
Oracle to PostgreSQL CDC
Monitoring with AWS
Database Migration Service
Migration Guide

June 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Components of AWS DMS .. 1

Replication Instance ... 1

Source Endpoint ... 8

Target Endpoint .. 10

Task .. 11

When to Use DMS Metrics .. 19

Use case .. 21

Conclusion ... 22

Contributors ... 22

Additional Resources .. 22

Document Revisions.. 23

About This Guide

This guide outlines the metrics to review when you move a database from Oracle to

PostgreSQL using AWS Database Migration Service change data capture (CDC). It

includes how to interpret the metric data at different steps of the process.

Understanding these metrics allows you to more quickly resolve issues when bottleneck

points occur in data migration.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 1

Overview

AWS Database Migration Service (AWS DMS) makes it easy to move projects of

multiple sizes from on-premises databases to Amazon RDS, Amazon Redshift, and

NoSQL database services. AWS DMS helps you change schemas, load full table

records, and support on-going change data capture (CDC) processing during the

migration project and production environment operations.

This guide covers CDC processing, including how to read metrics and how to handle

abnormal situations indicated by metrics.

Components of AWS DMS

Before we can get into reading the metrics that AWS DMS provides, let’s review the

components that make it up. AWS DMS consists of four major components: replication

instance (RI), source endpoint, target endpoint, and task. These components and their

associated metrics are detailed in the following sections.

Replication Instance

The replication instance is an Amazon Elastic Compute Cloud (Amazon EC2)

instance that contains the DMS engine. The replication instance has its own resources,

such as network, CPU, storage, and memory. Each resource has its own limitations that

can become bottlenecks in CDC task processing.

The source database is the source of all table records and CDC records. The source

database also has physical resources, such as storage devices (SAN, DAS, NAS) and

CPU/memory boards. Each resource has the potential to be a bottleneck point in CDC

processing. In many cases, the network resource is the most vulnerable point in the

pipeline. Often, the source database doesn’t show the throttle power to push CDC

records to the DMS replication instance through the source endpoint. Strictly speaking,

the source database doesn’t push the CDC records to the replication instance. Instead,

the replication instance pulls the CDC records from the source database.

The Source Endpoint section, shows the related task settings and details how to

improve pulling power from the replication instance and a task.

The target database is the transaction target for DMS. You can perform transactions

with a range of commands, such as DML SQLs (INSERT, UPDATE, DELETE), or batch

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 2

operations (COPY). You can perform transactions with a range of commands, such as

DML SQLs (INSERT, UPDATE, DELETE), or batch operations (COPY) on the source

database. However, you can’t choose which DML SQL commands are used in the DMS

transactions on the target database. But sometimes, you must know which command

can be used during full-loading operation. For example, the DMS PostgreSQL engine

uses the COPY command with a .csv file format. If you set a table or database

character, set it to UTF-8 but the source records have non-UTF8 format such as EUC-

KR/EUC-JP/CP949, the COPY command can’t handle the source records. So, you

would see invalid character errors during full-loading. If you know that the COPY

command will be used under bulk loading, you can choose the right solutions to

overcome this error (for example, deleting invalid characters from the source database

or choosing the right character set).

AWS DMS CDC is similar to data pipelining from source to sink. Low CDC performance

indicates some bottlenecks in the pipeline. Amazon CloudWatch Metrics and logs show

if there is a bottleneck in the pipeline and also where the bottleneck is located in any

component of AWS DMS replication instance, source database, target database, and

network.

Replication Instance Metrics

Figure 1:Replication instance diagram

A replication instance is based on an Amazon EC2 instance with an Amazon Elastic

Block Store (EBS) volume size of your choosing. One Amazon EBS volume is a full

record temporary file used with batch commands (load, copy, etc.) and the other is for

CDC temporary records. The following sections detail the replication instance metrics.

CPUUtilization

AWS DMS currently supports the T2, C4, and R4 Amazon EC2 instance classes for

replication instances:

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 3

• The T2 instance classes are low-cost standard instances designed to provide a

baseline level of CPU performance with the ability to burst above the baseline.

They are suitable for developing, configuring, and testing your database

migration process. They also work well for periodic data migration tasks that can

benefit from the CPU burst capability.

• The C4 instance classes are designed to deliver the highest level of processor

performance for computer-intensive workloads. They achieve significantly higher

packet per second (PPS) performance, lower network jitter, and lower network

latency. AWS DMS can be CPU-intensive, especially when performing

heterogeneous migrations and replications such as migrating from Oracle to

PostgreSQL. C4 instances can be a good choice for these situations.

• The R4 instance classes are optimized for memory-intensive workloads. Ongoing

migrations or replications of high-throughput transaction systems using DMS can,

at times, consume large amounts of CPU and memory. R4 instances include

more memory per vCPU.

If CPU utilization is high (reached 70% or 80%), change the replication instance to a

larger size or replace the instance type with a compute-intensive instance type, such as

C4.

If you see CPU utilization fluctuation, before you change the instance type, check the

FreeableMemory and SwapUsage metrics. When the replication engine uses more real

physical memory, the FreeableMemory metric would be approaching to zero. When

this occurs, the replication engine uses swap memory (You can check it in the

SwapUsage metric), which can degrade overall performance. If this situation occurs,

change the RI type to a memory-intensive instance, such as R4 (Figure 2).

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 4

Figure 2: High CPU utilization with low freeable memory

FreeStorageSpace

Figure 1 shows that the local storage is used for full-loading temporary files and CDC

records file. The total storage size should be larger than the sum of these local storage

locations.

The size of CDC records is usually estimated by the source database transaction log

size (REDO log, WAL log, binlog) during full-loading time. As the total records of target

tables increases, the total storage of replication instance should also increase.

In the on-going CDC tasks, free storage is used only for CDC records and engine/task

logs. However, disk storage is not a good choice for on-going CDC. All records should

be processed in the memory not on the disk.

In the following figure, the FreeStorageSpace metric shows almost no usage of disk.

Figure 3: FreeStorageSpace metric with low usage

50.5

65.3

79.7 2.9G

1.4G

0G

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 5

FreeableMemory

Memory is used for various purposes such as the OS kernel, AWS DMS engine, CDC

records, and unloaded records from sources. Memory is faster than disk, so we should

guide the replication engine to use memory instead of disk.

Memory usage that exceeds the physical memory size increases the SwapUsage value.

The swap memory prevents out of memory (OOM) errors but it can compromise

replication performance. Avoid this scenario, if possible. Every task allocates each

memory page to replicate records, so you should estimate total memory by the sum of

all tasks.

WriteIOPS/ReadIOPS/WriteThroughput/ReadThroughput

If you use full-loading and on-going CDC, the replication engine uses disk to store

CDC records and unloaded records from source database.

DMS uses gp2 EBS volume, so you can see when the replication engine hits the limit of

EBS IOPS and bandwidth. Then, you should check the limit of two resources. First is

the limit of GP2 EBS volume. The IOPS limit of GP2 depends on the size of EBS

volume. You case see the more specific explanation in Amazon EBS features. The

second resource is the limit of EC2 itself, which you can find on the Amazon EBS-

optimized instances site.

If the DMS replication engine tried to use more IOPS than the limit of EC2, it could

produce a bottleneck.

The following list is the current supported EC2 instance types in the replication instance.

Figure 4. DMS replicationiInstance types

https://aws.amazon.com/ebs/features/?nc1=h_ls
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 6

Figure 5. IOPS/Bandwidth limits (in EBS-optimized instances)

For example, dms.c4.large has 500 Mbps (62.5 MB) maximum bandwidth and 4000

IOPS. So, you can set at least 1.3 TB as DMS storage to gain full performance in IOPS

(1300 GiB * 3 IOPS/GiB = 3900 IOPS). If you see the maximum IOPS in this metric

indicate the limit of EC2 instance or EBS, you can choose the bigger size of EC2

instance and size up the EBS volume to avoid EBS bottleneck.

Figure 6: Near maximum IOPS limit

For more information, see Amazon EBS Volume Performance on Linux Instances.

SwapUsage

The swapfile is enabled in the replication instance. It provides more stability for

replication tasks. However, the overuse of a swapfile is the one of the major causes of

performance bottlenecks. If a combination of low freeable memory and high swap

memory usage is present, increase RI memory by increasing the RI EC2 instance and

changing the EC2 type to a more memory intensive type such as R4.

NetworkReceiveThroughput

NetworkReceiveThroughput is a key factor to check network bandwidth between

replication instances and the source database. This metric indicates the sum of all

incoming traffic, including both source database and target database traffic. The largest

volume of incoming traffic consists of unloaded and CDC records from the source

database.

For security reasons, on-premises original source databases can’t support exposure

outside of their private subnets. DMS needs direct connections between all endpoints

and replication instance. In these cases, the network engineer and security manager of

3560.2

3320.8

3180.4

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 7

on-premises IDCs create a temporary network path between the source database and

AWS DMS replication instance. The bandwidth for a temporarily created network

channel tends to have some deficits. For example, you could see that the network

bandwidth of DX is 100 Mbps(12 MB/s), but the maximum of network receive

throughput is less than 12 MB/s.

Figure 7 shows the metric graph sample of above case.

Figure 7: Low bandwidth between the source DB and RI

If you see this, notify all stakeholders about the low bandwidth of the network to find

obstacles in the network.

There are many factors that limit the maximum network throughput. These factors

include source database performance, and low-bandwidth network channel.

If you want to see the full bandwidth between the source database and RI, add more

tasks with binary reader option. For example, if you see that one task uses an average

of 40 Mbps, you can add two more tasks to check the maximum bandwidth at 120

Mbps. For help with solving network troubles, see Networking Issues.

NetworkTransmitThroughput

This metric is the sum of outbound traffic from the replication instance. It includes

outbound traffic from RI to source database, from RI to target database. In many cases,

the DMS replication instance and the target database exist in the same VPC. It is rare to

find a bottleneck in the network channel between the replication instance and the target

database.

12.4 M

10.8 M

9.2 M

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Troubleshooting.html#CHAP_Troubleshooting.General.Network

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 8

Source Endpoint

A source endpoint itself has no metric information. But it can hold configuration and

initial parameters used when connected. As an Oracle source endpoint, it can configure

the parameters listed in this section in the connection string for performance.

Note

Some parameters are used for binary reader mode. Some are for
LogMiner mode.

There aren’t many parameters related with performance in an Oracle source endpoint.

But the choice between LogMiner mode and Binary Reader mode is critical to task

performance.

The major difference between LogMiner and Binary Reader is where to analyze the

online and archived redo log files. In LogMiner mode, the source database itself

analyzes redo log files and CDC tasks pull the records matched with filter options. In

Binary Reader mode, all online and archived redo log files, CDC task pull all the files

from the source database by opening files and streaming it to the RI’s local disk. And

then the task in the replication instance analyzes them and finds matched records.

LogMiner mode could make source database busier, but it really depends on other

conditions. For example, the following figure shows a majority of targeted transactions.

When most transactions are targeted, Binary Reader is a better solution.

Figure 8: Transaction ratio (targeted > filtered)

The following figure shows a majority of filtered transactions. In this case, there is no

reason to pull all of the records from source database. You can skip the majority of

these records. Only a few records should be transferred to the target database.

TX
(targeted)

TX
(filtered)

ALL Transactions

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 9

Figure 9:Transaction ratio (targeted < filtered)

In LogMiner mode, the CDC task pulls the full list of all transaction metadata in the

source database. You can find it in the task detail debug logs. But for the only matched

(targeted) records, the CDC task pulls the detail information from the source database

through LogMiner. It relieves the burden of network bandwidth and source database

utilizations.

Common Parameter

The following parameter is common to both LogMiner mode and Binary Reader mode.

retryInterval

The CDC records are pulled from the replication instance, not pushed. Because the

CDC latency requirement is short, you should lower this parameter value. The default

value is 5 (seconds). You can set to this value to 1 and above. We recommend that you

set it to 1. Note, however, that this can put a burden on the source database.

Figure 10: RetryInterval

TX
(targeted)

TX
(filtered)

ALL Transactions

T+0 T+1

Pull Query

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 10

LogMiner Mode

addSupplementalLogging

Set to Y. CDC in Oracle (source) depends on the supplemental logging feature.

LogMiner can retrieve executed transaction logs under this option.

useLogminerReader

Set to Y.

Binary Reader Mode

useLogminerReader

Set to N.

useBfile

Set to Y.

archivedLogD

DMS tasks in on-going CDC option use the file input stream from online/archive redo

log files. Sometimes, DMS tasks can’t handle redo log files directly. This can happen in

RDS, where file access is prohibited for managed services, and also in ASM, where

ASM file access can be only for user ASM indirectly. In these circumstances, set this

value to False.

archivedLogsOnly

A CDC task can handle all online and archive redo logs. If this option is set, the CDC

task only handles archive redo log files. This means CDC latency can be delayed with

various checkpoint options on the source database.

Target Endpoint

The target endpoint itself also has no metric information. It supports initial parameters in

the connection string.

maxFileSize

DMS uses the COPY DML command in the full load. Each file size has a limit under the

maxFileSize parameter. The COPY DML command is the best option to load the initial

parameter instead of using INSERT.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 11

In the DMS reference manual, DMS recommends that you disable triggers temporarily.

However, sometimes triggers are required for business purposes. In these instances,

you should allow CLOB/BLOB transferring through DMS.

BLOB/CLOB Operations

If the binary size of BLOB/CLOB columns has limited size under specific size (for

example 8 MB), DMS task tries to unload all binary content from its source column and

then transfers and upload it at one time.

But what if the size of binary of the BLOB/CLOB columns in the records are bigger than

the limit size? In the PostgreSQL target, DMS concatenates the binary contents through

one insert and multiple updates. So, if you set the chunk size of LOB in DMS to 1 MB, it

results in the combination of one insert command and eight update commands.

If the target table has been triggered by the update DML, all transactions will be

multiplied by the size of BLOB/CLOB columns of the record. To avoid this situation,

remove the trigger and make other solutions (Batch, ETL, Application, etc.).

Task

A task is the main role in the pipeline between source and target databases. It pulls

from the source database, filtering, transforming, rearranging, and uploading to the

target database. Each task has an independent pipeline channel. This means if you use

Binary Reader mode and, for example, the size of all the redo log files was 10 GB, each

channel pulls 10 GB from the source database. If you use 10 multiple tasks, the total

pulled stream size is almost 100 GB.

The task itself, is the source of power for pulling data from the source database, and

this gives us the concurrency. If a record is waiting for target database process, all other

records in the same task would also be waiting.

Figure 8: Pulling force in multiple tasks

Source
Database

redolog files

pulling force

pulling force

Task #1

Task #2

…..

pulling force Task #N

Network between SRC DB and RIdatabase file streaming

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 12

The preceding diagram shows the trade-off relationship between tasks and various

source endpoint resources. If you increase concurrency and throughput from the source

database, you can complete more tasks. However, this action also causes more

resource use, such as source database CPU, volume I/O (especially in Binary Reader

mode), and network bandwidth from the source to replication instance.

of

Tasks Mode

Source Resource

Concurrency

Read

Throughput Database Network

Few Binary

Reader

CPU very low

I/O low

Bandwidth low low Medium

LogMiner CPU low

I/O low

Bandwidth low

Many Binary

Reader

CPU low

I/O high

Bandwidth high high high

LogMiner CPU medium

I/O medium

Bandwidth

medium

If the ratio between matched records and all transaction is high, the Binary Reader is

the better solution. Otherwise, we recommend that you use LogMiner.

Note

More tasks don’t always equal more throughput. For example, in Binary
Reader mode, one task needs more network bandwidth. More tasks can
cause high I/O throughput in the source database and the network
utilization between the source database and your replication instance.

Transaction Multiplication

Multiple tasks can also produce transaction multiplication. Transactions on source

database will be guaranteed only when the all tables in a transaction should be in one

task. If part of the tables in one transaction is separated into multiple tasks, all tasks

related with this transaction would create another transaction in the target database.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 13

Figure 9.Transaction multiplication

If possible, review the original transaction, and make sure that the filter options in one

task have all tables in the original transactions. Configurations (filter options in Tasks)

that are mismatched with original transactions cause unnecessary transactions to the

target database.

Batch Apply

DMS supports batch apply mode. Apply refers to its operation in the target database.

Batch apply is the well-known parameter for performance. If batch apply is enabled, all

transactions are maintained for certain periods (BatchApplyTimeoutMin) and records

with same primary key are serialized, removing unnecessary change records from the

serialized transactions.

The following parameters are used in the task settings.

Batch Apply Enabled Mode

• BatchApplyPreserveTransaction – If set to true, transactional integrity is

preserved and a batch is guaranteed to contain all the changes within a

transaction from the source. This option is valid for oracle database as target. If

this is not applicable to your task, this parameter should be set to false.

• BatchApplyTimeoutMin / BatchApplyTimeoutMax — The default value is 1.

BatchApplyTimeoutMin is the waiting time before transactions are applied to the

target database. In some cases, delayed BatchApplyTimeoutMin value is used

for batch apply. For example, if you set BatchApplyTimeoutMin to 3600 (1

hour), the CDC records will be applied in each hour. (In this case, you can use

Amazon Redshift database as a target.)

TAB_A

One TX

TAB_B

TAB_C

TAB_D

TAB_E

Task #2

include : TAB_D

Task #3

include : TAB_E

Task #1

include : TAB_A, TAB_B, TAB_C

TX 1

TX 2

TX 3

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 14

• BatchApplyMemoryLimit — Batch apply rearranges all the CDC records in the

task memory. If the task meets a shortage of memory, the task tries to apply the

records in the memory to release allocated memory for the batch apply.

Increase this parameter value to the appropriate value under

MemoryLimitTotal size.

Transaction Mode (Batch Apply disabled)

• MinTransactionSize — Minimum number of changes to include in each

transaction. The default value is 1000. This means that there are over 1,000

records in one transaction, the batch of these records could be applied to the

target database. If there are many heavy transactions such like 10,000 CDC

records per transaction, increase this parameter value to increase bulk

operation.

• CommitTimeout — If the number of records from the source database is small,

it isn’t possible that more than MinTransactionSize CDC records exist in one

transaction. In this case, CommitTimeout value is used. The default value is 1.

So, after one second, whether there are sufficient CDC records in a transaction,

the bulk of the records would be applied into the target database.

Common Parameters

MemoryLimitTotal

This indicates how much memory a task can use. If a task feels the shortage of

memory, it tries to use disk space to store CDC records to relieve memory shortage. In

the CDC on-going task, this operation is useless. Increasing this parameter value will

prevent disk usage.

MemoryKeepTime

The CDC records in the transaction should be kept in memory for the certain amount of

time. MemoryKeepTime indicates the residence time of CDC records in memory. The

default value is 60 seconds. If the transaction of the source database is over 60

seconds, a task tries to use disk space to store CDC records. By checking the longest

transaction time on the source database and how much time is needed to fetch these

CDC records from source database, you increase this value to avoid disk usage.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 15

Task CloudWatch Metrics

Task has several CloudWatch metrics. The important metrics are CDCLatencySource,

and CDCLatencyTarget. There are other CDC metrics related to long transaction and

uncommitted transactions.

Note

Some metrics are only meaningful in the full-load CDC tasks
(FullLoadThroughputBandwidthSource,
FullLoadThroughputBandwidthTarget, FullLoadThroughputRowsSource,
FullLoadThroughputRowsTarget).

CDCLatencySource

This is the gap, in seconds, between the last event captured from the source endpoint

and current system timestamp of the AWS DMSinstance. In short, this is the time gap

between the oldest records of source database that are not loaded on the replication

instance and the current timestamp of the replication instance itself. If no changes have

been captured from the source due to task scoping, AWS DMS sets this value to 0.

For example, some batch programs execute 100,000 records inserted and committed

(T+0), and the replication instance is trying to get the committed records from the

source database but the process of loading records needs time. At this point, the

CDCLatencySource metric would be raised.

The network bottleneck between source database and replication instance could cause

the increase of CDCLatencySource metric. Sometimes the source database table locks

could also have a big impact.

Heavy transactions on the source database could cause an increase in the

CDCLatencySource metric. If you see this metric value raised, try to raise the “pulling

force” (source database replication instance) with various parameters.

1. Create another task in the replication instance. The tasks in the replication

instance raise both pulling force and the applying force. But the increasing tasks

need to split tables in the source database for each task. It’s not easy to design

transaction boundary, so considering raising the network usage.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 16

2. Raise the “stream buffer” counts. Stream buffers are used to store loaded

recordset into the memory. Lots of LOB records can produce the following

message in the CloudWatch task logs.

“Outgoing stream is full. Forwarding events to target is

postponed”

When you see it, you should raise the count of stream buffer and the stream

buffer size.

CDCLatencyTarget

This is the gap, in seconds, between the first event timestamp waiting to commit on the

target and the current timestamp of the AWS DMS instance. The value occurs if there

are transactions that are not handled by the target. Otherwise, if all transactions are

applied, the target latency is the same as the source latency. The target latency should

never be less than the source latency.

This metric shows that there are some issues in the target database. The issues include

target table locking, network bandwidth shortage, and target database performance.

The following image shows the relationship between CDCLatencySource and

CDCLatencyTarget.

Figure 10. Delayed target latency

The following image shows a case of a target database with low CUD performance.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 17

Figure 11. Target latency graph

There are many factors to increase target apply performance. Try upgrading the

instance size. You can also try BatchApply mode to increase target performance.

With the previous situation, the customer suffered from cross-AZ DMS performance. We

recommended that this customer use the BatchApply option to the task, which helped

in this case. The below graph is the applied version.

Figure 12. BatchApply mode enabled

The same value for shows for both CDCLatencySource and CDCLatencyTarget. This

means that there is no target apply performance issue.

CDCIncomingChanges

This metric indicates how many records are changed (updated, inserted, or deleted) in

the source database. If a transaction was started and not committed, this metric would

be raised, but the CDCLatencySource metric wouldn’t. So, if you see the gap between

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 18

start time of CDCIncomingChanges and CDCLatencySource metrics, you can see that

there are uncommitted transactions or long transactions on the source database.

CDCChangesMemorySource

This metric indicates how much memory is used for the uncommitted records of the

source database on the replication instance. So CDCIncomingChanges and

CDCChangesMemorySource metrics are raised together.

CDCChangesDiskSource

This metric indicates how much disk space is used for uncommitted records of the

source database on the replication instance. Why disk used? Because the accumulated

uncommitted records in the memory can’t be applied to the target database, these

records could impact the memory usage of the replication instance. So, the records stay

in the memory for longer than the MemoryKeepTime specifies when they should be

released to the disk.

Figure 13. Uncommitted transactions processing

Source

Target

Replication
Instance

Memory

Disk

T+0 T+1 T+2 T+3 T+4

BEGIN TRAN

INSERT RECORD A

Load records to
memory

INSERT RECORD B

Load records from
memory to disk

Processing…

when to exceed ”MemoryKeepTime”

Commit

Applying

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 19

Figure 14. Uncommitted transaction and task metrics

When to Use DMS Metrics

The following diagram displays well-known workflows for when to adopt DMS as

migration service.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 20

Figure 15. DMS trouble shoot flow

You can use this document as a reference where the Check on replication instance,

source and target metrics? process appears in this diagram (located on the left

bottom).

Metrics show helpful information, such as performance bottlenecks during DMS

operation. But they don’t show information that was improperly set. If you get a failure

case on starting DMS tasks, check the RI, endpoints, and task settings first.

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 21

Use case

This section demonstrates a use case where an ecommerce company wants to use

DMS to CDC replication from an on-premises, user-interfacing Oracle database to

Aurora PostgreSQL to analyze user events in near-real-time real time.

Their Oracle database is heavily used, with almost 95% CPU utilization. There is a

shortage of storage volume, and the database is only able to maintain four hours of

archive log files. Their CDC requirement is latency delay below 5 seconds.

The network channel between on-premises IDC and AWS is 100M DX. The number of

records for real-time replication is a few thousands per second at peak time.

In this use case, we took the following actions:

1. Before adopting CDC replication of DMS, we enabled Oracle databases to use

the supplement logging feature. This action can cause performance impact to the

source database. In this instance, we advised upgrading or increasing CPU

capacity of the source database before enabling supplement logging. They

added CPU resources (Maximum CPU Utilization is under 80%) and volume

resources.

2. In CDC replication mode, we maintained 24-hour archive logs and enlarged the

source database storage volume.

3. Because the number of all tables of the source database is over 3000 and the

number of replication target tables is only 150, we used LogMiner mode.

4. A DMS task extracts the committed records from the source database. As the

number of tasks increases, the pulling force also increases. Many tasks can

cause the performance impacts such as higher CPU, I/O, network bandwidth

utilization. So, it is critical to create an appropriate number of tasks to match

customer requirements.

In this case, one task increases a 4% CPU utilization on the source database.

So, we made four tasks to increase loading performance and to match the

transformation operation for target database.

5. We noticed that at the dawn, the bulk operations (bulk insert, bulk update) have

been executed and this type of workload made CDC replication delay impacts

through CDCLatencySource and CDCLatencyTarget metrics. We analyzed the

percentage of target transactions out of whole transactions on the source

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 22

database. It was just under 20%. The whole transaction log size was over 60%

usage for the full network bandwidth, so we decided to use LogMiner mode

instead of Binary Reader mode.

6. At the bulk operations, some LOB tables created issues that can be found on the

CDCLatencyTarget and CDCChangesDiskSource metrics. On CDC mode, we

recommended minimizing the disk usage to decrease latency and increase

throughput.

7. In the target database, some interesting transactions were found. When one LOB

record was inserted, the trigger bind to the table was fired repeatedly. This

symptom is based on the DMS LOB handling. The process of handling a large

LOB record in DMS has two parts. One is to insert a record in the target

database. The other is to update the same record with a binary stream that has

the target buffer sized repeatedly. If the target table has triggers, this update

process would make for a low performance in loading and CDC.

Conclusion

There are many metrics on AWS DMS metrics. Each one can help you understand the

bottlenecks in the DMS tasks. We hope this guide helps you overcome any

performance barriers in your production environment.

Contributors

• KyungPyo Park, Solutions Architect, Geo Solutions Architect Team

• Yong Dae Kim, Professional Service, Ent Seg/Country Team

• Sungsoo Khim, Solutions Architect, Geo Solutions Architect Team

• Ebrahim Khiyami, Migration Solutions Architect, Geo Solutions Architect Team

Additional Resources

For additional information, see the following resources.

• AWS Database Migration Service Documentation

• Debugging Your AWS DMS Migrations: What to Do When Things Go Wrong

(Part 1)

https://docs.aws.amazon.com/dms/index.html
https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-1/
https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-1/

Amazon Web Services Oracle to PostgreSQL CDC Monitoring with AWS Database Migration Service

 23

• Debugging Your AWS DMS Migrations: What to Do When Things Go Wrong

(Part 2)

• Debugging Your AWS DMS Migrations: What to Do When Things Go Wrong?

(Part 3)

Document Revisions

Date Description

June 2020 First publication

https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-2/
https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-2/
https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-3/
https://aws.amazon.com/blogs/database/debugging-your-aws-dms-migrations-what-to-do-when-things-go-wrong-part-3/

	Overview
	Components of AWS DMS
	Replication Instance
	Replication Instance Metrics
	CPUUtilization
	FreeStorageSpace
	FreeableMemory
	WriteIOPS/ReadIOPS/WriteThroughput/ReadThroughput
	SwapUsage
	NetworkReceiveThroughput
	NetworkTransmitThroughput

	Source Endpoint
	Common Parameter
	retryInterval

	LogMiner Mode
	addSupplementalLogging
	useLogminerReader

	Binary Reader Mode
	useLogminerReader
	useBfile
	archivedLogD
	archivedLogsOnly

	Target Endpoint
	maxFileSize
	BLOB/CLOB Operations

	Task
	Transaction Multiplication
	Batch Apply
	Batch Apply Enabled Mode
	Transaction Mode (Batch Apply disabled)

	Common Parameters
	MemoryLimitTotal
	MemoryKeepTime

	Task CloudWatch Metrics
	CDCLatencySource
	CDCLatencyTarget
	CDCIncomingChanges
	CDCChangesMemorySource
	CDCChangesDiskSource

	When to Use DMS Metrics
	Use case
	Conclusion
	Contributors
	Additional Resources
	Document Revisions

