developers to decouple individual components,

allowing developers to create and innovate without being dependent on

one another. In addition, these components all being serverless implies

that customers are only being billed for the resources that each

component is consuming, eliminating unnecessary resources being

wasted.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 9

• Orchestration offering state and workflow management –

Orchestration and state management are also critical to a serverless

platform’s success. As companies adopt serverless architectures, there

is an increased need to orchestrate complex workflows with decoupled

components. AWS Step Functions is a visual workflow service that

satisfies this need. It is used to orchestrate AWS services, automate

business processes, and build serverless applications. Step Functions

manage failures, retries, parallelization, service integrations, and

observability so developers can focus on higher-value business logic.

Building applications from individual components that perform a discrete

function lets you scale easily and change applications quickly.

Developers can change and add steps without writing code, enabling

your team to evolve your application and innovate faster.

• Native service integrations between serverless services mentioned

above, such as Amazon Simple Queue Service (SQS), Amazon Simple

Notification Service (Amazon SNS), and Amazon EventBridge, act as

application integration services, enabling communication between

decoupled components within microservices. Another benefit of these

services is that minimal code is needed to allow interoperability between

them, so you can focus on building your application instead of

configuring it. For instance, integration between Amazon API Gateway -a

fully managed service for hosting APIs - to a Lambda function can be

done without writing any code and simply walking through the AWS

console.

Developer Support

Providing the right tool and support for developers and architects is essential to

boosting productivity. AWS Developer Tools are built to work with AWS, making

it easier for teams to set up and be productive.

In addition to popular and well-known developer tools such as AWS Command

Line Interface (AWS CLI) and AWS Software Development Kits (AWS SDKs),

AWS also provides various AWS, open-source, and third-party web frameworks

that simplify serverless application development and deployment.

This includes the AWS Serverless Application Model (AWS SAM) and AWS

Cloud Development Kit (AWS CDK) that allows customers to onboard faster to

serverless architectures, offloading undifferentiated heavy lifting of managing

the infrastructure for your applications.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 10

This enables developers to focus on writing code that creates value for their

customers. In addition, AWS provides the following support for developers

adopting serverless technologies.

• A collection of fit-for-purpose application modeling frameworks –

Application modeling frameworks, such as the open specification AWS

SAM or AWS CDK, enable a developer to express the components that

make up a serverless application and enable the tools and workflows

required to build, deploy, and monitor those applications. Both

frameworks work nicely with the AWS SAM Command Line Interface

(AWS SAM CLI), making it easy for them to create and manage

serverless applications. It also allows developers to build, test locally,

and debug serverless applications then deploy them on AWS. It can also

create secure continuous integration and deployment (CI/CD) pipelines

that follow best practices and integrate with AWS’ native and third-party

CI/CD systems.

• A vibrant developer ecosystem that helps developers discover and

apply solutions in a variety of domains and for a broad set of third-

party systems and use cases - Thriving on a serverless platform

requires that a company be able to get started quickly, including finding

ready-made templates for everyday use cases, whether they involve

first-party or third-party services. These integration libraries are essential

to convey successful patterns—such as processing streams of records

or implementing webhooks—especially when developers are migrating

from server-based to serverless architectures.7 A closely related need is

a broad and diverse ecosystem that surrounds the core platform. A large,

vibrant ecosystem helps developers discover and use solutions from the

community and makes it easy to contribute new ideas and approaches.

Given the variety of toolchains in use for application lifecycle

management, a healthy ecosystem is also necessary to ensure that

every language, Integrated Development Environment (IDE), and

enterprise build technology has the runtimes, plugins, and open-source

solutions essential to integrate the building and to deployment of

serverless applications into existing approaches. Finally, a broad

ecosystem provides significant acceleration across domains and enables

developers to repurpose existing code more readily in a serverless

architecture.

https://serverlessland.com/patterns

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 11

Security

All AWS customers benefit from a data center and network architecture built to

satisfy the requirements of our most security-sensitive customers. This means

that you get a resilient infrastructure designed for high security without a

traditional data center’s capital outlay and operational overhead. Serverless

architecture is no exception.

To accomplish this, AWS’ serverless services offer a broad array of security

and access controls, including support for virtual private networks, role-based

and access-based permissions, robust integration with API-based

authentication and access control mechanisms and support for encrypting

application elements, such as environment variable settings.

These out-of-the-box offered features and services can help developers deploy

and publish workloads confidently and reduce time to market. Serverless

systems, by their design, also provides an additional level of security and

control for the following reasons:

• First-class fleet management, including security patching – For

managed serverless services such as Lambda, API Gateway, and

Amazon SQS, the servers that host the services are constantly

monitored, cycled, and security scanned. As a result, they can be

patched within hours of essential security update availability instead of

many enterprises’ compute fleets with much looser service level

agreements (SLAs) for patching and updating.

• Per-request authentication, access control, and auditing – Every

request between natively-integrated services is individually

authenticated, authorized to access specified resources, and can be fully

audited. Requests arriving from outside of AWS via Amazon API

Gateway provide other internet-facing defense systems. For example,

AWS Web Application Firewall (AWS WAF) is a web application firewall

that integrates natively with Amazon API Gateway. It helps protect

hosted APIs against common web exploits and bots that may affect

availability, compromise security, or consume excessive resources,

including distributed denial-of-service (DDoS) attack defenses. In

addition, companies migrating to serverless architectures can use AWS

CloudTrail to gain detailed insight into which users are accessing which

systems with what privileges. Finally, they can use AWS tools to process

the audit records programmatically.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 12

These security features of serverless help eliminate additional costs often

overlooked when calculating the TCO of one’s infrastructure. Such costs

include security and monitoring software licenses installed on servers, staffing

of information security personnel to ensure that all servers are secure, as well

as costs associated with regulatory compliance, and many others.

Serverless architectures also have a smaller blast radius compared to

monolithic applications running on virtual machines. As AWS takes

responsibility of the security of the servers behind the scenes, customers can

focus on implementing least privilege access between the services. Once least

privilege access is implemented, the blast radius is dramatically reduced.

The decoupled nature of the architecture will limit the impact to a smaller set of

services, compared to a scenario where a malicious actor gains access to an

internal server. Considering the significant financial impact of a security breach,

this is also an added benefit that help enterprises optimize on infrastructure

costs.

Adopting serverless architectures help in reducing or eliminating such expenses

that are no longer needed, and capital can be repurposed, and teams are freed

to work on higher-value activities.

Partners

AWS has an expansive partner network that assists our customers with building

solutions and services on AWS. AWS works closely with validated AWS

Lambda Partners for building serverless architectures that help customers

develop services and applications without provisioning or managing servers.

Lambda Partners provide developer tooling solutions validated by AWS

serverless experts against the AWS Well-Architected Framework. Customers

can simplify their technology evaluation process and increase purchasing

confidence, knowing these companies’ solutions have passed a strict AWS

validation of security, performance, and reliability.

Customers can ultimately reduce time to market with the assistance of qualified

partners leveraging serverless technologies. For a complete list of AWS

Lambda Ready Partners, visit our AWS Partner Network page.8

https://aws.amazon.com/partners/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 13

Case Studies

Companies have applied serverless architectures to use cases from stock trade

validation to e-commerce website construction to natural language processing.

AWS serverless portfolio offers the flexibility to create a wide array of

applications, including those requiring assurance programs such as PCI or

HIPAA compliance.

The following sections illustrate some of the most common use cases but are

not a comprehensive list. For a complete list of customer references and use

case documentation, see Serverless Computing.9

Serverless Websites, Web Apps, and Mobile

Backends

Serverless approaches are ideal for applications where the load can vary

dynamically. Using a serverless approach means no compute costs are

incurred when there is no end-user traffic while still offering instant scale to

meet high demand, such as a flash sale on an e-commerce site or a social

media mention that drives a sudden wave of traffic.

Compared to traditional infrastructure approaches, it is also often significantly

less expensive to develop, deliver, and operate a web or mobile backend when

architected in a serverless fashion.

AWS provides the services developers need to construct these applications

rapidly:

• Amazon Simple Storage Service (Amazon S3) and AWS Amplify offer a

simple hosting solution for static content.

• AWS Lambda, in conjunction with Amazon API Gateway, provides

support for dynamic API requests using functions.

• Amazon DynamoDB offers a simple storage solution for the session and

per-user state.

• Amazon Cognito provides an easy way to handle end-user registration,

authentication, and access control to resources.

• Developers can use AWS Serverless Application Model (SAM) to

describe the various elements of an application.

https://aws.amazon.com/serverless/
file:///C:/Users/lndal/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/31X1OC38/aws.amazon.com/serverless/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 14

• AWS CodeStar can set up a CI/CD toolchain with just a few clicks.

To learn more, see the whitepaper AWS Serverless Multi-Tier Architectures,

which provides a detailed examination of patterns for building serverless web

applications.10 For complete reference architectures, see Serverless Reference

Architecture for creating a Web Application11 and Serverless Reference

Architecture for creating a Mobile Backend12 on GitHub.

Customer Example – Neiman Marcus

A luxury household name, Neiman Marcus has a reputation for delivering a first-

class, personalized customer service experience. To modernize and enhance

that experience, the company wanted to develop Connect, an omnichannel

digital selling application that would empower associates to view rich,

personalized customer information with the goal of making each customer

interaction unforgettable.

Choosing a serverless architecture with mobile development solutions on

Amazon Web Services (AWS) enabled the development team to launch the app

much faster than in the 4 months it had originally planned. “Using AWS cloud-

native and serverless technologies, we increased our speed to market by at

least 50 percent and were able to accelerate the launch of Connect,” says

Sriram Vaidyanathan, senior director of omni engineering at Neiman Marcus.

This approach also greatly reduced app-building costs and provided developers

with more agility for the development and rapid deployment of updates. The app

elastically scales to support traffic at any volume for greater cost efficiency, and

it has increased associate productivity. For more information, see the Neiman

Marcus case study.13

IoT Backends

The benefits that a serverless architecture brings to web and mobile apps make

it easy to construct IoT backends and device-based analytic processing

systems that seamlessly scale with the number of devices.

For an example reference architecture, see Serverless Reference Architecture

for creating an IoT Backend on GitHub.14

https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-mobilebackend
https://aws.amazon.com/solutions/case-studies/neimanmarcus-case-study
https://aws.amazon.com/solutions/case-studies/neimanmarcus-case-study
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-iotbackend

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 15

Customer Example – iRobot

iRobot, which makes robots such as the Roomba cleaning robot, uses AWS

Lambda in conjunction with the AWS IoT service to create a serverless backend

for its IoT platform. As a popular gift on any holiday, iRobot experiences

increased traffic on these days.

While huge traffic spikes could also mean huge headaches for the company

and its customers alike, iRobot’s engineering team doesn’t have to worry about

managing infrastructure or manually writing code to handle availability and

scaling by running on serverless. This enables them to innovate faster and stay

focused on customers. Watch the AWS re:Invent 2020 video Building the next

generation of residential robots for more information.15

Data Processing

The largest serverless applications process massive volumes of data, much of it

in real-time. Typical serverless data processing architectures use a combination

of Amazon Kinesis and AWS Lambda to process streaming data, or they

combine Amazon S3 and AWS Lambda to trigger computation in response to

object creation or update events.

When workloads require more complex orchestration than a simple trigger,

developers can use AWS Step Functions to create stateful or long-running

workflows that invoke one or more Lambda functions as they progress. To learn

more about serverless data processing architectures, see the following on

GitHub:

• Serverless Reference Architecture for Real-time Stream Processing16

• Serverless Reference Architecture for Real-time File Processing17

• Image Recognition and Processing Backend reference architecture18

Customer Example – FINRA

The Financial Industry Regulatory Authority (FINRA) used AWS Lambda to

build a serverless data processing solution that enables them to perform half a

trillion data validations on 37 billion stock market events daily.

In his talk at AWS re:Invent 2016 entitled The State of Serverless Computing

(SVR311),19 Tim Griesbach, Senior Director at FINRA, said, “We found that

Lambda was going to provide us with the best solution for this serverless cloud

https://www.youtube.com/watch?v=-1PDC6UOFtE
https://www.youtube.com/watch?v=-1PDC6UOFtE
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://youtu.be/AcGv3qUrRC4?t=1153
https://youtu.be/AcGv3qUrRC4?t=1153

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 16

solution. With Lambda, the system was faster, cheaper, and more scalable. So

at the end of the day, we’ve reduced our costs by over 50 percent, and we can

track it daily, even hourly.”

Customer Example – Toyota Connected

Toyota Connected is a subsidiary of Toyota and a technology company offering

connected platforms, big data, mobility services and other automotive-related

services.

Toyota Connected chose serverless computing architecture to build its Toyota

Mobility Services Platform, leveraging AWS Lambda, Amazon Kinesis Data

Streams (Amazon KDS), and Amazon S3 to offer personalized, localized, and

predictive data to enhance the driving experience.

With its serverless architecture, Toyota Connected seamlessly scaled to 18

times its usual traffic volume, with 18 billion transactions per month running

through the platform, reducing aggregation job times from 15+ hours to 1/40th

of the time while reducing operational burden. Additionally, serverless enabled

Toyota Connected to deploy the same pipeline in other geographies with

smaller volumes and only pay for the resources consumed.

For more information, read our Big Data Blog on Toyota Connected or watch

the re:Invent 2020 video Reimagining mobility with Toyota Connected

(AUT303).20, 21

Big Data

AWS Lambda is a perfect match for many high-volume, parallel processing

workloads. For an example of a reference architecture using MapReduce, see

Reference Architecture for running serverless MapReduce jobs.22

Customer Example – Fannie Mae

Fannie Mae, a leading source of financing for mortgage lenders, uses AWS

Lambda to run an “embarrassingly parallel” workload for its financial modeling.

Fannie Mae uses Monte Carlo simulation processes to project future cash flows

of mortgages that help manage mortgage risk.

The company found that its existing HPC grids were no longer meeting its

growing business needs. So Fannie Mae built its new platform on Lambda, and

the system successfully scaled up to 15,000 concurrent function executions

https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://www.youtube.com/watch?v=IpuRyJY3B4k
https://www.youtube.com/watch?v=IpuRyJY3B4k
https://github.com/awslabs/lambda-refarch-mapreduce

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 17

during testing. The new system ran one simulation on 20 million mortgages

completed in 2 hours, which is three times faster than the old system. Using a

serverless architecture, Fannie Mae can run large-scale Monte Carlo

simulations effectively because it doesn’t pay for idle compute resources. It can

also speed up its computations by running multiple Lambda functions

concurrently.

Fannie Mae also experienced shorter than typical time-to-market because they

were able to dispense with server management and monitoring, along with the

ability to eliminate much of the complex code previously required to manage

application scaling and reliability. See the Fannie Mae AWS Summit 2017

presentation SMC303: Real-time Data Processing Using AWS Lambda23 for

more information.

IT Automation

Serverless approaches eliminate the overhead of managing servers, making

most infrastructure tasks, including provisioning, configuration, management,

alarms/monitors, and timed cron jobs, easier to create and manage.

Customer Example – Autodesk

Autodesk, which makes 3D design and engineering software, uses AWS

Lambda to automate its AWS account creation and management processes

across its engineering organization.

Autodesk estimates that it realized cost savings of 98 percent (factoring in

estimated savings in labor hours spent provisioning accounts). It can now

provision accounts in just 10 minutes instead of the 10 hours it took to provision

with the previous, infrastructure-based process.

The serverless solution enables Autodesk to automatically provision accounts,

configure and enforce standards, and run audits with increased automation and

fewer manual touchpoints. For more information, see the Autodesk AWS

Summit 2017 presentation SMC301: The State of Serverless Computing.24 Visit

GitHub to see the Autodesk Tailor service.25

Machine Learning

You can use serverless services to capture, store, and preprocess data before

feeding it to your machine learning model. After training the model, you can also

https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28
https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://github.com/alanwill/aws-tailor

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 18

serve the model for prediction at scale for inference without providing or

managing any infrastructure.

Customer Example – Genworth

Genworth Mortgage Insurance Australia Limited is a leading provider of lenders’

mortgage insurance in Australia. Genworth has more than 50 years of

experience and data in this industry and wanted to use this historical

information to train predictive analytics for loss mitigation machine learning

models.

To achieve this task, Genworth built a serverless machine learning pipeline at

scale using services like AWS Glue, a serverless managed ETL processing

service to ingest and transform data, and Amazon SageMaker to batch

transform jobs and, perform ML inference, and process and publish the results

of the analysis.

With the ML models, Genworth could analyze recent repayment patterns for

each insurance policy to prioritize them in likelihood and impact for each claim.

This process was automated end-to-end to help the business make data-driven

decisions and simplify high-value manual work performed by the Loss Mitigation

team. Read the Machine Learning blog How Genworth built a serverless ML

pipeline on AWS using Amazon SageMaker and AWS Glue for more

information.26

Conclusion

Serverless approaches are designed to tackle two classic IT management

problems: idle servers, and operating fleets of servers that distract and detract

from the business of creating differentiated customer value.

AWS serverless offerings solve these longstanding problems with a pay-for-

value billing model, and by eliminating the need to manage the underlying

infrastructure. AWS constantly scans, patches and monitors the underlying

infrastructure making these applications more secure, and provides built-in fault

tolerance with minimal configuration needed for high availability. As a result,

developers can focus on writing business logic rather than managing

infrastructure, allowing enterprises to reduce time to market while paying for

only the resources consumed.

https://aws.amazon.com/blogs/machine-learning/how-genworth-built-a-serverless-ml-pipeline-on-aws-using-amazon-sagemaker-and-aws-glue/
https://aws.amazon.com/blogs/machine-learning/how-genworth-built-a-serverless-ml-pipeline-on-aws-using-amazon-sagemaker-and-aws-glue/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 19

Existing companies are gaining significant agility and economic benefits from

adopting serverless architectures, and enterprises should consider serverless

first strategy for building cloud-native microservices. To learn more and read

whitepapers on related topics, see Serverless Computing and Applications.27

Contributors

The following individuals and organizations contributed to this document:

• Tim Wagner, General Manager of AWS Serverless Applications, Amazon

Web Services

• Paras Jain, Technical Account Manager, Amazon Web Services

• John Lee, Solutions Architect, Amazon Web Services

• Diego Magalhães, Principal Solutions Architect, Amazon Web Services

Further Reading

For additional information, see the following:

• Architecture Best Practices for Serverless 28

• AWS Ramp-Up Guide: Serverless29

Reference Architectures

• Web Applications30

• Mobile Backends 31

• IoT Backends32

• File Processing33

• Stream Processing34

• Image Recognition Processing35

• MapReduce36

https://aws.amazon.com/serverless
https://aws.amazon.com/architecture/serverless
https://d1.awsstatic.com/training-and-certification/ramp-up_guides/Ramp-Up_Guide_Serverless.pdf?svrd_rr1
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://github.com/awslabs/lambda-refarch-mapreduce

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 20

Document Revisions

Date Description

October
2017

First publication

September
2021

Content refresh

1 https://www.perle.com/articles/the-cost-savings-of-cloud-computing-

40191237.shtml

2 https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-

says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020

3

https://d39w7f4ix9f5s9.cloudfront.net/e3/79/42bf75c94c279c67d777f002051f/

carbon-reduction-opportunity-of-moving-to-aws.pdf

4 Occupy the Cloud: Eric Jonas et al., Distributed Computing for the 99%,

https://arxiv.org/abs/1702.04024.

5 https://aws.amazon.com/aws-cost-management/aws-cost-optimization/right-

sizing/

6 https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

7 https://serverlessland.com/patterns

8 https://aws.amazon.com/partners

9 https://aws.amazon.com/serverless/

10 https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-

Tier_Architectures.pdf

11 https://github.com/awslabs/lambda-refarch-webapp

12 https://github.com/awslabs/lambda-refarch-mobilebackend

13 https://aws.amazon.com/solutions/case-studies/neimanmarcus-case-study

14 https://github.com/awslabs/lambda-refarch-iotbackend

Notes

https://www.perle.com/articles/the-cost-savings-of-cloud-computing-40191237.shtml
https://www.perle.com/articles/the-cost-savings-of-cloud-computing-40191237.shtml
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://d39w7f4ix9f5s9.cloudfront.net/e3/79/42bf75c94c279c67d777f002051f/carbon-reduction-opportunity-of-moving-to-aws.pdf
https://d39w7f4ix9f5s9.cloudfront.net/e3/79/42bf75c94c279c67d777f002051f/carbon-reduction-opportunity-of-moving-to-aws.pdf
https://arxiv.org/abs/1702.04024
https://aws.amazon.com/aws-cost-management/aws-cost-optimization/right-sizing/
https://aws.amazon.com/aws-cost-management/aws-cost-optimization/right-sizing/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html
https://serverlessland.com/patterns
https://aws.amazon.com/partners
https://aws.amazon.com/serverless/
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://aws.amazon.com/solutions/case-studies/neimanmarcus-case-study
https://github.com/awslabs/lambda-refarch-iotbackend

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
optimizing-enterprise-economics-with-serverless/

optimizing-enterprise-economics-with-
serverless.html

Optimizing Enterprise Economics with Serverless Architectures

Page 21

15 https://www.youtube.com/watch?v=-1PDC6UOFtE

16 https://github.com/awslabs/lambda-refarch-streamprocessing

17 https://github.com/awslabs/lambda-refarch-fileprocessing

18 https://github.com/awslabs/lambda-refarch-imagerecognition

19 https://www.youtube.com/watch?v=AcGv3qUrRC4&feature=youtu.be&t=1153

20 https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-

leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-

lake/

21 https://www.youtube.com/watch?v=IpuRyJY3B4k

22 https://github.com/awslabs/lambda-refarch-mapreduce

23 https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-

processing-using-aws-lambda/28

24 https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-

serverless-computing-75290821/22

25 https://github.com/alanwill/aws-tailor

26 https://aws.amazon.com/blogs/machine-learning/how-genworth-built-a-

serverless-ml-pipeline-on-aws-using-amazon-sagemaker-and-aws-glue/

27 https://aws.amazon.com/serverless/

28 https://aws.amazon.com/architecture/serverless/

29 https://d1.awsstatic.com/training-and-certification/ramp-up_guides/Ramp-

Up_Guide_Serverless.pdf?svrd_rr1

30 https://github.com/awslabs/lambda-refarch-webapp

31 https://github.com/awslabs/lambda-refarch-mobilebackend

32 https://github.com/awslabs/lambda-refarch-iotbackend

33 https://github.com/awslabs/lambda-refarch-fileprocessing

34 https://github.com/awslabs/lambda-refarch-streamprocessing

35 https://github.com/awslabs/lambda-refarch-imagerecognition

36 https://github.com/awslabs/lambda-refarch-mapreduce

https://www.youtube.com/watch?v=-1PDC6UOFtE
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://www.youtube.com/watch?v=AcGv3qUrRC4&feature=youtu.be&t=1153
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://www.youtube.com/watch?v=IpuRyJY3B4k
https://github.com/awslabs/lambda-refarch-mapreduce
https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28
https://www.slideshare.net/AmazonWebServices/smc303-realtime-data-processing-using-aws-lambda/28
https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://www.slideshare.net/AmazonWebServices/smc301-the-state-of-serverless-computing-75290821/22
https://github.com/alanwill/aws-tailor
https://aws.amazon.com/blogs/machine-learning/how-genworth-built-a-serverless-ml-pipeline-on-aws-using-amazon-sagemaker-and-aws-glue/
https://aws.amazon.com/blogs/machine-learning/how-genworth-built-a-serverless-ml-pipeline-on-aws-using-amazon-sagemaker-and-aws-glue/
https://aws.amazon.com/serverless/
https://aws.amazon.com/architecture/serverless/
https://d1.awsstatic.com/training-and-certification/ramp-up_guides/Ramp-Up_Guide_Serverless.pdf?svrd_rr1
https://d1.awsstatic.com/training-and-certification/ramp-up_guides/Ramp-Up_Guide_Serverless.pdf?svrd_rr1
https://github.com/awslabs/lambda-refarch-webapp
https://github.com/awslabs/lambda-refarch-mobilebackend
https://github.com/awslabs/lambda-refarch-iotbackend
https://github.com/awslabs/lambda-refarch-fileprocessing
https://github.com/awslabs/lambda-refarch-streamprocessing
https://github.com/awslabs/lambda-refarch-imagerecognition
https://github.com/awslabs/lambda-refarch-mapreduce

	Introduction
	Understanding Serverless Architectures
	Is Serverless Always Appropriate?
	Serverless Use Cases

	AWS Serverless Capabilities
	Service Offerings
	Developer Support
	Security
	Partners

	Case Studies
	Serverless Websites, Web Apps, and Mobile Backends
	Customer Example – Neiman Marcus

	IoT Backends
	Customer Example – iRobot

	Data Processing
	Customer Example – FINRA
	Customer Example – Toyota Connected

	Big Data
	Customer Example – Fannie Mae

	IT Automation
	Customer Example – Autodesk

	Machine Learning
	Customer Example – Genworth

	Conclusion
	Contributors
	Further Reading
	Reference Architectures
	Document Revisions

