
Reviewed for technical accuracy December 23, 2021
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Serverless In-Game Screenshot Processor Pipeline for Game Studios
Build a serverless image processing pipeline for your games that receives players’ in-game screenshots, checks 
them for profanity, performs transformation, and stores them in the cloud. The processed images can be retrieved 
for the players’ gallery by the game client and the community site.

9

8

7

6

5

4

3

2

1
Players take screenshots in-game, which invokes an API to 
upload those screenshots. The game client needs to send player 
metadata to the application program interface (API).

It is recommended to use an authentication method such as 
Amazon Cognito to authenticate all requests processed by API 
Gateway.

API Gateway also supports custom authorization using an 
AWS Lambda function to perform the authentication with an 
external identity provider.

An Amazon API Gateway instance hosts the REST API for the 
image uploader and processor function.

An AWS Lambda function is invoked by the API Gateway to 
receive the image and pre-process it.

As part of pre-processing, the image is sent to the Amazon 
Rekognition DetectModerationLabels API.

You can send a notification for the result of the filtering 
process to your user through Amazon Simple Notification 
Service (Amazon SNS).
Optionally, the raw image can be stored in an Amazon 
Simple Storage Service (Amazon S3) bucket.

The image processor Lambda function can perform 
transformations/resizing of the image and add watermarks. 
The processed image is uploaded to an S3 bucket meant for 
processed screenshots.

The image processor Lambda function extracts the associated 
in-game metadata (such as player ID, timestamp, and in-game 
location) in the request object. The metadata is then stored 
in Amazon DynamoDB. The image’s associated S3 key is also 
included in the same DynamoDB item. This step completes the 
image processing portion of this pipeline.

Game client

Community site

1

Amazon API Gateway

2

Amazon Cognito

3

Lambda function
image uploader/processor

4

Amazon Rekognition
profanity filter

5

Amazon S3
raw screenshots

7

Amazon S3
processed 

screenshots

8

DynamoDB

9

Lambda function
image retrieval

11

10

6

Amazon SNS
filtering notification

12

Amazon CloudFront
CDN

10
The community site and game client might want to retrieve 
the stored screenshots to present the gallery of images to 
players by retrieving the URLs stored in DynamoDB. To 
retrieve the image, the client or community site initiates a 
request using API Gateway.

11
The retrieval request invokes the image retrieval Lambda 
function, which gets the associated item from DynamoDB, 
which contains the S3 key for the image. Optionally, you can 
use DynamoDB Accelerator to cache your read requests.

12
The game client and community site requests the image 
from Amazon CloudFront content delivery network (CDN) 
fronting the S3 bucket to serve the screenshots.

https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html

