
Streaming Data Solutions on
AWS with Amazon Kinesis

July 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Contents

Introduction 1

Real-time Application Scenarios 1

Difference Between Batch and Stream Processing 2

Stream Processing Challenges 2

From Batch to Real-time: An Example 3

Example Scenario: Toll Road Billing and Notification 3

Requirement 1: More Recent Data in the Data Warehouse 4

Amazon Kinesis Firehose 5

Requirement 2: Billing Threshold Alerts 12

Amazon Kinesis Analytics 14

Amazon Kinesis Streams 16

Requirement 3: Other Threshold Alerts 22

Complete Architecture 23

Conclusion 24

Contributors 25

Abstract
Data engineers, data analysts, and big data developers are looking to evolve

their analytics from batch to real-time so their companies can learn about what

their customers, applications, and products are doing right now and react

promptly. This whitepaper discusses the evolution of analytics from batch to

real-time. It describes how services such as Amazon Kinesis Streams, Amazon

Kinesis Firehose, and Amazon Kinesis Analytics can be used to implement real-

time applications, and provides common design patterns using these services.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 1

Introduction
Businesses today receive data at massive scale and speed due to the explosive

growth of data sources that continuously generate streams of data. Whether it is

log data from application servers, clickstream data from websites and mobile

apps, or telemetry data from Internet of Things (IoT) devices, it all contains

information that can help you learn about what your customers, applications,

and products are doing right now. Having the ability to process and analyze this

data in real-time is essential to do things such as continuously monitor your

applications to ensure high service uptime and personalize promotional offers

and product recommendations. Real-time processing can also make other

common use cases, such as website analytics and machine learning, more

accurate and actionable by making data available to these applications in

seconds or minutes instead of hours or days.

Real-time Application Scenarios

There are two types of use case scenarios for streaming data applications:

 Evolving from Batch to Streaming Analytics

You can perform real-time analytics on data that has been traditionally analyzed

using batch processing in data warehouses or using Hadoop frameworks. The

most common use cases in this category include data lakes, data science, and

machine learning. You can use streaming data solutions to continuously load

real-time data into your data lakes. You can also update machine learning

models more frequently as new data becomes available, ensuring accuracy and

reliability of the outputs. For example, Zillow uses Amazon Kinesis Streams to

collect public record data and MLS listings, and then provide home buyers and

sellers with the most up-to-date home value estimates in near real-time. Zillow

also sends the same data to its Amazon Simple Storage Service (S3) data lake

using Kinesis Streams so that all the applications work with the most recent

information.

 Building Real-Time Applications

You can use streaming data services for real-time applications such as

application monitoring, fraud detection, and live leaderboards. These use cases

require millisecond end-to-end latencies—from ingestion, to processing, all the

way to emitting the results to target data stores and other systems. For example,

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 2

Netflix uses Kinesis Streams to monitor the communications between all its

applications so it can detect and fix issues quickly, ensuring high service uptime

and availability to its customers. While the most commonly applicable use case

is application performance monitoring, there are an increasing number of real-

time applications in ad tech, gaming, and IoT that fall under this category.

Difference Between Batch and Stream Processing

You need a different set of tools to collect, prepare, and process real-time

streaming data than those tools that you have traditionally used for batch

analytics. With traditional analytics, you gather the data, load it periodically

into a database, and analyze it hours, days, or weeks later. Analyzing real-time

data requires a different approach. Instead of running database queries over

stored data, stream processing applications process data continuously in real-

time, even before it is stored. Streaming data can come in at a blistering pace

and data volumes can vary up and down at any time. Stream data processing

platforms have to be able to handle the speed and variability of incoming data

and process it as it arrives, often millions to hundreds of millions of events per

hour.

Stream Processing Challenges

Processing real-time data as it arrives can enable you to make decisions much

faster than is possible with traditional data analytics technologies. However,

building and operating your own custom streaming data pipelines is

complicated and resource intensive. You have to build a system that can cost-

effectively collect, prepare, and transmit data coming simultaneously from

thousands of data sources. You need to fine-tune the storage and compute

resources so that data is batched and transmitted efficiently for maximum

throughput and low latency. You have to deploy and manage a fleet of servers to

scale the system so you can handle the varying speeds of data you are going to

throw at it. After you have built this platform, you have to monitor the system

and recover from any server or network failures by catching up on data

processing from the appropriate point in the stream, without creating duplicate

data. All of this takes valuable time and money and, at the end of the day, most

companies just never get there and must settle for the status-quo and operate

their business with information that is hours or days old.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 3

From Batch to Real-time: An Example
To better understand how organizations are evolving from batch to stream

processing with AWS, let’s walk through an example. In this example, we’ll

review a scenario and discuss in detail how AWS services Amazon Kinesis

Streams,1 Amazon Kinesis Firehose,2 and Amazon Kinesis Analytics3 are used to

solve the problem.

Batch processing is a common practice for data processing. Organizations often

run regular jobs to analyze their data at a frequency applicable for their use

case. For example, an organization might run a process at the end of the month

to determine how much to bill each of their customers. Or, they might run an

hourly job to analyze logs from their IT applications to determine what errors

occurred in the past hour. While these monthly or hourly processes are

valuable, what if the same data could be analyzed as it gets created? Are there

additional insights that could be gleaned, or additional value that could be

created?

Consider the monthly billing scenario again. By analyzing a customer’s usage

data as it is generated, an organization can enable valuable features, such as

notifying users that they’re approaching a pre-defined billing limit. If the IT

application logs can be analyzed in real-time, a system administrator can be

notified immediately to investigate and take corrective action.

Now let’s combine these two into a single scenario and review how we can build

a solution.

Example Scenario: Toll Road Billing and Notification

In this simplified example, a fictitious company, ABC Tolls, operates toll

highways throughout the country. Customers that register with ABC Tolls

receive a transceiver for their automobile. When the customer drives through

the tolling area, a sensor receives information from the transceiver and records

details of the transaction to a relational database. ABC Tolls has a traditional

batch architecture. Each day, a scheduled extract-transform-load (ETL) process

is executed that processes the daily transactions and transforms them so they

can be loaded into their data warehouse. The next day, the ABC Tolls business

analysts review the data using a reporting tool. In addition, once a month (at the

https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/firehose/
https://aws.amazon.com/kinesis/analytics/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 4

end of the billing cycle) another process aggregates all the transactions for each

of the ABC Tolls customers to calculate their monthly payment.

ABC Tolls would like to make some modifications to its system. The first

requirement comes from its business analyst team. They have asked for the

ability to run reports from their data warehouse with data that is no older than

30 minutes.

ABC Tolls is also developing a new mobile application for its customers. While

developing the application, they decided to create some new features. One

feature gives customers the ability to set a spending threshold for their account.

If a customer’s cumulative toll bill surpasses this threshold, ABC Tolls wants to

send an in-application message to the customer to notify them that the

threshold has been breached within 10 minutes of the breach occurring.

Finally, the ABC Tolls operations team has some additional requirements that

they’d like to introduce to the system. While monitoring their tolling stations,

they want to be immediately notified when the vehicle traffic for a tolling station

falls below a pre-defined threshold for each 30-minute period in a day. For

example, they know from historical data that one of their tolling stations sees

approximately 360 vehicles on Wednesdays between 2:00 pm and 2:30 pm. In

that 30-minute window, the operations team wants to be notified if the tolling

station sees fewer than 100 vehicles. Their operators can then investigate to

determine if the traffic is normal, or if some other factor has contributed to the

unexpected value (e.g., a defective sensor or an automobile accident on the

highway).

The ABC Tolls engineering team determines that their current architecture

needs some modifications to support these requirements. They decide to build a

streaming data ingestion and analytics system to support the requirements.

Let’s review each requirement and take a look at the architecture enhancements

that will support each one.

Requirement 1: More Recent Data in the Data

Warehouse

Currently, the data in the ABC Tolls data warehouse can be up to 24 hours old

because of their daily batch process. Their current data warehouse solution is

Amazon Redshift. While reviewing the features of the Amazon Kinesis services,

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 5

they recognized that Kinesis Firehose can receive a stream of data records and

insert them into Amazon Redshift. They created a Kinesis Firehose delivery

stream and configured it so that it would copy data to their Amazon Redshift

table every 15 minutes. Their current solution stores records to a file system as

part of their batch process. As part of this new solution, they used the Amazon

Kinesis Agent on their servers to forward their log data to Kinesis Firehose.

Since Kinesis Firehose uses Amazon S3 to store raw streaming data before it is

copied to Amazon Redshift, ABC Tolls didn’t need to build another solution to

archive their raw data.

Figure 1 depicts this solution.

Amazon Kinesis
Firehose

Amazon Kinesis
Firehose

Amazon RedshiftAmazon Redshift

Amazon S3Amazon S3

Business
Analysts
Business
Analysts

Every 15 minutes

Toll StationsToll Stations

Stream of Toll Records Business Reports

Figure 1: New solution using Amazon Kinesis Firehose

For this portion of the architecture, ABC Tolls chose Kinesis Firehose. Let’s

review the features of Kinesis Firehose in detail.

Amazon Kinesis Firehose

Amazon Kinesis Firehose is the easiest way to load streaming data into AWS. It

can capture, transform, and load streaming data into Amazon Kinesis Analytics,

Amazon S3, Amazon Redshift, and Amazon Elasticsearch Service, enabling near

real-time analytics with existing business intelligence tools and dashboards that

you’re already using today. It’s a fully managed service that automatically scales

to match the throughput of your data and requires no ongoing administration.

It can also batch, compress, and encrypt the data before loading it, minimizing

the amount of storage used at the destination and increasing security.

Kinesis Firehose is a fully managed service. You do not need to write

applications or manage resources. You configure your data producers to send

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 6

data to Kinesis Firehose, which automatically delivers the data to the

destination that you specified. You can also configure Kinesis Firehose to

transform your data before data delivery.

Sending Data to an Amazon Kinesis Firehose Delivery Stream

To send data to your delivery stream, there are several options. AWS offers

SDKs for many popular programming languages, each of which provides APIs

for Kinesis Firehose. AWS has also created a utility to help send data to your

delivery stream.

Using the API

The Kinesis Firehose API offers two operations for sending data to your delivery

stream. PutRecord sends one data record within one call. PutRecordBatch

can send multiple data records within one call.

In each method, you must specify the name of the delivery stream and the data

record, or array of data records, when using the method. Each data record

consists of a data blob that can be up to 1,000 KB in size and any kind of data.

For detailed information and sample code for the Kinesis Firehose API

operations, refer to Writing to a Firehose Delivery Stream Using the AWS SDK.4

Using the Amazon Kinesis Agent

The Amazon Kinesis Agent is a stand-alone Java software application that offers

an easy way to collect and send data to Kinesis Streams and Kinesis Firehose.

The agent continuously monitors a set of files and sends new data to your

stream. The agent handles file rotation, checkpointing, and retry upon failures.

It delivers all of your data in a reliable, timely, and simple manner. It also emits

Amazon CloudWatch metrics to help you better monitor and troubleshoot the

streaming process.

You can install the agent on Linux-based server environments such as web

servers, log servers, and database servers. After installing the agent, configure it

by specifying the files to monitor and the destination stream for the data. After

the agent is configured, it durably collects data from the files and reliably sends

it to the delivery stream.

http://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 7

The agent can monitor multiple file directories and write to multiple streams. It

can also be configured to pre-process data records before they’re sent to your

stream or delivery stream.

If you’re considering a migration from a traditional batch file system to

streaming data, it’s possible that your applications are already logging events to

files on the file systems of your application servers. Or, if your application uses a

popular logging library (such as Log4j), it is typically a straight-forward task to

configure it to write to local files. Regardless of how the data is written to a log

file, you should consider using the agent in this scenario. It provides a simple

solution that requires little or no change to your existing system. In many cases,

it can be used concurrently with your existing batch solution. In this scenario, it

provides a stream of data to Kinesis Streams, using the log files as a source of

data for the stream.

In our example scenario, ABC Tolls chose to use the agent to send streaming

data to their delivery stream. They were already creating log files, so forwarding

the log entries to Kinesis Firehose was a simple installation and configuration of

the agent. No additional code was needed to start streaming their data.

Data Transformation

In some scenarios, you might want to transform or enhance your streaming data

before it is delivered to its destination. For example, data producers might send

unstructured text in each data record, and you need to transform it to JSON

before delivering it to Amazon Elasticsearch Service.

To enable streaming data transformations, Kinesis Firehose uses an AWS

Lambda function that you create to transform your data.5

Data Transformation Flow

When you enable Kinesis Firehose data transformation, Kinesis Firehose

buffers incoming data up to 3 MB or the buffering size you specified for the

delivery stream, whichever is smaller. Kinesis Firehose then invokes the

specified Lambda function with each buffered batch asynchronously. The

transformed data is sent from Lambda to Kinesis Firehose for buffering.

Transformed data is delivered to the destination when the specified buffering

size or buffering interval is reached, whichever happens first. Figure 2 depicts

this process for a delivery stream that delivers data to Amazon S3.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 8

Amazon Kinesis

Firehose

Amazon Kinesis

Firehose
Amazon S3Amazon S3

Data

Transformation

Lambda Function

Data

Transformation

Lambda Function

data records

raw data records transformed data records

transformed data records

Figure 2: Buffering data using Kinesis Firehose and Lambda functions

Data Delivery

After your delivery stream’s buffering thresholds have been reached, your data

is delivered to the destination you’ve configured. There are some differences in

how Kinesis Firehose delivers data to each destination, which we’ll review in the

following sections.

Amazon Simple Storage Service

Amazon S3 is object storage with a simple web service interface to store and

retrieve any amount of data from anywhere on the web.6 It’s designed to deliver

99.999999999% durability, and scale past trillions of objects worldwide. You

can use Amazon S3 as primary storage for cloud-native applications, as a bulk

repository or "data lake" for analytics, and as a target for backup and recovery

and disaster recovery.

Data Delivery Format

For data delivery to Amazon S3, Kinesis Firehose concatenates multiple

incoming records based on the buffering configuration of your delivery stream,

and then delivers them to Amazon S3 as an S3 object. You may want to add a

record separator at the end of each record before you send it to Kinesis Firehose

so that you can divide a delivered S3 object to individual records.

https://aws.amazon.com/s3/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 9

Data Delivery Frequency

The frequency of data delivery to Amazon S3 is determined by the S3 buffer size

and buffer interval value you configured for your delivery stream. Kinesis

Firehose buffers incoming data before delivering it to Amazon S3. You can

configure the values for the Amazon S3 buffer size (1 MB to 128 MB) or buffer

interval (60 seconds to 900 seconds). The condition satisfied first triggers data

delivery to Amazon S3. Note that in circumstances where data delivery to the

destination is falling behind data writing to the delivery stream, Kinesis

Firehose raises the buffer size dynamically to catch up and make sure that all

data is delivered to the destination.

Data Flow

Figure 3 shows the flow of data for Amazon S3 destinations.

Figure 3: Data flow from Kinesis Firehose to S3 buckets

Amazon Redshift

Amazon Redshift is a fast, fully managed data warehouse that makes it simple

and cost-effective to analyze all your data using standard SQL and your existing

business intelligence (BI) tools.7 It allows you to run complex analytic queries

against petabytes of structured data using sophisticated query optimization,

columnar storage on high-performance local disks, and massively parallel query

execution. Most results come back in seconds.

https://aws.amazon.com/redshift/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 10

In our example, ABC Tolls was already using Amazon Redshift as their data

warehouse solution. When they implemented their streaming data solution,

they configured their delivery stream to deliver their streaming data to their

existing Amazon Redshift cluster.

Data Delivery Format

For data delivery to Amazon Redshift, Kinesis Firehose first delivers incoming

data to your S3 bucket in the format described earlier. Kinesis Firehose then

issues an Amazon Redshift COPY command to load the data from your S3

bucket to your Amazon Redshift cluster. You need to make sure that after

Kinesis Firehose concatenates multiple incoming records to an S3 object, the S3

object can be copied to your Amazon Redshift cluster. For more information,

see Amazon Redshift COPY Command Data Format Parameters.

Data Delivery Frequency

The frequency of data COPY operations from Amazon S3 to Amazon Redshift is

determined by how fast your Amazon Redshift cluster can finish the COPY

command. If there is still data to copy, Kinesis Firehose issues a new COPY

command as soon as the previous COPY command is successfully finished by

Amazon Redshift.

Data Flow

Figure 4 shows the flow of data for Amazon Redshift destinations.

Figure 4: Data flow from Kinesis Firehose to Amazon Redshift

http://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 11

Amazon Elasticsearch Service

Amazon Elasticsearch Service (Amazon ES) is a fully managed service that

delivers the Elasticsearch easy-to-use APIs and real-time capabilities along with

the availability, scalability, and security required by production workloads.8

Amazon ES makes it easy to deploy, operate, and scale Elasticsearch for log

analytics, full text search, application monitoring, and more.

Data Delivery Format

For data delivery to Amazon ES, Kinesis Firehose buffers incoming records

based on the buffering configuration of your delivery stream and then generates

an Elasticsearch bulk request to index multiple records to your Elasticsearch

cluster. You need to make sure that your record is UTF-8 encoded and flattened

to a single-line JSON object before you send it to Kinesis Firehose.

Data Delivery Frequency

The frequency of data delivery to Amazon ES is determined by the Elasticsearch

buffer size and buffer interval values that you configured for your delivery

stream. Kinesis Firehose buffers incoming data before delivering it to Amazon

ES. You can configure the values for the Elasticsearch buffer size (1 MB to 100

MB) or buffer interval (60 seconds to 900 seconds). The condition satisfied first

triggers data delivery to Amazon ES. Note that in circumstances where data

delivery to the destination is falling behind data writing to the delivery stream,

Kinesis Firehose raises the buffer size dynamically to catch up and make sure

that all data is delivered to the destination.

Data Flow

Figure 5 shows the flow of data for Amazon ES destinations.

https://aws.amazon.com/elasticsearch-service/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 12

Figure 5: Data delivery from Kinesis Firehose to Amazon ES cluster

Summary

Kinesis Firehose is the easiest way to persist your streaming data to a supported

destination. It’s a fully-managed solution, requiring little or no development to

use. For ABC Tolls, using Kinesis Firehose was a natural choice. They were

already using Amazon Redshift as their data warehouse solution. And because

their data sources were continuously writing to transaction logs, they were able

to leverage the Amazon Kinesis Agent to stream that data without writing any

additional code.

Now that ABC Tolls has created a stream of toll records and are receiving these

records via Kinesis Firehose, they can use this as the basis for their other

streaming data requirements.

Requirement 2: Billing Threshold Alerts

To support the feature to send a notification when a spending threshold is

breached, the ABC Tolls development team has created a mobile application and

an Amazon DynamoDB table.9 The application allows customers to set their

threshold, and the table stores this value for each customer. The table is also

used to store the cumulative amount spent by each customer, each month. To

provide timely notifications, ABC Tolls needs to update the cumulative value in

https://aws.amazon.com/dynamodb/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 13

this table in a timely manner, and compare that value with the threshold to

determine if a notification should be sent to the customer. Since their toll

transactions are already streaming through Kinesis Firehose, they decided to

use this streaming data as the source for their aggregation and alerting. And

because Kinesis Analytics enabled them to use SQL to aggregate the streaming

data, it is an ideal solution to the problem. In this solution, Kinesis Analytics

totals the value of the transactions for each customer over a 10-minute time

period (window). At the end of the window, it sends the totals to a Kinesis

stream. This stream is the event source for an AWS Lambda function. The

Lambda function queries the DynamoDB table to retrieve the thresholds and

current total spent by each customer represented in the output from Kinesis

Analytics. For each customer, the Lambda function updates the current total in

DynamoDB and also compares the total with the threshold. If the threshold has

been exceeded, it uses the AWS SDK to tell Amazon Simple Notification Service

(SNS) to send a notification to the customers.

Figure 6 shows the architecture for this solution.

Retrieve the customer s threshold and the
current total from DynamoDB. Send a
message to customer via Amazon SNS if
threshold is breached.

Amazon Kinesis
Firehose

Amazon Kinesis
FirehoseToll Stations

Amazon Kinesis
Analytics

Amazon Kinesis
Analytics

Amazon Kinesis
Streams

Amazon Kinesis
Streams AWS Lambda

Function
AWS Lambda

Function

Amazon
DynamoDB

Amazon
DynamoDB

Amazon SNS

Customer
Mobile App
Customer

Mobile App

Every 10 minutes,
sum the tolls

incurred for each
customer during the
10-minute window.
Send the totals to a

Kinesis stream.

Figure 6: Architecture for billing threshold alerts and notifications

With this solution, ABC Tolls provides their customers with a timely notification

when they approach spending limits.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 14

To glean real-time insights from their streaming data, ABC Tolls chose to use

Kinesis Analytics to analyze their streaming data. With Kinesis Analytics, ABC

Tolls used SQL, a language they were already familiar with, to inspect their data

as it streamed through their delivery stream. Let’s review Kinesis Analytics in

more detail.

Amazon Kinesis Analytics

With Kinesis Analytics, you can process and analyze streaming data using SQL.

The service enables you to quickly author and run powerful SQL code against

streaming sources to perform time series analytics, feed real-time dashboards,

and create real-time metrics.

To get started with Kinesis Analytics, you create a Kinesis Analytics application

that continuously reads and processes streaming data. The service supports

ingesting data from Kinesis Streams and Kinesis Firehose streaming sources.

You then author your SQL code using the interactive editor and test it with live

streaming data. You can also configure destinations where you want Kinesis

Analytics to persist the results. Kinesis Analytics supports Kinesis Firehose

(Amazon S3, Amazon Redshift, and Amazon Elasticsearch Service), and Kinesis

Streams as destinations.

Key Concepts

An application is the primary resource in Kinesis Analytics that you can create

in your account. Kinesis Analytics applications continuously read and process

streaming data in real-time. You write application code using SQL to process

the incoming streaming data and produce output. Kinesis Analytics then writes

the output to a configured destination. Figure 7 illustrates a typical application

architecture.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 15

Figure 7: Architecture for a Kinesis Analytics application

Each application has a name, description, version ID, and status. When creating

an application, you simply configure the input, create the application code, and

configure the output.

Input

The application input is the streaming source for your application. You can

select either a Kinesis stream or a delivery stream as the streaming source. You

can optionally configure a reference data source to enrich your input data

stream within the application. It results in an in-application reference table. You

must store your reference data as an object in an S3 bucket. When the

application starts, Kinesis Analytics reads the S3 object and creates an in-

application table.

ABC Tolls used their delivery stream as input to their Kinesis Analytics

application.

Application Code

Your application code consists of a series of SQL statements that process input

and produce output. You can write SQL statements against in-application

streams, reference tables, and you can write JOIN queries to combine data from

both of these sources.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 16

In its simplest form, application code can be a single SQL statement that selects

from a streaming input and inserts results into a streaming output. It can also

be a series of SQL statements where output of one statement feeds into the

input of the next SQL statement. Further, you can write application code to split

an input stream into multiple streams and then apply additional queries to

process these streams.

Output

In your application code, query results go to in-application streams. In your

application code, you can create one or more in-application streams to hold

intermediate results. You can then optionally configure application output to

persist data in the in-application streams, which hold your application output

(also referred to as in-application output streams), to external destinations.

External destinations can be a delivery stream or a Kinesis stream.

ABC Tolls used Kinesis Streams as the destination for their aggregated values.

Summary

Kinesis Analytics enables you to use SQL to glean insights from your data as it

streams through the system. ABC Tolls wrote their SQL to perform 10-minute-

long aggregations to total the tolls incurred by their customers. The output

values of these 10-minute aggregations could be compared with their customers’

thresholds.

As mentioned earlier, Kinesis Analytics outputs its results to either Kinesis

Streams or Kinesis Firehose. In this example, ABC Tolls chose to send the

output of Kinesis Analytics to a Kinesis stream because of the integration of

Kinesis Streams with AWS Lambda. Let’s learn more about Kinesis Streams.

Amazon Kinesis Streams

Amazon Kinesis Streams enables you to build custom, real-time applications

using popular stream processing frameworks and load streaming data into any

data store. You can configure hundreds of thousands of data producers to

continuously put data into a Kinesis stream, for example, data from website

clickstreams, application logs, IoT sensors, and social media feeds. Within less

than a second, the data will be available for your application to read and process

from the stream.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 17

When implementing a solution with Kinesis Streams, you will create custom

data-processing applications known as Kinesis Streams applications. A typical

Kinesis Streams application reads data from a Kinesis stream as data records.

While you can use Kinesis Streams to solve a variety of streaming data

problems, a common use is the real-time aggregation or analysis of data

followed by loading the aggregate data into a data warehouse or map-reduce

cluster.

Data is put into Kinesis Streams, which ensures durability and elasticity. The

delay between the time a record is put into the stream and the time it can be

retrieved (put-to-get delay) is typically less than 1 second—in other words, a

Kinesis Streams application can start consuming the data from the stream

almost immediately after the data is added. Because Kinesis Streams is a

managed service, it relieves you of the operational burden of creating and

running a data intake pipeline.

Sending Data to Amazon Kinesis Streams

There are several mechanisms to send data to your stream. AWS offers SDKs for

many popular programming languages, each of which provides APIs for Kinesis

Streams. AWS has also created several utilities to help send data to your stream.

Let’s review each of the approaches you can use and why you might choose each.

Amazon Kinesis Agent

The Amazon Kinesis Agent was discussed earlier as a tool that can be used to

send data to Kinesis Firehose. The same tool can be used to send data to Kinesis

Streams. For details on installing and configuring the Kinesis agent, see Writing

to Amazon Kinesis Firehose Using Amazon Kinesis Agent.10

Amazon Kinesis Producer Library (KPL)

The KPL simplifies producer application development, allowing developers to

achieve high write throughput to one or more Kinesis streams. The KPL is an

easy-to-use, highly configurable library that you install on your hosts that

generate the data that you wish to stream to Kinesis Streams. It acts as an

intermediary between your producer application code and the Kinesis Streams

API actions. The KPL performs the following primary tasks:

 Writes to one or more Kinesis streams with an automatic and

configurable retry mechanism

http://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
http://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 18

 Collects records and uses PutRecords to write multiple records to

multiple shards per request

 Aggregates user records to increase payload size and improve

throughput

 Integrates seamlessly with the Amazon Kinesis Client Library (KCL) to

de-aggregate batched records on the consumer

 Submits Amazon CloudWatch metrics on your behalf to provide

visibility into producer performance

The KPL can be used in either synchronous or asynchronous use cases. We

suggest using the higher performance of the asynchronous interface unless

there is a specific reason to use synchronous behavior. For more information

about these two use cases and example code, see Writing to your Streams

Stream Using the KPL.11

The KPL can help build high-performance producers. Consider a situation

where your Amazon Elastic Compute Cloud (EC2) instances serve as a proxy for

collecting 100-byte events from hundreds or thousands of low power devices

and writing records into a Kinesis stream. These EC2 instances must each write

thousands of events per second to your Kinesis stream. To achieve the

throughput needed, producers must implement complicated logic such as

batching or multithreading, in addition to retry logic and record de-aggregation

at the consumer side. The KPL performs all of these tasks for you.

Because the KPL buffers your records before they’re sent to a Kinesis stream,

the KPL can incur an additional processing delay, depending on the length of

time you’ve configured the KPL to buffer records before sending them to

Kinesis. Larger buffer time results in higher packing efficiencies and better

performance. Applications that cannot tolerate this additional delay may need

to use the AWS SDK directly.

If your application does not log records to a local file, and it creates a large

number of small records per second, consider using the KPL.

For details about using the KPL to produce data, refer to Developing Amazon

Kinesis Streams Producers Using the Amazon Kinesis Producer Library.12

http://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 19

Amazon Kinesis API

After a stream is created, you can add your data records to it. A record is a data

structure that contains the data to be processed in the form of a data blob. After

you store the data in the record, Kinesis Streams does not inspect, interpret, or

change the data in any way.

There are two different operations in the Kinesis Streams API that add data to a

stream: PutRecords and PutRecord. The PutRecords operation sends

multiple records to your stream per HTTP request, and the singular PutRecord

operation sends records to your stream one at a time (a separate HTTP request

is required for each record). You should prefer using PutRecords for most

applications because it will achieve higher throughput per data producer.

Because the APIs are exposed in all AWS SDKs, using the API to write records

provides the most flexible solution to send data to a Kinesis stream. If you are

unable to use the Kinesis Agent or KPL (for example, you want to write

messages directly from a mobile application, or you want to minimize message

end-to-end latency as much as possible), then use the APIs to write records to

your Kinesis stream.

For details about these APIs, refer to Using the API in the Kinesis Streams

documentation.13 The details for each API operation can be found in the

Amazon Kinesis Streams API Reference.14

Processing Data in Amazon Kinesis Streams

A consumer is an application that reads and processes data from Kinesis

Streams. You can build consumers for Kinesis Streams in several ways. In this

section, we’ll discuss four of the most common approaches: using Kinesis

Analytics, using the KCL, using Amazon Lambda, and using the Kinesis Streams

API directly.

Using Amazon Kinesis Analytics

Earlier, we discussed how Kinesis Analytics can be used to analyze streaming

data using standard SQL. Kinesis Analytics can read the data from your Kinesis

stream, and process it using the SQL you provide. To learn more about

processing your streaming data using Kinesis Analytics, see Configuring

Application Input in the Kinesis Analytics Developer Guide.

http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html
http://docs.aws.amazon.com/kinesisanalytics/latest/dev/how-it-works-input.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 20

Using the Amazon Kinesis Client Library (KCL)

You can develop a consumer application for Kinesis Streams using the KCL.

Although you can use the Kinesis Streams API to get data from an Amazon

Kinesis stream, we recommend using the design patterns and code for

consumer applications provided by the KCL.

The KCL helps you consume and process data from a Kinesis stream. This type

of application is also referred to as a consumer. The KCL takes care of many of

the complex tasks associated with distributed computing, such as load balancing

across multiple instances, responding to instance failures, checkpointing

processed records, and reacting to resharding. The KCL enables you to focus on

writing record-processing logic.

The KCL is a Java library; support for languages other than Java is provided

using a multi-language interface. At run time, a KCL application instantiates a

worker with configuration information, and then uses a record processor to

process the data received from a Kinesis stream. You can run a KCL application

on any number of instances. Multiple instances of the same application

coordinate on failures and load-balance dynamically. You can also have multiple

KCL applications working on the same stream, subject to throughput limits. The

KCL acts as an intermediary between your record processing logic and Kinesis

Streams.

For detailed information on how to build your own KCL application, refer to

Developing Amazon Kinesis Streams Consumers Using the Amazon Kinesis

Client Library15.

Using AWS Lambda

AWS Lambda is a compute service that lets you run code without provisioning

or managing servers.16 AWS Lambda executes your code only when needed and

scales automatically. With AWS Lambda, you can run code with zero

administration. AWS Lambda runs your code on a high-availability compute

infrastructure and performs all of the administration of the compute resources,

including server and operating system maintenance, capacity provisioning and

automatic scaling, and code monitoring and logging. All you need to do is

supply your code in one of the languages that AWS Lambda supports.

You can subscribe Lambda functions to automatically read batches of records

off your Kinesis stream and process them if records are detected on the stream.

http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://aws.amazon.com/lambda/

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 21

AWS Lambda then polls the stream periodically (once per second) for new

records. When it detects new records, it invokes your Lambda function by

passing the new records as a parameter. If no new records are detected, your

Lambda function is not invoked.

For detailed information on using AWS Lambda to consume data from Kinesis

Streams, refer to Using AWS Lambda with Amazon Kinesis.17

Using the API

For most use cases, you should use the KCL or AWS Lambda to retrieve and

process data from a stream. However, if you prefer to write your own consumer

application from scratch, there are several methods that enable this. The Kinesis

Streams API provides the GetShardIterator and GetRecords methods to

retrieve data from a stream. This is a pull model, where your code draws data

directly from the shards of the stream. For more information about writing your

own consumer application using the API, refer to Developing Amazon Kinesis

Streams Consumers Using the Amazon Kinesis Streams API. Details about the

API can be found in the Amazon Kinesis Streams API Reference.18

Choosing the Best Consumer Model for Your Application

How do you know which consumer model is best for your use case? Each

approach has its own set of tradeoffs and you’ll need to decide what’s important

to you. Here is some general guidance to help you choose the correct consumer

model.

In most cases, consider starting with AWS Lambda. Its ease of use and the

simple deployment model will enable you to quickly build a data consumer. The

tradeoff to using AWS Lambda is that each invocation of your Lambda function

should be considered stateless. That is, you can’t easily use results from

previous invocations of your function (e.g., earlier batches of records from your

stream). Also consider that the maximum execution time for a single Lambda

function is 5 minutes. If a single batch of records takes longer than 5 minutes to

process, AWS Lambda might not be the best consumer for your use case.

If you decide that you can’t use AWS Lambda, consider building your own

processing application with the KCL. Because you deploy KCL applications to

EC2 instances within your AWS account, you have a lot of flexibility and control

in the local data persistence and state requirements for your data.

http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 22

Your third option is to build your own application using the APIs directly. This

gives you the most control and flexibility, but you also need to build your own

logic to handle common consumer application features like checkpointing,

scaling, and failover.

Summary

Kinesis Streams makes it easy to receive streaming data. You can scale a Kinesis

stream to handle just a few records per second or millions of records per second.

For ABC Tolls, the data rate streaming into their stream wasn’t large. However,

they benefitted from the direct integration with AWS Lambda, which enabled

them to easily make API calls to Amazon SNS for user notifications.

Requirement 3: Other Threshold Alerts

The final requirement is similar to the previous one, but it introduces an

additional problem. To recap this final requirement, the ABC Tolls operators

want to be immediately notified when the vehicle traffic for a tolling station falls

below a pre-defined threshold for each 30-minute period in a day. For example,

they know from historical data that one of their tolling stations sees

approximately 360 vehicles on Wednesdays between 2:00 pm and 2:30 pm. In

that 30-minute window, if a tolling station sees fewer than 100 vehicles, they

want to be notified.

ABC Tolls wants to compare current vehicle totals for each station with a known

average rate for that station. To accomplish this, they created a file containing

threshold traffic values for each 30-minute window, for each station. As

described earlier, Kinesis Analytics supports the use of reference data. It will

create an in-application stream (like a table) based on the data in a file stored in

an S3 bucket. With this in place, ABC Tolls developers were able to write SQL in

their Kinesis Analytics application to count the number of vehicles seen at each

station over a 30-minute window and compare those values with the thresholds

in the file. If the threshold was breached, Kinesis Analytics outputs a record to a

Kinesis stream. When records arrive in the stream, a Lambda function is

executed, which uses Amazon SNS to send a notification to AWS Tolls

operators. Figure 8 illustrates the architecture for this scenario.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 23

Amazon Kinesis
Firehose

Amazon Kinesis
FirehoseToll Stations

Amazon Kinesis
Analytics

Amazon Kinesis
Analytics

Amazon Kinesis
Streams

Amazon Kinesis
Streams AWS Lambda

Function
AWS Lambda

Function

Amazon SNS OperationsOperations

Reference data
file in Amazon S3
Reference data

file in Amazon S3

For 30 minutes, sum the
vehicles seen at each tolling
station. For any station, if the
number of vehicles seen is
below the allowable value,
write a record to an Amazon
Kinesis stream.

Kinesis Analytics uses a reference data
file stored in Amazon S3. The file
contains the thresholds for each station
and each time window.

When records arrive in the
Kinesis stream, use Amazon
SNS to send details to the
operations team.

Figure 8: Architecture for alerts and notifications using 30 minute periods

Complete Architecture

With a solution to each requirement, we now have our overall streaming

solution, as shown in Figure 9.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 24

Amazon Kinesis
Firehose

Amazon Kinesis
Firehose

Amazon RedshiftAmazon Redshift

Amazon S3Amazon S3

Toll Stations

Amazon Kinesis
Analytics

Amazon Kinesis
Analytics

Toll Amount
Kinesis stream

Toll Amount
Kinesis stream

Spending Limit
Lambda Function
Spending Limit

Lambda Function

Amazon
DynamoDB

Amazon
DynamoDB

Amazon SNS

Business
Analysts
Business
Analysts

OperationsOperations

Customer
Mobile App
Customer

Mobile App

Vehicle count
Kinesis stream
Vehicle count

Kinesis stream
Vehicle Count

Lambda Function
Vehicle Count

Lambda Function

Reference data
file in Amazon S3
Reference data

file in Amazon S3

Figure 9: The architecture of the overall streaming solution

This design provides ABC Tolls with a flexible, reactive architecture. By

streaming their customers’ transactions in real-time, they are able to realize

their requirements with very little development effort and minimal

infrastructure to manage.

Conclusion
In this document, we reviewed how the fictitious company, ABC Tolls, used

Amazon Kinesis services to move a traditional batch workflow to a streaming

workflow. This migration provided them with the ability to add new features

and functionality that weren’t possible with their legacy batch solution.

By analyzing data as it gets created, you will gain insights into what your

business is doing right now. Amazon Kinesis services enable you to focus on

your application to make time-sensitive business decisions, rather than

deploying and managing the infrastructure.

Amazon Web Services – Streaming Data Solutions on AWS with Amazon Kinesis

Page 25

Contributors

The following individuals and organizations contributed to this document:

 Allan MacInnis, Solutions Architect, AWS

 Chander Matrubhutam, Product Marketing Manager, AWS

1 https://aws.amazon.com/kinesis/streams/

2 https://aws.amazon.com/kinesis/firehose/

3 https://aws.amazon.com/kinesis/analytics/

4 http://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html

5 https://aws.amazon.com/lambda/

6 https://aws.amazon.com/s3/

7 https://aws.amazon.com/redshift/

8 https://aws.amazon.com/elasticsearch-service/

9 https://aws.amazon.com/dynamodb/

10 http://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html

11 http://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html

12 http://docs.aws.amazon.com/streams/latest/dev/developing-producers-

with-kpl.html

13 http://docs.aws.amazon.com/streams/latest/dev/developing-producers-

with-sdk.html

14 http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html

15 http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-

with-kcl.html

16 https://aws.amazon.com/lambda/

17 http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html

18 http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html

Notes

https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/firehose/
https://aws.amazon.com/kinesis/analytics/
http://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
http://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html
http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
http://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html

